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Abstract

Stories lie at the heart of the human experience, and ef-
forts to comprehend the latter can be aided by investi-
gating how humans understand stories. We take a com-
putational view of this problem, and suggest that a form
of logic can be fruitfully used to represent and reason
with stories. Instead of seeking to define what counts as
story understanding, we investigate tasks typically asso-
ciated with story understanding (e.g., question answer-
ing), and demonstrate how those can be formalized and
tackled within the logic-based framework we propose.

Introduction
Stories are ubiquitous, as evidenced by their widespread use
across human cultures (e.g., flood and creation myths), and
the prominence of story reading and understanding as objec-
tives across the educational ladder. It is, thus, natural and de-
sirable to investigate how to build machines that understand
stories, both as a means to understand humans themselves,
but also as a way to improve human-machine interactions.

Efforts have been underway in the past few years to bring
together scientists from Computer Science, Linguistics, Phi-
losophy, and Psychology to study narrative from a computa-
tional perspective (Finlayson, Richards, and Winston 2010;
Finlayson 2011). Although research in Computational Mod-
els of Narrative (ComMoN) is at its early stages, a commu-
nity started forming, pooling insights and knowhow from a
diverse set of research fields with the aim to pursue this goal.
This work seeks to contribute in that direction by putting for-
ward a particular logic-based model-theoretic computational
framework for problems pertaining to story understanding.

Rather than adopting any one particular, and ultimately ad
hoc, definition of what a story is, or what it means to under-
stand one, we embrace the inclusive view of Altman (2008)
that “virtually any situation can be invested with [those]
characteristics [necessary to] perform the narrational func-
tion”. We investigate, instead, certain tasks that one may un-
dertake in relation to stories: (i) identifying coherence, (ii)
answering questions, (iii) summarizing, and (iv) comparing
for similarity. Our emphasis is in making these tasks precise
in the context of the proposed framework, and showing them
to be amenable to a formal and computational treatment.

We acknowledge upfront that others may have a different
view than ours on what these tasks mean, and what proper-

ties a solution to these tasks should have. Our intention here
is to present plausible interpretations for the chosen tasks,
and argue that the approach we follow in tackling them is
sufficiently powerful and flexible to accommodate other nu-
ances of the tasks that other scholars may wish to consider.

It is also not our intention to deal with issues particular to
any modality for communicating stories (e.g., text, comics,
video). Each modality carries its own deep questions, which
are targeted by large research communities. Rather, we focus
on aspects surrounding story understanding once stories are
encoded in a formal language. We suggest that logic can use-
fully fulfill the role of this formal language, and that exist-
ing knowhow from research on logic-based knowledge rep-
resentation and commonsense reasoning (Mueller 2006) can
be brought to bear on the problem of story understanding.

Formal Representation
Alice and Bob meet one day around noon. Alice asks
Bob if he has had lunch yet, and upon receiving an af-
firmative reply from Bob, Alice says: “Too bad. I was
thinking of taking you out for lunch.”. Bob proceeds
to ask Alice whether herself has had lunch, and upon
receiving a negative reply from Alice, Bob says: “Too
bad. I was thinking of taking you out for coffee.”.

Although the story above is presented in text, this is done
purely for the benefit of the readers of this work. Henceforth
we shall assume that every story is given in a formal repre-
sentation that is, itself, the direct object of investigation.

The Story Discourse
What would be an appropriate formal representation for our
example story? At the very least, the representation should
capture the discourse: the objects of interest and the relations
that hold between them, the events that occur according to
the story, and the scenes across which the story unfolds. We
shall represent scenes by abstract states Si, and use clauses
to encode facts we are told hold or events we are told occur
within the story. The story representation could then be

time(noon) holds-at S1

meeting(alice,bob) holds-at S1

ask(alice,bob,lunch) occurs-at S1

reply(bob,yes) occurs-at S2

say(alice,bob,think(alice,bob,lunch)) occurs-at S3



ask(bob,alice,lunch) occurs-at S4

reply(alice,no) occurs-at S5

say(bob,alice,think(bob,alice,coffee)) occurs-at S6

along with the information that scenes are ordered linearly
in the story. This last piece of information is represented by
using a partial ordering �s and by writing that Si �s Sj

for every i < j. We repeat that we do not consider whether
this formal representation is in any sense “appropriate”, but
we take the representation as the object of interest itself; the
formal representation is the story that we are considering.

The story employs grounded predicates (e.g., time(noon),
reply(alice,no)), effectively drawn from a finite dictionary
over which stories are defined (much like what is done when
writing stories in any natural language). We denote this dic-
tionary by the tuple 〈F ,A〉, where F includes all statements
used to name fluents / observations (e.g., time(noon)), andA
includes all statements used to name actions / events (e.g.,
reply(alice,no)) in stories. The language is sufficiently ex-
pressive and natural to represent higher-order modalities that
capture what the story characters believe, desire, plan, think,
say, etc. (e.g., say(bob,alice,think(bob,alice,coffee))).

