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Abstract

We discuss the design and development of a novel web
search engine able to respond to user queries with in-
ferences that follow from the collective human knowl-
edge found across the Web. The engine’s knowledge —
or websense — is represented and reasoned with in a
logical fashion, and is acquired autonomously via prin-
cipled learning, so that the soundness of the supported
inferences can be a priori guaranteed through a formal
analysis of the learning method used. This engine brings
together the traditional AI goal of endowing machines
with common sense, and the contemporary AI goal of
making sense of the Web through machine reading.

Introduction
Since antiquity, humans have sought to develop machines
to facilitate physically demanding tasks and reduce the as-
sociated burden for humans. With the advent of computers,
a new use of machines to alleviate human burden, that of
processing information, became more prominent. It was rec-
ognized early on that certain information processing tasks
would require machines to possess some sort of intelligence
(Turing 1950), and this soon led to the realization that en-
coding and processing commonsense knowledge in a com-
putable logic-based form could be a central aspect in the de-
velopment of such intelligent machines (McCarthy 1959).

The dream of building machines that can reason and draw
inferences in a manner analogous to humans has not budged
from the center stage of AI since its very beginning. What
has drastically changed, however, is the representation of the
knowledge assumed to be the object of the reasoning pro-
cess, and the type of the algorithms that are used to manip-
ulate that knowledge and draw inferences. The change was
presumably a result of the realization that the logic-based
knowledge and inference algorithms that early suggestions
for AI systems sought to employ would not lead to the devel-
opment of full-fledged AI systems, as they lacked a reason-
able process for acquiring the knowledge. Many researchers
turned their attention to other types of knowledge represen-
tation (e.g., Bayesian Networks, Neural Networks, statisti-
cal information on n-grams) and to algorithms appropriate
for acquiring and reasoning with that type of knowledge.

Admittedly, those approaches have borne fruits. We now
have machines very competent at filtering spam emails (e.g.,

SpamAssassin), translating between languages (e.g., Google
Translate), understanding verbal instructions (e.g., Siri), and
playing games on television shows (e.g., Watson). Yet one is
left with the distinct feeling that all these great results were
mostly an engineering feat. This in no sense diminishes the
importance and the utility derived from these accomplish-
ments of the human intellect. But that does not change the
fact that they seem to have been obtained in a way that says
little about how humans reason, at least at the higher levels
of the cognitive ladder, where a certain form of structured
logic-like knowledge seems to play an important role.

Despite such concerns falling — at least somewhat — out
of favor in mainstream AI, a large number of researchers still
pursue research in good old-fashioned AI (GOFAI). Given
the continuing interest, it is rather surprising that the concern
that presumably “drove away” certain AI researchers from
GOFAI — the lack of a reasonable and autonomous process
for acquiring knowledge (contrast to Cyc (Lenat 1995)) —
has not been satisfactorily addressed. It is true that even un-
der the assumption that knowledge is somehow externally
provided, there are still many fundamental and challenging
problems to solve in GOFAI. Yet, if the solutions to these
problems are to be deployed widely and fruitfully, analo-
gously to how other AI technologies have been, a plausible
answer to the knowledge acquisition problem needs to be
found. Learning has offered a solution to other representa-
tions of knowledge, and we posit that learning will do so for
the logic-based knowledge acquisition problem as well.

We suggest that both the theoretical understanding and the
tools are now available for logic-based knowledge bases to
be extracted by machines autonomously reading the Web. In
the sequel we discuss the type of knowledge that one can
hope to extract from the Web, and review relevant work on
machine reading. We then present the architecture of a con-
crete machine that we have developed that is able to acquire
and reason with the knowledge so extracted, and show how
it can be used to draw commonsense-like inferences from
queries given by users in natural language text. We conclude
with a discussion on evaluation, and possible applications.

