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Abstract

We suggest a method for justifying why a literal is or is not
contained in the answer set of a logic program. This method
makes use of argumentation theory, more precisely of stable
ASPIC+ extensions. We describe a way to translate a logic
program into an ASPIC+ argumentation theory and investi-
gate the relation between answer sets of the logic program
and stable extensions of the translated ASPIC+ argumenta-
tion theory. The structure of ASPIC+ arguments with respect
to a stable extension is then used for the justification of literals
with respect to an answer set. We also present an implemen-
tation of our justification method which displays justifications
as graphs.

1 Introduction
Answer Set Programming (ASP) has become a widely used
technique for the representation of knowledge and efficient
problem solving in the field of nonmonotonic reasoning
(Anger et al. 2005). Application areas range from bioinfor-
matics (Baral et al. 2004) over music composition (Boenn et
al. 2011) to multi-agent systems (Son, Pontelli, and Sakama
2009). ASP allows a problem to be represented in terms
of a logic program with defeasible components, namely
negation-as-failure (NAF) literals. The models of such a
logic program can be constructed applying the answer set
semantics (Gelfond and Lifschitz 1991), where answer sets
correspond to the solutions of the encoded problem. Answer
sets can be efficiently computed using answer set solvers
such as clingo (Gebser et al. 2011), smodels (Niemelä, Si-
mons, and Syrjänen 2000) or DLV (Bihlmeyer et al. 2009).

A possible application of logic programs with NAF liter-
als is the representation of an agent’s knowledge base, where
the answer set corresponds to the agent’s beliefs about the
world (Watson and Vos 2011). Currently, an agent cannot
explain why it has certain beliefs but not others since an-
swer sets come without any justification; they are plain sets
of literals. Especially in multi-agent settings involving ne-
gotiation, it is desirable that agents can explain their beliefs
about the world to other agents. These also include interac-
tions between humans and artificial agents, where the human
could be a doctor and the artificial agent a decision making
system for patient treatment. In such a situation it would be
useful for the doctor to receive an explanation from the de-
cision making agent why it believes that a certain treatment

should (or should not) be applied.
Having an explanation of why a literal is or is not con-

tained in an answer set is not only desirable with respect
to agent beliefs. ASP is frequently used as a technique
for solving complex problems, e.g. (Dimopoulos, Nebel,
and Koehler 1997), (Baral et al. 2004), (Son, Pontelli, and
Sakama 2009). If the solution to a problem, i.e. the answer
set, is not the expected result it is helpful to have an expla-
nation for the unexpected parts of the answer set.

We present a method for justifying literals with respect
to an answer set, thereby providing agents with a basis for
explaining their beliefs. Furthermore, literals which were
not expected as part of a solution can be justified.

Our justification approach applies another influential
technique in nonmonotonic reasoning, namely argumenta-
tion theory. Here we use the ASPIC+ framework (Prakken
2010), a structured argumentation framework building argu-
ments from rules, facts, assumptions etc. One of the seman-
tics of argumentation frameworks is given by stable exten-
sions (Dung 1995). This semantics has its roots in the stable
model semantics for logic programming, which also forms
the basis of answer sets. Due to this common root, answer
sets and stable extensions constructed from the same logic
program correspond. We use this connection to justify liter-
als with respect to an answer set by means of ASPIC+ argu-
ments with respect to the corresponding stable extension.

We call our method Argumentation-Based Answer Set
Justification. The justification of a literal is a set contain-
ing all facts and NAF-literals necessary to derive the literal
in question as well as conflicts with other literals. Our im-
plementation of Argumentation-Based Answer Set Justifica-
tion constructs a graph from this justification set, illustrating
both the supporting and conflicting literals of the literal in
question. This implementation, called JASA (Justification
of Answer Sets via Argumentation), makes use of the an-
swer set solver clingo (Gebser et al. 2011) and the online
ASPIC+ tool TOAST (Snaith and Reed 2012).