We, thus, define a discourse C as a triple 〈C,S,�s〉 com-
prising a finite set C of clauses of the formA occurs-at S
and L holds-at S, a finite set S of states, and an acyclic
partial ordering �s over S, where A ∈ A, L is a literal over
F , and S ∈ S. These will be the objects of our investigation.

Reader’s Knowledge
Theories of reading acknowledge that readers employ cer-
tain knowledge to understand stories (Anderson and Pear-
son 1984; Pressley et al. 1992). We take the view that this
knowledge expresses rules, using which the reader draws in-
ferences given a story. For our example story, a particular
reader could employ, amongst other rules, the following:

static: lying(X ,Y )→¬honest(X ,Y )
static: say(X ,Y ,S)→ (S ⊕ lying(X ,Y ))
static: think(X ,Y ,Z) ∧ ¬realizable(X ,Y ,Z)→ lying(X ,Y )
static: (think(X ,Y ,lunch) ∧ answer(Y ,lunch,yes))→

¬realizable(X ,Y ,lunch)
static: (think(X ,Y ,coffee) ∧ answer(Y ,lunch,no))→

¬realizable(X ,Y ,coffee)
ask(X ,Y ,Q) causes question(Y ,Q)
(reply(Y ,A) ∧ question(Y ,Q)) causes ¬question(Y ,Q)
(reply(Y ,A) ∧ question(Y ,Q)) causes answer(Y ,Q,A)

As in the case of discourses, we do not concern ourselves
here with the question of where such background knowledge
comes from. Instead, our focus is on how such background
knowledge is to be understood, and how a story is to be in-
terpreted given a reader’s background knowledge (whatever
it might be). We shall return to this issue in the last section.

A reader’s background knowledge encodes rules relating
various fluents and actions to each other. These rules are of
two main types: (i) Static rules stipulate constraints that hold
between predicates at any given state. So, according to the
second rule above: if X says S to Y , then either S is the
case or X is lying to Y . (ii) Causal rules stipulate cause and
effect relations between predicates across states. So, accord-
ing to the last rule above: if Y replies with A, and Y had

been asked Q, then A is caused to be Y ’s answer to Q. The
second to last rule above captures the complimentary effect
that once Y replies to a question Q that Y had been asked,
then questionQ is retracted. These rules can be taken to cor-
respond to the reader’s commonsense knowledge regarding
conversations. As such, they do not purport to be infallible,
but only sufficiently accurate for commonsense reasoning.

For succinctness we have employed a high-level language
that allows predicates with variables. Its syntax can be made
precise by treating, for instance, each variable as a type with
a fixed domain. So, variableX could be set to range over the
values {alice, bob}. The values of certain variables may in-
volve other predicates, which themselves may employ vari-
ables. So, variable S could include the value think(X ,Y ,W )
in its domain, which should be thought itself as standing for
the set of all of its grounded instances, as determined by the
values that X ,Y ,W can take. Due to space constraints we
shall forego the precise formulation of this high-level lan-
guage, and we shall appeal to the intuitive reading of these
rules as a short-hand notation for the set of all their grounded
instances (over the grounded predicates in 〈F ,A〉).

We, thus, define a domain as a finite set D of clauses of
the form static: ϕ and ϕ causes L, where L is a literal
over F , and ϕ is a formula over A ∪ F .

Further Extensions
Other than general rules, a reader’s knowledge may include
facts or actions that occurred in real-life. Stories (especially
factual ones) may rely on the reader having and using such
knowledge. To account for such knowledge, we shall assume
a time-line 〈T ,�t〉 comprising a countable set T of time-
points, and a well-order relation �t on it. We shall not ex-
plicitly reference 〈T ,�t〉 in the sequel. Constructs dealing
with time will be implicitly taken to be defined over 〈T ,�t〉.

The domain definition can be extended to allow inclusion
of clauses of the form A occurs-at T , L holds-at T ,
where A ∈ A, L is a literal over F , and T ∈ T .

Assuming 〈T ,�t〉 represents dates, our example domain
could include kill(brutus,caesar) occurs-at 15/03/44BC
and ¬alive(caesar) holds-at 16/03/44BC. Stories read
given this domain would need to be understood in the con-
text of, and in temporal relation to, these time-specific facts
and actions. Each possible embedding of a story in the time-
line could lead to a different reading of the story, so each
such embedding should be considered, as long as it respects
the ordering that the story itself imposes on its discourse.