From CommonSense to WebSense
Much in the same way that Johannes Gutenberg’s invention
of the printing press — “God’s highest act of grace”, ac-
cording to Martin Luther — led societies from the Agrarian



Age of feudalism and uneducated masses to the Information
Age of global education and technology, so is the Web lead-
ing societies from the Information Age of consumption of
recorded information to the Knowledge Age of distributed
knowledge production and global access to the intelligence
of others. For the first time in history both the opportunity
and the means are present to exploit this vast knowledge
source for the benefit and advancement of the human race.

To delineate it from other types of knowledge that humans
typically manipulate in everyday life, we use the noun / ad-
jective “websense” (contra to commonsense) to characterize
the knowledge found on the Web, which should be under-
stood to encompass: (i) expert knowledge (e.g., fever near a
swamp suggests malaria), as that offered in web-pages au-
thored by medical experts; (ii) cultural biases (e.g., if visit-
ing someone, bring a bottle of good wine), as that offered in
movie scripts or personal blogs; (iii) misconceptions (e.g.,
correlation implies causation), as that offered in personal
unaudited web-pages; (iv) fictional statements (e.g., the fox
served soup to the crane), as that offered in stories or fables;
and even (v) deliberate lies (e.g., heavy smoking is good for
you), as that offered in certain types of advertisement.

Websense is inherently distributed in the strong sense that
even an individual piece of knowledge might not be stated
explicitly in a single web-page, but be implicitly encoded
across the Web. For instance, the websense knowledge that
heavy smoking is good for humans can be seen to be dis-
tributed across the scripts of numerous movies found on the
Web, portraying their lead character as being healthy, popu-
lar, and smoking a lot. The goal, then, is the development of
machines able to extract this implicitly encoded websense.

A number of approaches relevant to this goal have been
considered. Most prominent is the Semantic Web, where in-
formation on web-pages is tagged with meta-data not only
for its formatting but also for its semantics or meaning, pro-
viding, according to W3C, “a common framework that al-
lows data to be shared and reused across application, en-
terprise, and community boundaries.” The feasibility of its
realization through the manual tagging that is assumed has
been questioned, and to date the goal has not been fulfilled.

Unlike the tagging approach where human users are ex-
pected to tag the basic blocks of data from which one may
later draw inferences, Wikipedia sought to gather the human
knowledge (presumably found in other places on the Web
as well) in a common and semi-structured place, burdening
the human users with selecting, filtering, and updating the
information it holds, without, however, dealing with the ex-
plicit task of drawing inferences. OpenMind sought to have
humans provide directly the pieces of knowledge used for
inference, still using the usual raw text format that is preva-
lent on the Web as its representation, in the hope that these
nuggets of knowledge could be converted in a computable
form from which inferences could be drawn (Stork 1999).

More recent approaches sought to automate the acquisi-
tion of facts from the Web, circumventing to some extent the
human mediators (Etzioni et al. 2005; Schoenmackers et al.
2010). IBM’s Watson has also heavily exploited the Web as
a source of information for the limited task for which it was
designed. In general, researchers have mostly been in agree-

ment that text is a viable and abundant source of information
for the acquisition of knowledge, and evidence for this claim
has been provided (Liakata 2004), even if only in a limited
domain and with the active involvement of a human curator.

The goal of capitalizing the Web as a source of informa-
tion has been pointed out (Mitchell 2005; Etzioni, Banko,
and Cafarella 2006), without offering concrete strategies of
how to develop machines that extract from the Web not only
facts, but knowledge in some appropriate computable form.
In particular, a prerequisite to exploiting information found
on the Web, is the extraction of information implicit in text.
This is related to the Recognizing Textual Entailment (RTE)
task (Dagan, Glickman, and Magnini 2006), which specifies
a certain property (although not a process to ensure it holds)
that such an inference is expected to have: an inference is
valid if it would be typically recognized as such by humans.
Natural Language Processing techniques for extracting facts
and entities (Etzioni et al. 2005), verbs and their arguments
(Cognitive Computation Group 2006), various syntactic el-
ements (Collins 1999), or synonyms and hypernyms (Miller
1995) are heavily used in developing tools for the RTE task.