The paper is organised as follows: After introducing some
key definitions about answer sets and argumentation theory
in section 2, we explain Argumentation-Based Answer Set
Justification in section 3 and present its implementation in
Section 4. Section 5 compares Argumentation-Based An-
swer Set Justification to other approaches and in particular
to a method called off-line justification (Pontelli, Son, and



Elkhatib 2009). Section 6 concludes our work and provides
a prospect for future work.

2 Background
An extended logic program P is a set
of labelled clauses of the form r : l ←
l1, . . . , lm, not lm+1, . . . , not lm+n with m ≥ 0
and n ≥ 0, where r is the clause’s unique label. l
and all li are classical literals, i.e. positive atoms a
or negated atoms ¬a. not lm+1, . . . , not lm+n are
called negation-as-failure (NAF) literals. For
r : l ← l1, . . . , lm, not lm+1, . . . , not lm+n, head(r) will
denote the head l, body+(r) stands for the set of classical
literals l1, . . . , lm and body−(r) for the set of NAF literals
not lm+1, . . . , not lm+n in the clause’s body. Let LitP be
the Herbrand Universe of P .

In the following we will recall the concept of answer sets
introduced in (Gelfond and Lifschitz 1991). Let P be an
extended logic program without NAF literals. The answer
set of P , denoted AS(P), is the smallest set S ⊆ LitP
such that:

1. if l1, . . . , lm ∈ S then l ∈ S for any clause r : l ←
l1, . . . , lm in P;

2. S = LitP if S contains complementary literals a and ¬a.
Given an extended logic program P , possibly containing

NAF literals, for any subset S ⊆ LitP the reduct PS is
obtained from P by deleting:

1. all clauses with not l in their bodies where l ∈ S,
2. all NAF literals in the remaining clauses.
Then, S is an answer set of P if it is the answer set
of PS , that is if S = AS(PS). A logic program is
called inconsistent if its only answer set is LitP , and
consistent otherwise.

We will now introduce another important technique used
in nonmonotonic reasoning, namely argumentation theory.
There are various structured argumentation frameworks, e.g.
(Dung, Kowalski, and Toni 2009), (Garcia and Simari 2004),
(Governatori et al. 2004), but we will here focus on the
ASPIC+ framework as introduced in (Prakken 2010). This
choice is mainly due to an existing implementation called
TOAST which computes extension semantics of ASPIC+
frameworks (Snaith and Reed 2012). The definitions of
ASPIC+ given in this paper are abbreviated from (Prakken
2010). We will only introduce those elements of ASPIC+
that are needed for the purpose of answer set justification1.

An ASPIC+ argumentation theory AT =
(AS,K) has the following components:

1. an argumentation system AS = (L, ¯,R) where:
• L is a logical language;
• ¯ is a contrariness function from L to 2L;
• R is a set of labelled2 rules of the form r : l1, ..., lm →
l with m ≥ 0;

1The elements of ASPIC+ defined in (Prakken 2010) but omit-
ted here (Rd,≤,≤′,Kp,Ki,�) can be thought of as being empty.

2Originally, rules in ASPIC+ (Prakken 2010) do not have labels.

2. a knowledge base K = Kn ∪ Ka containing axioms Kn

and assumptions Ka, where K ⊆ L and Kn ∩ Ka = ∅.
We will now introduce the notion of argument, where

A,A1, A2, . . . will be used as unique argument labels. For
an argument A, Prem(A) denotes the set of premises used
to construct A, whereas Conc(A) is the conclusion of A.

An argument in AT has one of the following two
forms:

1. A : l is a base argument in AT if l ∈ K. Then,

• Prem(A) = {l}
• Conc(A) = l

2. A : A1, . . . , Am → l is a rule argument
in AT if A1, . . . , Am are arguments in AT and r :
Conc(A1), . . . , Conc(Am)→ l is a rule inR. Then,

• Prem(A) = Prem(A1) ∪ . . . ∪ Prem(Am)

• Conc(A) = l

Note that the set Prem(A) contains only assumptions
and facts from K, no other literals. This means that for
a rule argument A : A1, . . . , Am → l , where r :
Conc(A1), . . . , Conc(Am) → l is the last rule applied in
the construction, Prem(A) will contain Conc(Ai) (i =
1, . . . ,m) only if Ai is a base argument, since in this case
Prem(Ai) = {Conc(Ai)}. If Ai is a rule argument,
Prem(Ai) will be a subset of Prem(A), butConc(Ai) will
not be part of Prem(A). See Example 1 for further clarifi-
cation.