We, thus, define an embedding of a given discourse C =
〈C,S,�s〉 as a setB of clauses of the formA occurs-at T
and L holds-at T that results by replacing each state in
S with a time-point in T , so that if time-points T1, T2 ∈ T
replace states S1, S2 ∈ S with S1 �s S2, then T1 �t T2.

Other extensions are also possible. Discourses could be
extended to include time-specific facts and actions, or even
static and causal rules. Some stories (fables and fictional sto-
ries, in particular) communicate not only what happens or
holds, but also the rules under which a reader is to make
sense of them; e.g., “Anytime he would rub the magic lamp,
a genie would appear.”. The inclusion of such rules in fables
is often prompted by phrases like “Once upon a time in a



faraway land...”, alerting the reader to suppress her domain
knowledge in favor of that found in the story. Some of these
story-specific rules, or other rules in the reader’s knowledge,
may be geared towards allowing the reader to infer the scene
ordering, instead of assuming that it is given by the story.

Knowledge vs Beliefs
We have already alluded to the fact that not all of a reader’s
knowledge is strict and indisputable. Some of it may encode
beliefs, biases, or maybe even guesses, which the reader may
be willing to abandon while trying to make sense of a story.

One such belief is that humans usually do not lie — one
can certainly understand why this rule should be treated as
defeasible! To accommodate this belief, the reader may in-
clude static: ¬lying(X ,Y ) in the domainD that she em-
ploys. She may further specify that if only a subset ofD were
to be used — if using the entire D would preclude making
sense of a story — then that subset should include all rules
other than static: ¬lying(X ,Y ). In doing so, the reader
indicates that this rule is weak compared to the others.

More generally, the reader may specify a preference �d

over subsets of D to indicate how to suppress rules if neces-
sary. If certain “indisputable” rules (e.g., definitions) should
never be suppressed, then this can be accommodated by not
specifying a preference over subsets that exclude those rules.

We, thus, define a default domain D as a triple〈
D,D,�d

〉
comprising a domainD, a set D ⊆ 2D of subsets

of D, and a transitive preference relation �d over D.
One can informally verify that to make sense of our exam-

ple story, one can respect all the rules in the example domain
presented earlier, but cannot respect at the same time the rule
static: ¬lying(X ,Y ). We examine rule satisfaction later.

Among the pieces of defeasible knowledge that a reader
may have, of particular interest is one related to the cele-
brated Frame Problem: things change over time only if there
is a reason (McCarthy and Hayes 1969). It is the case that a
story may specify the actions that occur and change things.
But a story may also simply present a new scene, and the
reader is expected to accept that certain things have changed
despite the lack of mention of an action to that effect.

Our example story, for instance, could proceed with “That
night, Alice called Bob.”, with the discourse expanded to in-
clude time(night) holds-at S7, and the domain expanded
to include static: ¬(time(noon) ∧ time(night)). Now, the
story states that it was (and still is, since nothing happened to
change it) noon and now it is night as well; this conflicts with
the reader’s knowledge. The only way to resolve the con-
flict is to suppress static: ¬(time(noon) ∧ time(night)),
which is absurd. Clearly, the intention is not for both noon
and night to hold, but for the former to change to the latter.

The issue is naturally resolved if, for every literal L over
F and time-point T , we include exogenous(L) causes L
and exogenous(L) occurs-at T in the domain, and we
also extend the preference�d so that ceteris paribus it gives
preferences to subsets of the domain that do not include
exogenous(L) occurs-at T . Since the latter is actually
a collection of rules (one for each L and T ), then �d seeks
to minimize their use, capturing the belief that exogenous

actions should not be assumed unless if needed to under-
stand a story; in that case the action causes L to come about.
In our example, the subset of the domain to be used is that
with exogenous(¬time(noon)) occurs-at T1 and exoge-
nous(time(night)) occurs-at T2 for appropriate T1, T2.

Story Interpretation
Assume we are given the discourse of a story and the default
domain that a reader employs to make sense of it. How do
the two interact? How does a reader understand a story?

Degree of Coherence
An important aspect of story understanding — irrespectively
of whether it occurs unconsciously or not in the mind of the
reader — that one may attempt to formalize, is to examine
a story for coherence. According to text linguistics and dis-
course analysis (de Beaugrande and Dressler 1981), coher-
ence relates to the semantical meaningfulness of (commu-
nicative) text, such as the degree of abiding to conventions.

Such conventions in our framework are captured by the
background knowledge of the reader. The degree of abiding
to these conventions can be formalized as the extent to which
the rules in the reader’s default domain are satisfied.

We have already introduced a notion of how much of a
default domain is satisfied, in terms of a preference rela-
tion�d over its subsets. We have also discussed how a story
discourse can be embedded in a time-line, so that it can be
meaningfully considered along with a domain. It remains to
define what it means for the rules in a domain to be satisfied.