Wolfram|Alpha exploits and draws inferences from infor-
mation found on the Web. Unlike the aforementioned ap-
proaches, however, this computational search engine oper-
ates on a certain subset of knowledge, characterized as ax-
iomatized: the type of knowledge typically found in Math-
ematics, Physics, and other computationally-oriented disci-
plines. Given appropriately curated data, along with the ax-
ioms (e.g., laws, equations) that apply in a certain field, the
engine computes necessary (in a mathematical sense) infer-
ences. For the vast majority of information found on the Web
the assumption of axiomatization is not always reasonable.

Recently, a principled approach to unaxiomatized knowl-
edge acquisition from text has been proposed (Valiant 2000;
2006), placing emphasis both on the acquisition of knowl-
edge in terms of computer-readable rules, but also on the
efficiency of the acquisition task, and the robustness of the
acquired knowledge, by building on well-studied learning
algorithms (Littlestone 1988). Although no explicit tech-
niques for processing text were described in that work, sub-
sequent work on extracting knowledge from text (Michael
and Valiant 2008) provided experimental evidence on the
feasibility of that approach on a massive scale. The work
presented herein follows a similar approach to these works.

More recent work offered further theoretical underpin-
nings to the RTE task, extending it to the much more chal-
lenging and useful generation case, and allowing for a prin-
cipled view of the inferences that can be drawn from sen-
tences (Michael 2009). In that work, knowledge bases are
constructed completely autonomously, without any human
supervision, and the inferences that are drawn are guar-
anteed to be correct, not against the human gold standard
that RTE assumes, but against a formal objective metric of
soundness (Michael 2008; 2010). This work can be seen as
an empirical demonstration of this earlier theoretical work.

Searching the Web for Inferences
As a concrete application of machines endowed with web-
sense, we consider the design and development of a novel
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Figure 1: Architecture of a novel search engine.

web search engine able to respond to user queries provided
in natural language text, with inferences that are implied by
the given queries according to the collected human knowl-
edge found across the Web. Importantly, the engine operates
autonomously without human supervision, harvests the web-
sense it uses by applying principled learning techniques, and
is able to offer guarantees on the soundness of its inferences.

The architecture of our developed engine is illustrated in
Figure 1. At its heart lies a relational knowledge base, with
each rule encoding an equivalence that essentially provides
a websense definition of the predicate at the head of the rule.
An example of the representation of a rule is given below:

file(x) ⇔ threshold(1.0)
∃v : scan(v, x) ∧ rogue(v) weight(0.962710)
∃v : share(v, x) weight(1.627098)
∃v : have(x, v) ∧ program(v) weight(0.645691)
∃v : open(v, x) weight(1.593269)

All variables in the head of a rule are assumed to be uni-
versally quantified over that rule. Variables that appear in a
line of the body but not in the head must be explicitly quan-
tified, and their scope is the formula appearing in that line.

Roughly, the semantics of each rule is as follows: Given
a set of grounded predicates, one identifies which of the for-
mulas in the body of the rule are made true (as in logic pro-
gramming). The weights associated with formulas that are
determined to be true (i.e., active) are summed up. If the to-
tal weight exceeds the rule threshold, then the head of the
rule (with the grounding of its variables as determined by
the rule body — again, as in logic programming) is inferred
to be true; otherwise the head is inferred to be false. The pre-
cise semantics can be found in earlier work (Valiant 2000).

This type of rule encodes a linear threshold, where a suffi-
cient number of formulas in the body of the rule need to hold
for the head to also hold. Linear thresholds enjoy more ex-
pressivity than rules with conjunctive or disjunctive bodies,
and are known to be amenable to a rather robust and effi-
cient learning process (Littlestone 1988; Valiant 2000), even
under arbitrarily incomplete information (Michael 2010).