With an abuse of notation, argument labels will some-
times stand for whole arguments. For example, we may say
that argument A is of the form A : l.

Example 1. Consider the ASPIC+ argumentation theory
AT1 with:

• L = {a, b, c, d, e, f, g}
• R = {r1 : b, c→ a; r2 : d→ c}
• b = {e, g}, a = {f}
• Kn = {d, e}, Ka = {b}
The following arguments can be constructed from AT :

• A1 : d
Prem(A1) = {d};

• A2 : e
Prem(A2) = {e};

• A3 : b
Prem(A3) = {b};

• A4 : A1 → c
Prem(A4) = {d};

• A5 : A3, A4 → a
Prem(A5) = {b, d}.
Once arguments are defined in an argumentation theory,

attacks and defeats between them can be investigated. We
will only consider undermining attacks here, as these are
the only kinds of attacks occurring in ASPIC+ argumenta-
tion theories constructed from a logic program. Since we
omit some elements of an ASPIC+ argumentation theory as
compared to the original definition (Prakken 2010), every



undermining attack succeeds as a defeat3. Hence, we will
introduce the notion of defeat in terms of the definition of
undermining attack.

• An argument A defeats an argument B iff l ∈
Prem(B)\Kn and Conc(A) ∈ l.

• A set of arguments T1 defeats a set of arguments T2 iff
there are arguments A ∈ T1 and B ∈ T2 such that A
defeats B.

The semantics of argumentation frameworks are given in
terms of extensions, that is sets of arguments. We will here
focus on stable extensions, introduced in (Dung 1995) and
adapted to ASPIC+ arguments in (Prakken 2010).

• A set T of arguments is conflict-free if it does not
contain arguments A and B such that A defeats B.

• A set of arguments T is a stable extension
iff T is conflict-free and it defeats each argument
which does not belong to T , or equivalently iff T =
{A | T does not defeat A}.

Example 2 (Example 1 cont.). In AT1, A2 defeats both
A3 and A5. This means, that for example the set of argu-
ments {A1, A2, A3} is not conflict-free, whereas {A3, A4}
is a conflict-free set of arguments. There is only one stable
extension for AT1, which is {A1, A2, A4}.

3 Justifying Answer Sets
In order to use ASPIC+ for the justification of literals with
respect to an answer set, the respective logic program has to
be translated into an ASPIC+ argumentation theory.

Definition 1. Let P be a consistent extended logic program.
Then ATP is the ASPIC+ argumentation theory
derived from P as follows:

1. R = {r : l1, . . . lm, not lm+1, . . . , not lm+n → l |
r : l← l1, . . . , lm, not lm+1, . . . , not lm+n ∈ P};

2. Kn = {l | r : l← ∈ P};
3. Ka = {not l | not l ∈ body−(r), r ∈ P};
4. not l = {l} for all not l ∈ Ka;
5. L = LitP ∪ Ka.

Note that ATP will always be well-formed, where an AS-
PIC+ argumentation theory is well-formed iff: if φ is a con-
trary of ψ then ψ /∈ Kn and ψ is not the consequent of a rule
inR (Prakken 2010). The reason thatATP is well-formed is
that the only contraries are of the form not l = {l}, and the
respective NAF literals not l cannot form the head of rules
in P .