Recall that the union of a domain with the embedding of a
discourse results in a set of clauses that is itself a domain. It
is this resulting domain that we seek to satisfy. Intuitively, its
satisfaction amounts to ensuring that action occurrences and
fact observations are respected, static constraints are satis-
fied (logic-theoretically), and causal change is brought about
whenever its conditions are met (and only then). We adopt
a model-theoretic treatment of this problem, following work
in logic-based commonsense reasoning (Mueller 2006).

An assignment is a mapping M of each pair X ∈ A ∪ F
and T ∈ T to a truth-value M(X,T ). The truth-assignment
overA∪F that is induced by projecting / restricting the map-
ping M to a given time-point T ∈ T is denoted by M(T ).

Since language 〈F ,A〉 uses only grounded predicates, it
is effectively propositional. We shall use, then, the entail-
ment operator |= of Propositional Calculus as usual. Since T
is countable and �t is a well-ordering, we shall write T + 1
to mean the time-point in T that follows T according to �t.

Definition 1 (Model of Domain). A model of a given do-
main D is an assignment M such that for each A ∈ A,
each literal L over F , each formula ϕ overA∪F , and each
T ∈ T , the following conditions hold:

(i) M(T ) |= A if and only if A occurs-at T ∈ D.
(ii) M(T ) |= L if L holds-at T ∈ D.

M(T ) |= ϕ if static: ϕ ∈ D.
(iii) M(T + 1) |= L if M(T ) |= ϕ for some ϕ such that

ϕ causes L ∈ D.



(iv) M(T + 1) |= L if M(T ) |= L and M(T ) 6|= ϕ for every
ϕ such that ϕ causes ¬L ∈ D.

A domain D is satisfiable if there exists a model of D.

Coherence can then be defined. A discourse C is coherent
with a given domain D if there exists an embedding B of C,
whose union withD results in a satisfiable domain. We shall
call embedding B a witness to the coherence of C with D.

In terms of our expanded example story, it can be verified
that the story’s discourse is not coherent with the domainD1

that includes static: ¬(time(noon) ∧ time(night)), but it
is coherent with any one of its subsets that suppresses (i.e.,
does not include) that particular rule. Furthermore, it can be
verified that the story’s discourse is coherent with the do-
main D2 ⊃ D1 that also includes exogenous(L) causes L
and exogenous(¬time(noon)) occurs-at T1 and exoge-
nous(time(night)) occurs-at T2 for appropriate T1, T2,
as we have intuitively explained in the previous section.

Since there exist infinitely many embeddings in the gen-
eral case (i.e., when T is infinite), it is not evident that check-
ing for coherence is decidable. The next result shows that
indeed it is, and offers an explicit prescription on which em-
beddings suffice to be considered to determine coherence.
Theorem 1 (Decidability of Coherence). Checking whether
a discourse C is coherent with a domain D is decidable.

Proof. Let T0 be the largest time-point in D. For each em-
bedding B of C, let TB be the set of time-points in B after
time-point T0. It can be shown that: if there is an embedding
B1 of C such that D ∪ B1 is satisfiable and max(TB1

) ≥
T0 + (2|F| + 2) · |C|, then there is an embedding B2 of C
such that D ∪ B2 is satisfiable and max(TB2) < max(TB1).

To check for coherence, it suffices to check for embed-
dings of C that include time-points only before T0+(2|F|+
2) · |C|, and whose union with D is satisfiable. Checking all
the said embeddings can be done in finite time.

NB: Theorem 1 offers the basis to establish the computability
of tasks considered later; i.e., the relevant notions are decid-
able. We shall not formally state and prove these corollaries.

Of course a reader does not specify a domain D, but a de-
fault domain D =

〈
D,D,�d

〉
. Depending on which subset

ofD a discourse is coherent with, we can derive a qualitative
measure of coherence of the discourse with D. In particular,
we can show that we can order any set of discourses in terms
of their degree of coherence with a given default domain.

Drawing Inferences
A story might be coherent with multiple subsets of a reader’s
background knowledge. Intuitively, the reader uses those of
the subsets that are most preferred; or, those subsets with
which the story is maximally coherent. There is no need, for
instance, to give up the belief that “if Alice and Bob talk to
each other, then they speak the same language”, if doing so
is not necessary to make sense of our example story.

Since preference over the subsets of a default domain D
is determined by a preference relation �d, we should, then,
seek the maximal elements of�d, after restricting our atten-
tion to subsets with which a given discourse is coherent.

We, thus, define a discourse C to be maximally coherent
with a given domain D1 under a default domain D if: (i) C
is coherent with D1 ∈ D; and (ii) for every D2 ∈ D with
which C is coherent, if D1 �d D2 then D2 �d D1.