Our engine autonomously acquires such rules by parsing
text found on the Web, and applies these rules on the parsed
user queries to return responses in natural language text, as
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Figure 2: Interface of a search engine prototype.

automatically constructed from the drawn inferences. The
underlying learning algorithm employed provides a priori
guarantees on the appropriateness of the responses (Michael
2009). The engine interface in Figure 2 illustrates a particu-
lar query given by some user, the parsing of that query into a
logic-based form, the websense inferences drawn from it (by
applying, among others, the rule given earlier), and the com-
position of the inferences into natural language responses.

Building a Novel Search Engine
We continue to describe the design of the individual compo-
nents of the search engine, and discuss certain choices made.

Web Crawling
Web crawling is depicted in the top-left part of Figure 1. In
the simplest case, this is a typical crawler that downloads ar-
bitrary web-pages. In our current design the crawler is exter-
nally provided with certain keywords (e.g., “spyware”), and
downloads only pages containing those keywords. In partic-
ular, the web crawler uses a typical search engine to iden-
tify a seed web-page that includes the given keywords, and
adds that web-page in a queue. It then repeatedly removes
a web-page from the queue, probes all the web-pages that
are linked from the former, and adds those with more than
α occurrences of the keywords in the queue. If the removed
web-page contains at least β occurrences of the keywords
(where β > α), it is sent for further processing. Thus, α is
the eligibility threshold for web-pages to be further explored
through their links, whereas β is the (more strict) eligibility
threshold for web-pages to be parsed for knowledge extrac-
tion. Values for α and β were determined empirically.

The ultimate goal here is to download web-pages that are
most useful given the websense already acquired. This can
be done by allowing the engine to internally determine the
keywords that guide the crawler. For instance, if the current
websense includes the rule “if it is lunch time, then humans
eat”, it would be useful to learn more about the notion of
“lunch time”, and the conditions under which this notion is
activated. This process corresponds to an abductive type of
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Figure 3: Parsed sentence using NLP tools.

reasoning, with the engine trying to acquire knowledge that
would help it justify to draw a particular inference (“humans
eat”, in this case). The interaction of abduction and induction
has been investigated (Ray 2009), and the techniques found
therein could be employed to further improve the crawler.

If a crawler tends to favor certain pages (perhaps because
they have more incoming links than others), then the knowl-
edge acquired will likewise be biased. This is of no concern,
and is well-accommodated by the definition of “websense”,
as long as the bias is due to the structure of the Web itself,
and not due to a serendipitous design bias in the crawler.

Text Parsing
Text parsing is depicted in the top-center and top-right parts
of Figure 1. These two components strip web-pages from
any non-textual information, parse each individual sentence
(using parsers, lemmatizers, POS taggers, semantic analyz-
ers, etc.), and convert a subset of that information (most no-
tably, verbs, nouns, and parts-of-speech) into certain existen-
tially quantified conjunctions over predicates, in the spirit of
earlier work (Valiant 2000; Michael and Valiant 2008).

Figure 3 illustrates the parsing of a single sentence, show-
ing a syntactic tree that encodes the structure of the sentence,
and semantic information indicating which parts of the sen-
tence correspond to the arguments of each verb. From the
parsed output the engine proceeds to extract facts that hold in
the particular sentence, such as: defensewrd(2),NNpos(2),
precipitatesbj(6), precipitatesbj,obj(6, 9), thewrd,+2(2),
precipitatewrd,−2(9), JJpos,−1(6), indicating the presence
of certain entities in the sentence (here represented by the
numbers in the parentheses), and certain relations that hold
between these entities. Such collections of relations over en-
tities are called “scenes” (Valiant 2000; Michael and Valiant
2008). Thus, entity 2 is characterized by the word “defense”
and the part-of-speech “NN”, entity 6 is the subject of the
verb “precipitate”, and the word “precipitate” appears two
places before the position of entity 9 in the given sentence.

Entities in this scene have a dual interpretation. They cor-
respond both to objects pointed to by words (e.g., entity 6 in

the third relation is treated as a concrete real-world object,
namely the warrant mentioned in the sentence), but also to
words as objects themselves (e.g., entity 6 in the last relation
is treated as the word “warrant” at the sixth position in the
sentence, and the relation JJpos,−1(6) states that “warrant”
is preceded by a word whose part-of-speech is “JJ”). This
treatment of entities has been shown to be useful in acquir-
ing knowledge from text (Michael and Valiant 2008).