Example 3. Consider the following consistent extended
logic program Pfly about a wounded bird:
r1 : fly ← bird, not abnormalBird
r2 : abnormalBird ← bird, wounded
r3 : ¬fly ← wounded
r4 : wounded ←

3Since K = Kn ∪ Ka, Prem(A)\Kn ⊆ Ka for any A and
therefore any undermining attack is a contrary-undermining attack
and consequently a defeat.

r5 : bird ←
The ASPIC+ argumentation theory ATPfly derived from Pfly
has the following components:
• R = {r1 : bird, not abnormalBird→ fly;

r2 : bird,wounded→ abnormalBird;
r3 : wounded→ ¬fly};

• Kn = {bird,wounded};
• Ka = {not abnormalBird};
• not abnormalBird = {abnormalBird};
• L = {fly,¬fly, bird,¬bird, abnormalBird,¬abnormalBird,

wounded,¬wounded, not abnormalBird}.
In ATPfly , the following ASPIC+ arguments can be con-
structed:
• A1 : not abnormalBird
Prem(A1) = {not abnormalBird};

• A2 : bird
Prem(A2) = {bird};

• A3 : wounded
Prem(A3) = {wounded};

• A4 : A3 → ¬fly
Prem(A4) = {wounded};

• A5 : A2, A3 → abnormalBird
Prem(A5) = {bird, wounded};

• A6 : A2, A1 → fly
Prem(A6) = {bird, not abnormalBird}.
The only defeats in ATPfly are A5 defeating both A1 and

A6.
The following proposition is the basis for justifying liter-

als with respect to an answer set using ASPIC+. It states
that every answer set has a corresponding stable extension,
including a corresponding argument for each literal in the
answer set.
Proposition 1. Let P be a consistent extended logic pro-
gram. S is an answer set of P iff E is a stable extensions of
ATP such that S = {Conc(A) |A ∈ E , Conc(A) /∈ Ka}.
Proof. Let S be an answer set of P , let ∆S = {not l | l ∈
LitP , l /∈ S} and ∆′S = {not l | l ∈ LitP , l /∈ S}. Let
P ′ = {r : l← l1, . . . lm, not lm+1, . . . , not lm+n | r : l←
l1, . . . , lm, not lm+1, . . . , not lm+n ∈ P}. Let ` denote
derivability using modus ponens for← as the only inference
rule.

S = {l ∈ LitP | PS ` l}
= {l ∈ LitP | P ∪∆S ` l}
= {l ∈ LitP | P ′ ∪∆′S ` l}
= {l ∈ L | A is an argument in ATP with Conc(A) = l,

Conc(A) /∈ Ka, P rem(A) ⊆ ∆′S ∪ Kn}
= {Conc(A) | A is an argument in ATP with

Conc(A) /∈ Ka, P rem(A) ⊆ ∆′S ∪ Kn}
= {Conc(A) | A is an argument in ATP with

Conc(A) /∈ Ka and no argument B in ATP with
Conc(B) ∈ S defeats A}

= {Conc(A) | A ∈ E , Conc(A) /∈ Ka}



Example 4 (Example 3 cont.). The answer set of Pfly is
SPfly = {bird, wounded, abnormalBird,¬fly}. The AS-
PIC+ argumentation theory ATPfly has one stable extension:
{A2, A3, A4, A5}. As expected, the set of conclusions of
arguments in the stable extension is exactly the same as the
answer set.

Notation (Corresponding extension and argument).
Given an answer set S of P and a stable extension E ofATP
such that S = {Conc(A) | A ∈ E , Conc(A) /∈ Ka}, E will
be called the corresponding stable extension
of S. Given a literal l ∈ S and an argument A ∈ E
with Conc(A) = l, A will be called a corresponding
argument of l.

It is easy to see that for every literal in an answer set there
is a corresponding argument in the corresponding stable ex-
tension. Note that there might be more than one correspond-
ing argument for a literal.

Example 5. To illustrate the concept of corresponding ar-
gument, consider the following logic program P2:
r1 : a← not d
r2 : a← c
r3 : c←
r4 : c← not a
The answer set is SP2 = {a, c}. In the ASPIC+ argumenta-
tion theory ATP2 , seven arguments can be constructed:

• A1 : not d
Prem(A1) = {not d};

• A2 : not a
Prem(A2) = {not a};

• A3 : c
Prem(A3) = {c};

• A4 : A1 → a
Prem(A4) = {not d};

• A5 : A2 → c
Prem(A5) = {not a};

• A6 : A3 → a
Prem(A6) = {c};

• A7 : A5 → a
Prem(A7) = {not a}.