The existence of multiple subsets of D with which a dis-
course C is maximally coherent accounts for the fact that a
story may have multiple readings, depending on which parts
of background knowledge the reader may decide to suppress
in favor of others. Even if some subset is fixed, a story may
still have multiple readings depending on the embedding the
reader considers in relation to time-specific facts and actions
in her background knowledge. These combinations amount
to the possible interpretations of a story by the reader.

Definition 2 (Interpretation). An interpretation of a given
discourse C under a default domain D is a model of the do-
main that results from the union of a domain D1 and an em-
bedding B of C, such that C is maximally coherent with D1

under D, and B is a witness to the coherence of C with D1.

Each interpretation assigns a truth-value to every fluent
and action in the language 〈F ,A〉 for every time-point, in a
way that satisfies both the story (i.e., its embedding B) and
the background knowledge of the reader to the extent possi-
ble (i.e., the subsetD1 with which the story is maximally co-
herent). In a precise sense, then, each interpretation is a way
to complete all information that is not explicit in the story,
in a maximally plausible (according to the reader) manner.

Answering Questions
Question answering is a typical way to evaluate story under-
standing. We consider below questions that inquire whether
a certain fact holds / action occurs in the context of a story.
In our example story, such a question could be “Does Al-
ice stand 10 meters away from Bob when she first speaks
to him?”. A correct answer is not explicitly provided by the
story, but a reader is reasonably expected to offer one.

The example question above can be formalized as a clause
distance(alice,bob,10m) holds-at S1, where S1 is the
state (or scene) in which Alice first speaks to Bob according
to the example story’s discourse. As in the case of stories,
we do not consider issues surrounding the extraction of this
formal representation of the question from its textual form.
Rather, the clause is the question that we are considering.

In general, a question is a clause, either X holds-at S
or X occurs-at S.1 We shall write Q(X,S) to denote
a question, where S belongs in the set S of states of the
discourse 〈C,S,�s〉 of interest, andX is the fluent or action
of our inquiry. Answering the question amounts to checking
whether it follows from the interpretations of the story.

Recall that an interpretation refers to time-points. What
time-point does the state S of Q(X,S) correspond to? Put
differently, at which time-point in an interpretation should
one look to answerQ(X,S)? We reason thus: Each interpre-
tation is associated with an embedding B of the discourse.
The embedding implicitly maps each state S to a time-point
t(S). Mapping t gives the appropriate time-point for each S.

1Composite questions can be treated in an analogous manner.



Definition 3 (Question Answering). A question Q(X,S) is
possibly true in a given discourse C under a default do-
main D if there exists an interpretation M of C under D
with M(t(S)) |= X , for the mapping t prescribed by M . A
questionQ(X,S) is certainly true in C under D if it is pos-
sibly true in C under D, but the question Q(¬X,S) is not.

Our framework can deal with multiple-choice questions
as well. If exactly one choice is certainly true, then this is
the answer. Otherwise, none of the choices is by itself suf-
ficiently plausible (in an absolute sense) in the story, so the
reader seeks to find the most plausible (in a relative sense)
among them. To do so, one extends the story with each of
the choices in turn, and ranks the resulting versions of the
story in terms of their degree of coherence. The answer is
the choice included in the most coherent version of the story.

Encoding Expectations
When reading a story, a reader may have certain expecta-
tions. (i) Reader-independent: The story author (or critic, or
narrator) might externally prescribe certain inferences that
readers are expected to draw. So, if told that one is expected
to infer that Alice and Bob are dishonest to each other in our
example story, then this affects the way the story is read. (ii)
Reader-specific but story-independent: Some reader might
expect, even before reading, that stories have a certain struc-
ture. The expectation to have named characters, for instance,
is met by our example story. (iii) Reader-specific and story-
specific: While reading a story, a reader might infer what to
subsequently expect (or even attempt to infer what the story
author expects readers to infer). For instance, when reading
Alice’s response “Too bad. I was thinking of taking you out
for lunch.” in our example story, the reader may expect the
story to clarify how this unresolved situation will conclude.

Whether expectations of the first type (e.g., authorial in-
tentions) can exist has been at the center of a long debate by
those that study the interpretation of language. One school
of thought insists that an author’s intent is the only way that
a story should be understood (Michaels and Knapp 1982), or
at least that it points to the right way among possibly many
ways (Hirsch 1967). Another school of thought dismisses
such a view as a fallacy (Wimsatt and Beardsley 1946), and
decrees that the author of a story is irrelevant (Barthes 1967),
and the interpretation of a story relies solely on the story it-
self and the reader’s background knowledge and beliefs.

A solution to the full-fledged problem of dealing with ex-
pectations of all types is sufficiently involved so that it can-
not be presented to a reasonable level of clarity herein. We
shall restrict our attention to types (i) and (ii), which can
still encode very general and powerful expectations, while
also representing both sides of the debate mentioned above.