Finally, composite expressions of the facts in each scene
are created, such as: warrantwrd(6) ∧ precipitatewrd,+1(6),
precipitatesbj,obj(6, 9) ∧ warrantwrd(6) ∧ RBpos,+3(9), ∃v :
precipitatesbj,obj(6, v), ∃v∃u : precipitatesbj,obj(v, u). Col-
lections of such composite expressions correspond to the
inputs available to the engine’s learning module, and such
composite expressions are what end up being the formulas
in the bodies of the rules found in the knowledge base.

Rule Learning
Rule Learning is depicted in the bottom-right part of Fig-
ure 1. Our current design adopts the Winnow algorithm for
learning linear thresholds (Littlestone 1988), appropriately
extended to a relational setting (Michael and Valiant 2008).

For each one predicate designated as a learning target, the
learning process followed proceeds roughly thus: To create
negative learning examples for the target (which do not oc-
cur naturally / often in the constructed scenes), randomly
selected grounded instances of the target are assumed to be
false, in a manner that roughly balances the number of posi-
tive and negative instances across all scenes. For each (pos-
itive or negative) instance of the target, all remaining predi-
cates and composite expressions in the scene are considered
as learning features. To ensure that the learned rule’s body
does not include free variables other than those in the rule’s
head, only features that do not reference entities other than
those in the target instance are kept as active. Following the
Winnow algorithm, the current version of the rule for the
target is applied on the active features to make a prediction.
The weights associated with the active features in the rule
are demoted or promoted by a multiplicative constant, if the
prediction is a false positive or a false negative, respectively.

Despite the expressivity of linear thresholds as rules, and
the noise-resilient and attribute-efficient algorithm used for
learning them (Littlestone 1988), experience has shown that
learning produces rule bodies with many formulas that have
rather small weights. Pruning and retraining the rules (to
avoid affecting their accuracy) leads to significant logistic
overheads. It is natural, then, to consider other classes of
rules that would support more succinct representations. A
natural candidate for this investigation would be the class
of formulas in Disjunctive Normal Form (DNF). Although
the general class is intractable to learn (Valiant 1985), its
(still rather expressive) subclass with constant-sized terms is
known to be learnable. Using DNF formulas will also lead to
knowledge bases whose rules are syntactically and semanti-
cally closer to the type of knowledge considered in many
works in logic-based knowledge representation and reason-
ing, and such rules could be readily used by existing reason-
ing tools, without the need for new reasoning algorithms.



Rule Reasoning
Rule reasoning is depicted in the bottom-center part of Fig-
ure 1. This component draws inferences by applying a rela-
tional knowledge base on a set of input predicates. That is,
each rule in the engine’s knowledge base is applied exactly
once directly on the set of input predicates determined by
the user query, and the set of the rule heads that are found to
be true comprises the inferences of the engine on that input.

If the example rule of the preceding section were applied
on a scene comprising share(1, 2), open(3, 4), scan(5, 6),
roque(5), then the reasoning process followed would infer
file(2) and file(4). Note that even though the scene does
not explicitly include ∃v : scan(v, 6)∧ rogue(v), this com-
posite expression is still considered as an active feature in
the scene. Therefore, the given scene would have triggered
the rule to infer file(6), had the weight 0.962710 in the first
line of the rule body been higher than the rule’s threshold.

It was stated earlier that a linear threshold rule infers its
head to be true if sufficiently many formulas in its body are
made true in a scene, and infers its head to be false other-
wise. Note, however, that the “otherwise” part is ill-defined,
or at best ambiguous, when a formula’s truth value may re-
main undetermined in a scene. Indeed, a grounded predicate
not appearing in a scene is not the same as its negation ap-
pearing in the scene, and a three-valued logic is more appro-
priate in the context we consider than a binary-valued logic
(Michael 2009). Under such a three-valued logic, then, while
a scene may often offer sufficient information for a rule to
infer its head to be true (as in our example above), it is rare
that it will offer sufficient information (i.e., enough negated
predicates) for a rule to infer its head to be false. Typically,
thus, rules end up either predicting positively, or abstaining.