Arguments A4, A6 and A7 all attack arguments A2, A5 and
A7 (this means that A7 also attacks itself). The stable exten-
sion is EP2

= {A1, A3, A4, A6}. The translated ASPIC+ ar-
gumentation theoryATP2

contains two arguments with con-
clusion c, but only one of them is a corresponding argument,
namely A3. For literal a there are three arguments in ATP2 ,
two of which are corresponding arguments, namely A4 and
A6.

After introducing the link between ASP and ASPIC+, we
will now move on to the justification of literals with re-
spect to an answer set. The Argumentation-Based
Answer Set Justification of why a literal l is or
is not part of a chosen answer set is a set which can also
be interpreted as a graph. It contains l itself as well as lit-
erals which are responsible for l being (or not being) part
of the answer set. Furthermore, the justification comprises

binary relations expressing defeats or supports between liter-
als. All literals in a justification can be interpreted as nodes
in a graph, where binary relations are directed edges be-
tween these nodes.

Notation (Defeat and support relation). Let Defeat(A)
denote the set of all arguments defeating argument A in
a given ASPIC+ argumentation theory. def rel(l1, l2) is
a relation expressing that (an argument with conclusion)
l1 defeats (an argument with conclusion) l2. Similarly,
supp rel(l1, l2) states that l1 is a premise of (an argument
with conclusion) l2, in other words l1 supports (an argument
with conclusion) l2.

Definition 2 (Justification of answer set literals). Let
P be a consistent extended logic program, S an answer
set of P and E the corresponding stable extension of
S. Let l ∈ S and let A be a corresponding argu-
ment of l. The Argumentation-Based Answer Set
Justification of l is a set just(l, A), recursively con-
structed as follows:

(a) If A is a base argument A : l, then
just(l, A) = {l} ∪

⋃
B∈Defeat(A)

{def rel(Conc(B), l)} ∪ just(Conc(B), B).
(b) If A is a rule argument A : A1, . . . , An → l, then

just(l, A) = {l} ∪
⋃

B base argument,
Conc(B)∈Prem(A)

{supp rel(Conc(B), l)} ∪ just(Conc(B), B).

Note that the base case of this recursive definition occurs if
a corresponding argumentA is not defeated in condition (a),
i.e. if Defeat(A) = ∅.
Example 6 (Example 4 cont.). The justification of bird ∈
SPfly is simple as its corresponding argument A2 is a base
argument, which is not defeated by other arguments. Ap-
plying (a) of Definition 2: just(bird,A2) = {bird}. This
expresses that the literal bird is supported by itself and not
“defeated” by other literals.
The justification of a literal whose corresponding argument
is not a base argument, like ¬fly ∈ SPfly , is obtained as fol-
lows:
just(¬fly, A4)

= {¬fly} ∪ {{supp rel(wounded,¬fly)}
∪ just(wounded,A3)}

= {¬fly, supp rel(wounded,¬fly), wounded}
This justification uses both parts of Definition 2 and ex-
presses that ¬fly is in the answer set because it is supported
by the fact wounded, which is not defeated. The graph cor-
responding to the justification set is shown in Figure 1.

Figure 1: Graphical justification of literal ¬fly (depicted as
~fly), corresponding to the justification set in Example 6.



An Argumentation-Based Answer Set Justification only
comprises the “lowest” or “base” literals which are needed
to derive the literal in question, that is NAF literals and heads
of clauses with empty body (“facts”). In terms of argumen-
tation this means that only ASPIC+ premises of arguments
are considered; conclusions derived in intermediate steps are
omitted. We argue that including all intermediately derived
literals in the justification would cause confusion and lack of
clarity, especially in the case of large logic programs. How-
ever, Argumentation-Based Answer Set Justification could
easily be extended to incorporate intermediate supporting
literals by adding the conclusions of all subarguments of the
corresponding argument to the justification set.