Type (ii) expectations can be naturally included in the de-
fault domain D that represents a reader’s background knowl-
edge, with the preference �d over rules in D applying also
to expectations. Much like domain rules, some weak expec-
tations may need to be suppressed to make sense of a story
(perhaps even because the story author planned, through
the choice of the discourse, for this to happen). In our ex-
ample story, the expectation that the story clarifies at each

instance whether it is day or night could be represented
by including expect[ time(day) holds-at T ] ∨ expect[
time(night) holds-at T ] for each time-point T , and ask-
ing that �d prefers the inclusion of these disjunctions.

Type (i) expectations (e.g., authorial intentions) should be
thought as accompanying a story, even if not part of it per se.
To account for their default nature (in a manner analogous
to the treatment of type (ii) expectations), we associate with
each story a new structure E, defined as a triple 〈E,E,�e〉
comprising a set E of expectations, a set E ⊆ 2E of subsets
of E , and a transitive preference relation �e over E.

Each expectation is a propositional formula ε over terms
expect[κ], where κ is any type of clause found in a discourse
or domain, respectively, for type (i) or type (ii) expectations.

The expectations E for our example story could include

expect[ ¬honest(alice,bob) holds-at S3 ] ∧
expect[ ¬honest(bob,alice) holds-at S6 ]

expect[ ¬friend(alice,bob) holds-at S1 ] ∧
expect[ ¬friend(bob,alice) holds-at S1 ]

expect[ static: (meeting(alice,bob) ∧ time(noon))
→ think(alice,bob,lunch) ]

with E ⊆ 2E comprising the subsets of E that include at least
the first expectation, and with �e being the subset relation.
These choices would capture the expectation (e.g., authorial
intention) that the reader infers that: Alice and Bob are being
dishonest to each other at the time they speak; they are not
friends at the start of the story; every time they meet and it is
noon, Alice thinks of taking Bob out for lunch.2 The former
expectation would be considered (e.g., by the author) key to
the story, whereas the latter two would be less important and
the reader would not miss too much if she did not meet them.

To account for the type (i) expectations E = 〈E,E,�e〉
associated with a story C and / or the type (ii) expectations
in a default domain D =

〈
D,D,�d

〉
, we shall proceed as

follows: First, we shall consider a single subset Ei ∈ E of
the expectations associated with C, and define when these
expectations are met. We shall also assume, for simplicity of
the discussion, that all expectations in Ei and D are single-
tons expect[κ] rather than general propositional formulas.

Ignoring all the expectations in D, consider an interpre-
tation M of C under D. By Definition 2, M specifies a do-
main D1 ∈ D and an embedding B of C, whose union is
used to compute M . Now, D1 might include certain (reader-
specific) type (ii) expectations Eii that must be met along
with the (reader-independent) type (i) expectations in Ei. Al-
though the latter ones reference states instead of time-points,
we can map those states into time-points using the mapping
t prescribed by M ; we write Eti to mean the resulting set.
Thus, Eii ∪ Eti is the set of all expectations to be met by M .

We continue to check whether M is a model of the do-
main D1 ∪ B ∪ {κ | expect[κ] ∈ Eii ∪ Eti }. In other words,
we check whether M , which already satisfies all clauses in
D1 ∪B according to Definition 1, also satisfies all clauses in
the expectations in Eii ∪ Eti . If this happens to be the case,
then say that M meets the expectations Ei for C; that is, M

2Note the exceptionally powerful expectation that the reader in-
fers a rule about the story-world through some process of induction.



meets both the expectations Ei that are externally provided,
and those Eii that are present in the subset D1 that was used
to interpret C. If every interpretation meets the expectations
Ei for C, then say that D meets the expectations Ei for C.

If it happens that D does not meet the expectations Ei for
C, for any Ei ∈ E (i.e., D does not meet even the most
important expectations), then this may prompt the reader to
dismiss the story, or at least to seek to understand why this is
so. Note that if one wishes not to deal with type (i) expecta-
tions at all, then this can be done by simply choosing E to be
empty, and E = {∅}. In that case, our approach will make
sure that only the reader-specific expectations must be met.

Intra-Story Reasoning
Certain story understanding tasks may involve multiple sto-
ries. We have already seen this phenomenon when compar-
ing coherence degrees across stories to reply to multiple-
choice questions. Below we consider two more tasks that fall
in this category: story summarization and story similarity.

Story Summarization
Intuitively, a summary of a story is a second story that ab-
stracts the former, but not too much. The theory of plot units
(Lehnert 1981) takes “abstraction” to mean the identification
of the plot units of the story, and “too much” to mean retain-
ing most (or at least the pivotal) plot units in the summary.