The justification of a literal l which is not contained in
an answer set can have two different forms, depending on
whether or not there is an argument with conclusion l in
ATP . If such an argument exists, the Argumentation-Based
Answer Set Justification is similar to the justification of a lit-
eral contained in the answer set. If there is no argument with
conclusion l in ATP , the justification states why it is impos-
sible to construct such an argument or rather why l cannot
be derived from the logic program.

Notation (Unsatisfied body literals). For a clause r ∈ P ,
unsat(r) = body+(r)\{l | P ` l}4.

Informally, unsat(r) contains all body literals which are
responsible for r not being applicable, i.e. all literals which
cannot be derived from the logic program.

Definition 3 (Justification of non answer set literals). Let
P be a consistent extended logic program and ATP the AS-
PIC+ argumentation theory derived from P . Let S be an an-
swer set of P , E the corresponding stable extension of S and
l /∈ S. The Argumentation-Based Answer Set
Justification of l is a set of sets, denoted just(l), con-
structed as follows:
Let A1, . . . , An be all arguments with conclusion l in ATP .

(a) If n > 0 then
just(l) = {just(l, A1), . . . , just(l, An)}5.

(b) If n = 0 then let r1, . . . , rm be all clauses in P with
head l.

(i) If m > 0 then
just(l) = {just(l, r1), . . . , just(l, rm)}, where
just(l, ri) = {l} ∪⋃

h∈unsat(ri){h, responsible(h, l)}.
(ii) If m = 0 then

just(l) = {{l,⊥, responsible(⊥, l)}}.
responsible(l1, l2) expresses that l1 is one of the literals

responsible that l2 cannot be derived. l1 = ⊥ denotes a
non-existing body literal. Obviously, there are no clauses
with non-existing body-literals in a logic program, so that
case (b)(ii) in Definition 3 simply expresses that there is no
clause with head l2 in P .

Example 7. To illustrate the justification of a literal which
is not part of an answer set because there is no argument

4` denotes modus ponens as in the proof of Proposition 1.
5just(l, Ai) refers to Definition 2.

having this literal as its conclusion, consider the following
logic program P3:
r1 : a← not b
r2 : b← c, not d
This logic program has one answer set, SP3

= {a}. In
the ASPIC+ argumentation theory ATP3

, there are no ar-
guments with conclusion b, c or d, so in order to justify
these literals, (b) in Definition 3 has to be used. Literal
b has one defining clause, namely r2, so condition (b)(i)
is applied: unsat(r2) = {c} since c ∈ body+(r2) and
c /∈ Kn ∪ {l | P ` l}. Then,
just(b) = {just(b, r2)} = {{b} ∪ {c, responsible(c, b)}}
= {{b, c, responsible(c, b)}}.
This justification expresses that c is responsible that literal b
cannot be derived. P3 does not contain a defining clause
for either c or d, so that for these two literals condition
(b)(ii) is applied: just(c) = {{c,⊥, responsible(⊥, c)}}
and just(d) = {{d,⊥, responsible(⊥, d)}}. These two
justifications express that c and d cannot be derived because
they do not have a defining clause in the logic program.

Example 8 (Example 4 cont.). The justification of fly, which
is not part of the answer set of Pfly, is shown in Figure 2.
Since there is only one argument with conclusion fly in
ATPfly , the justification is a set containing only one set:
just(fly) = {just(fly, A6)}
= {{fly} ∪ {supp rel(bird, fly)} ∪ just(bird,A2)
∪ {supp rel(not abnormalBird, fly)}
∪ just(not abnormalBird,A1)}

= {{fly, supp rel(bird, fly),
supp rel(not abnormalBird, fly)} ∪ {bird}
∪ {not abnormalBird}
∪ {def rel(abnormalBird, not abnormalBird)}
∪ just(abnormalBird,A5)}

= {{fly, supp rel(bird, fly),
supp rel(not abnormalBird, fly), bird,
not abnormalBird,
def rel(abnormalBird, not abnormalBird)}
∪ {abnormalBird}
∪ {supp rel(bird, abnormalBird)}
∪ just(bird,A2)
∪ {supp rel(wounded, abnormalBird)}
∪ just(wounded,A3)}

= {{fly, supp rel(bird, fly),
supp rel(not abnormalBird, fly),
bird, not abnormalBird,
def rel(abnormalBird, not abnormalBird),
abnormalBird, supp rel(bird, abnormalBird),
supp rel(wounded, abnormalBird)} ∪ {wounded}}

= {{fly, supp rel(bird, fly),
supp rel(not abnormalBird, fly),
bird, not abnormalBird,
def rel(abnormalBird, not abnormalBird),
abnormalBird, supp rel(bird, abnormalBird),
supp rel(wounded, abnormalBird), wounded}}

This justification expresses that fly is not contained in the
answer set because it is supported by not abnormalBird,
which is defeated by abnormalBird. Since the supporting
literals of abnormalBird, namely bird and wounded, are



not in conflict with any other literals, abnormalBird is part
of the answer set and is able to defeat not abnormalBird.
Consequently, not abnormalBird is not contained in the
answer set and hence cannot support fly.

4 Implementation
As mentioned earlier, an Argumentation-Based Answer Set
Justification can be interpreted as a graph. We developed an
implementation called JASA (Justification of Answer Sets
via Argumentation) which computes a justification set for
an answer set literal according to our theory and constructs
a graph from it.

The input for JASA is a consistent extended logic pro-
gram in clingo-format (Gebser et al. 2008). We chose this
format since JASA makes use of the answer set solver clingo
(Gebser et al. 2011) to compute answer sets. JASA trans-
lates a given logic program into the corresponding ASPIC+
argumentation framework (see Definition 1) and utilises the
TOAST API (Snaith and Reed 2012) for the construction
of ASPIC+ arguments and the computation of attacks be-
tween them. With the help of these arguments and attacks,
JASA computes the Argumentation-Based Answer Set Jus-
tification in the form of a set (Definition 2 and Definition 3)
and creates a graph from it. Example graphs constructed by
JASA are shown in Figures 1 and 2.

The direction of edges is indicated by the thickening of
the lines at one end. Dotted lines stand for supporting rela-
tions, whereas solid lines represent attacks. Nodes for liter-
als which are part of the justified answer set are illustrated in
green (light grey)6 and nodes for literals which are not part
of the answer set in red (dark grey). Similarly, edges emerg-
ing from green nodes are green (light grey), representing ac-
tive defeats or supports, whereas edges emerging from red
nodes are red (dark grey), meaning that they are inactive.

5 Related Work
Answer Set Justification is closely related to answer set de-
bugging. However, debugging strategies trace the compu-
tation of answer sets in order to obtain an explanation, as
for example done in (El-Khatib, Pontelli, and Son 2005). In
contrast, we present a justification method which is indepen-
dent of any computation strategy.

To the best of our knowledge, there is only one other jus-
tification approach for answer sets which does not trace the
computation, namely “off-line justification” (Pontelli, Son,
and Elkhatib 2009). Off-line justification constructs the ex-
planation of a literal with respect to an answer set in the
form of a graph. In Argumentation-Based Answer Set Jus-
tification, in contrast, the justification of a literal is given
as a set. This has the advantage that the justification can
be easily represented in other forms, as for example done
by our implementation JASA which constructs a graph from
the justification set.

The strategy used in off-line justification is methodologi-
cally completely different from Argumentation-Based An-

6For the purpose of this paper, nodes which are usually green
are depicted in yellow in order to make them easily distinguishable
from red nodes when printing in black and white.

swer Set Justification in that it makes use of the well-
founded model semantics for logic programs.