Our view of “abstraction” and “too much” acknowledges
the role of the reader’s background knowledge in the sum-
marization process, and the expectations that are present.

There are arguably many ways to define abstractions in
the context of stories. We suggest two general and flexible
criteria: a syntactic one and a semantic (reader-specific) one.
Definition 4 (Abstraction). A discourse C1 = 〈C1,S1,�s

1〉
is an abstraction of a given discourse C2 = 〈C2,S2,�s

2〉
under a default domain D if one of the following holds

(i) syntactic abstraction: C1 ⊆ C2, S1 ⊆ S2, �s
1 ⊆ �s

2;
(ii) semantic abstraction: every interpretation of C2 under

D is also an interpretation of C1 under D;

or if there is a discourse C3 such that: C1 is an abstraction
of C3 under D, and C3 is an abstraction of C2 under D.

Syntactic abstraction amounts to omitting parts of a story,
whereas semantic abstraction amounts to rewriting the story
to make it less committing to what “happened”; i.e., to have
more (or the same) possible interpretations. In reference to
our example story, omitting time(noon) holds-at S1 from
the discourse is a syntactic abstraction, whereas replacing it
with time(day) holds-at S1 is a semantic one, since the
resulting story admits more interpretations, assuming the de-
fault domain includes static: time(noon)→ time(day).

The “too much” part in summarization is naturally accom-
modated by asking that the resulting story does not ignore
(all of) the expectations associated with the original story.

We, thus, define a discourse C1 as a credulous summary
of a given discourse C2 under a default domain D if: (i) C1

is an abstraction of C2 under D; and (ii) D meets some ex-
pectations Ei ∈ E for C1, according to structure 〈E,E,�e〉
associated with C2. If Ei = E , the summary is skeptical.

Considering the particular expectations Ei that are met
for C1, the more important (according to the preference
�e) they are, the more skeptically C1 summarizes C2. This
metric of evaluating summaries measures only the extent to
which they preserve the important (according to the associ-
ated type (i) expectations) information of the original story.
Although we shall not do so here, one can clearly introduce
additional metrics (e.g., how concise a summary is, how well
it meets the reader’s type (ii) expectations) and seek sum-
maries that balance the chosen metrics in some way.

One can verify that the next discourse is a credulous sum-
mary of the last discussed version of our example story:

¬honest(alice,bob) holds-at S1

¬honest(bob,alice) holds-at S2

Identifying Similarity
Structure-mapping theory (SMT) (Gentner 1983) views two
situations as analogous if they share n-ary relations that hold
across objects, but not (necessarily) unary relations that hold
on individual objects. This same idea has been argued to ac-
count to some extent for the task of determining similarity
between stories (Gentner, Rattermann, and Forbus 1993).

Our view ties similarity to having a common summary.
Unlike SMT, this view makes explicit the subjectivity that
the reader’s background knowledge imposes on the notion
of similarity. Equally importantly, our view of similarity is
insensitive to the granularity of story representation — since
summaries deal with excess granularity — an issue that has
been argued to be problematic in SMT (Chalmers, French,
and Hofstadter 1992) and other frameworks that view simi-
larity as an isomorphism (Löwe 2010). The interplay of ab-
straction and similarity also relates to the views of Schank
(1990), that abstractions of stories are performed uncon-
sciously by humans for comprehension, and that stories one
hears are mapped to those that one knows. This mapping, we
suggest, happens when the stories are similar (in our sense),
i.e., when a common abstraction / summary is found.

The proposed view of similarity is, we believe, plausible,
and is offered as a hypothesis for further study and empirical
psychological validation. In the context of this work we shall
be content to make this particular hypothesis concrete.

We, thus, define discourses C1 and C2 to be credulously
/ skeptically similar under D if there exists a common cred-
ulous / skeptical summary C of C1 and C2 under D. In-
termediate degrees of similarity follow from degrees of how
skeptical a summary is: the more skeptical the common sum-
mary of the stories (i.e., the more important the expectations
of the stories that are met by the summary), the stronger their
similarity. If no common (credulous) summary exists, then
the stories are too different to be considered similar.

Beyond the direct comparison of similarity between two
stories, we also consider a relative similarity test that seeks
to determine which of two stories is more similar to a target
story (see, e.g., (Falkenhainer, Forbus, and Gentner 1989)).
As is natural given the approach we have followed so far, we
suggest that more similar to the target story is the story that
has a more skeptical common summary with the target story.

We, thus, define, discourse C1 to be weakly more similar



than discourse C2 to discourse C0 under D if there exists
a common summary C10 of C1 and C0 under D, such that:
for every common summary C20 of C2 and C0 under D,
C20 is not a more skeptical than C10 summary of C0 under
D. C1 is (strictly) more similar than C2 to C0 under D if
C1 is weakly more similar than C2 but not vice versa.