Comparing off-line justification graphs to graphs con-
structed by JASA, we find similarities as well as differ-
ences. Both off-line justification and JASA graphs indi-
cate whether or not a literal is contained in the answer set
(using plus/minus signs and green/red colours respectively).
The main difference between the graphs lies in the literals
which are depicted. Off-line justification graphs only com-
prise classical literals and omit NAF literals. NAF liter-
als like not l are indirectly represented by expressing that
l cannot be part of the answer set in the case that not l is
in the body of a clause that was used in the derivation of
the literal in question. In contrast, JASA graphs (as well
as Argumentation-Based Answer Set Justification sets) ex-
plicitly contain NAF literals, which makes the graphs easier
to understand for people who are not familiar with the con-
cept of NAF literals. Another difference between the two
justification approaches is that an off-line justification graph
contains all intermediate literals between the literal in ques-
tion and the base literals necessary to derive this literal. In
Argumentation-Based Answer Set Justification, we omit all
intermediate literals to enhance clarity and to emphasise the
fundamental reasons why a literal is (or is not) part of an
answer set.

6 Conclusion and Future Work
We present a method for explaining why a literal is or is not
contained in an answer set by translating a logic program
into an ASPIC+ argumentation theory. This is accompanied
by an implementation called JASA (Justification of Answer
Sets via Argumentation), which constructs justifications as
graphs.

Argumentation-Based Answer Set Justification is based
on the correspondence between answer sets in logic pro-
gramming and stable extension in argumentation theory.
More precisely, every literal in an answer set has a cor-
responding ASPIC+ argument in the corresponding sta-
ble extension built from the same logic program. The
Argumentation-Based Answer Set Justification of a literal
comprises all base literals, i.e. facts and NAF literals, which
are necessary to deduce this literal. The justification also
includes conflicts between literals which cannot occur in an
answer set together.

Our implementation JASA translates a given logic pro-
gram into an ASPIC+ argumentation theory and lets the user
choose an literal he wants to justify. JASA then constructs
a justification according to the theory of Argumentation-
Based Answer Set Justification and creates a graph from it.
The constructed graph includes the colours green and red
to indicate whether or not a literal is part of an answer set,
which makes it easy to understand.

So far, JASA does not incorporate the graphical justifica-
tion for literals which are not contained in the answer set be-
cause no corresponding argument can be constructed (case
(b) in Definition 3). The implementation of this case will be
part of future work.

A current focus of future work are logic programs with
preferences. Various semantics for logic programs with



Figure 2: Graphical justification of literal fly

preferences have been suggested, for example (Wang, Zhou,
and Lin 2000), (Brewka and Eiter 1999) and (Delgrande,
Schaub, and Tompits 2000). It will be interesting to in-
vestigate how to justify literals according to these dif-
ferent semantics and compare the resulting justifications.
Our interest in preferences was one reason for choosing
ASPIC+ rather than another argumentation framework for
Argumentation-Based Answer Set Justification. ASPIC+
supports preferences between rules, literals and arguments,
which could be useful for the justification of logic programs
with preferences. The approach of (Delgrande, Schaub, and
Tompits 2000), which translates logic programs with pref-
erences into logic programs without preferences, seems es-
pecially promising with respect to answer set justification.
It could be possible to apply Argumentation-Based Answer
Set Justification to the answer sets of the translated logic
program without preferences and thereby yield a meaning-
ful justification for the original logic program with prefer-
ences. However, such translated logic programs contain a
large number of new clauses, making them rather complex.
Currently, the ASPIC+ tool TOAST is not able to deal with
such complex argumentation theories, meaning that JASA
cannot be used for the construction of an Argumentation-
Based Answer Set Justification.

Future work includes the use of other argumentation
frameworks, for example Assumption-Based Argumenta-
tion (ABA) (Bondarenko et al. 1997), to provide a more scal-

able system for the justification of answer sets. This could
also allow for the application of the translation approach for
logic programs with preferences (Delgrande, Schaub, and
Tompits 2000). It will also be interesting to investigate the
relation with Abductive Logic Programming and to see if
Argumentation-Based Answer Set Justifications and abduc-
tive explanations are connected. Since ABA is a general-
isation of Abductive Logic Programming (Toni 1995), we
believe that using ABA will pave the way in understanding
links between justifications and abductive explanations.
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