Conclusions
Formally modeling story understanding may help offer: (i)
hypotheses on how humans deal with stories, and (ii) a basis
for developing machines to understand stories. We hope that
this work touched upon a sufficient variety of issues and to
a sufficient depth to aid in pushing forward both frontiers.

In the first direction, we have suggested concrete hypothe-
ses, such as that a form of logic is appropriate for reasoning
with stories, or that story similarity derives from stories hav-
ing a common summary. The extent to which our hypotheses
capture what humans do when reading stories is a matter of
psychological validation, which we are actively pursuing.

A first study we have performed offers some evidence for
the adequacy of logic. In our experiments we encoded stories
from elementary school textbooks, and domains with com-
monsense knowledge aimed to answer simple true / false
questions. The responses offered by the reasoning module
were contrasted against those offered by elementary school
students, yielding an agreement rate of around 90%; interest-
ingly, in cases of disagreement it was typically the students,
not the reasoning module, that offered a wrong answer.

In other recent work (Kypridemou and Michael 2013) we
have investigated the “similarity as common summary” hy-
pothesis. In our experiments we presented human partici-
pants with triples of stories, and asked them to score the sim-
ilarity of the two first stories, and also the extent to which the
third story was a good summary of each of the first two sto-
ries. These three scores were aggregated across a number of
trials and under varying conditions. Analysis of the results
revealed that our hypothesis is strongly supported.

In the second direction, our use of logic and the decidabil-
ity results that can be derived for the various tasks, already
offer a concrete basis for their mechanization. Of course, the
ultimate goal in this direction is for machines to deal with
stories provided to them not in formal logic, but in a modal-
ity used by humans, such as natural language text. A lot of
work exists towards translating text to predicates (Collins
1999; de Marneffe, MacCartney, and Manning 2006; Pun-
yakanok, Roth, and tau Yih 2008), for temporally anchoring
or ordering statements in text (Mani, Schiffman, and Zhang
2003), and so on. Such works can be brought to bear to ex-
tract the discourse of stories in an automated manner.

Regarding the acquisition of appropriate default domains,
one can envision two approaches: First, through the use of
a crowdsourcing platform where humans contribute appro-
priate knowledge, by taking into account lessons learned
from Cyc (Lenat 1995) and OpenMind (Stork 1999). Sec-
ond, by capitalizing textual corpora (including text found on
the Web) to extract factual statements (Etzioni et al. 2005;
Carlson et al. 2010) or rules (Michael and Valiant 2008).
Learning-theoretic frameworks offer the substrate to extract
both static rules (Valiant 1984; Michael 2010) and causal

rules (Michael 2011), as well as to extract preferences be-
tween such rules (Dimopoulos and Kakas 1995).

Rules extracted from the Web encode websense, a certain
form of commonsense knowledge, which has been used, in
particular, for drawing inferences that follow — in a precise
sense (Michael 2008; 2009) — from pieces of text (Michael
2013). Adopting the use of such rules for story understand-
ing would tackle the problem of identifying simultaneously
the background knowledge needed to reason with stories in
a formal language, and the knowledge needed to make sense
of the natural language text in which stories are encoded.

The central role of background knowledge for story un-
derstanding is acknowledged also in some earlier work of
the Computational Models of Narrative community (Verheij
2009; Mueller 2009). The latter work, in particular, offers a
model-theoretic semantics to domains, like we do (cf. Defi-
nition 1). Unlike those works, we consider tasks other than
question answering, and support general rules in stories, de-
feasible beliefs in domains, author and reader expectations.

In terms of developing concrete story understanding tools,
argumentation offers a natural means to implement the pref-
erence relation among domains that our work assumes, and
to offer a computationally efficient reasoning mechanism for
the tasks considered herein. Such an approach is taken in re-
cent work (Diakidoy et al. 2013), where argumentation is in-
vestigated as a substrate for psychologically valid narrative
text comprehension for the task of question answering.

Our particular take on story understanding echoes Grice’s
Maxims (1991) on certain presumptions that readers rely on
(Bach 2005): the Quality Maxim is echoed by the interpreta-
tion of stories according to a reader’s held truth (background
knowledge), the Relation and Quantity Maxims are echoed
by the expectations of the reader, and the Manner Maxim
is echoed by the non-ambiguity of the formal language. At
the same time, purposeful ambiguity in the sense of a story
having multiple interpretations (cf. pluralism) and priorities
among them (Levinson 2003) is fully accommodated.

This work’s aim was to tell a coherent story of how logic
can plausibly offer a computational basis to certain tasks of
relevance to story understanding. Extending the framework
to apply to a wider list of such tasks, and to further deal with
their intricacies, is part of another story waiting to be told!
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