Their logic-based representation notwithstanding, linear
threshold rules cannot be directly handled by typical reason-
ing algorithms. As a result, we have developed a new Prolog
interpreter able to cope with this more expressive represen-
tation when reasoning. Each rule is encoded in Prolog as an
implication, and since at most one such rule is available for
each predicate, Prolog’s closed world assumption effectively
yields the desired treatment of the rule as an equivalence.

Unfortunately, standard Prolog implementations seem un-
able to computationally cope with the number and size of the
available rules. Thus, we found it necessary to re-implement
the reasoning component of the engine in a typical procedu-
ral language, using advanced data structures and techniques
to speed the process up. More work in this direction will
clearly be necessary as the engine scales to larger contexts
with more predicates. The consideration of DNF formulas as
the underlying representation of rules is expected to alleviate
considerably the computational cost of reasoning.

Of interest is our choice to apply each of the rules pop-
ulating the knowledge base only once. At first it may seem
utterly obvious that the repeated application of rules, so that
they take into account the conclusions drawn by other rules
(as done in Prolog programs), will lead to improved perfor-
mance (in terms of the completeness of the inferences). This
is not, however, direct. The rules in this context are not arbi-
trary, but are learned as definitions of their head predicates.
It is not, therefore, at all clear why each rule would not al-

ready encode the necessary and sufficient conditions under
which its head predicate should hold, in a way that would
render the chaining of rules superfluous (Valiant 2006).

Despite the argument above, it is possible to formally es-
tablish (Michael 2008; 2009) that chaining is indeed bene-
ficial. But to properly reap the benefits of chaining without
sacrificing the guarantees provided by the principled learn-
ing process, one has to interleave learning and reasoning in
a computationally demanding manner. This interleaving ef-
fectively boosts the completeness of the predictions, in the
sense that the set of learned rules as a whole abstains less
often than without chaining. Although the implementation
of our learning and reasoning components supports such an
extension (Michael and Valiant 2008), we have found it sim-
pler to do without it in this first version of the engine.

Text Generation
Text generation is depicted in the bottom-left part of Fig-
ure 1. Our current design produces very simple sentences by
combining a single predicate that was inferred, with at most
two predicates from the user query. By way of illustration:
(i) if chase(x, y) and cat(y) hold in the query, and dog(x)
is inferred, then the sentence “dog chase cat” is returned; (ii)
if student(x) holds in the query, and clever(x) is inferred,
then the sentence “student is (a kind of) clever” is returned.

Obviously one could do much more in terms of the natu-
ral language generation task that is considered here (cf. Fig-
ure 2), both in terms of making the already returned sen-
tences more natural sounding (e.g., by properly choosing
the word tenses, pluralities, etc.), and in terms of producing
more complex sentences that take into account more predi-
cates in the query and the inferences. Work in Natural Lan-
guage Generation can play an important role in this direction
(Reiter and Dale 2000; The Open Cognition Project 2010).

Evaluating the Engine’s Inferences
The inferences returned by the search engine are elaborative,
in the sense that they make claims about “implied” truths,
and not claims about concrete and specified truths. How can
one possibly evaluate such inferences fairly, since one does
not have (and cannot have) access to some ground truth?

We have already mentioned that the engine acquires its
knowledge through principled learning methods, building on
the Probably Approximate Correct semantics (Valiant 1984;
Michael 2010). In a sense this particular design choice al-
ready addresses, or rather side-steps, the problem of evalua-
tion, since one can formally prove the appropriateness of the
drawn inferences in an objective manner (Michael 2009).

Of course, there are many reasons why one would not be
satisfied with this answer. For one thing, learning-theoretic
models that offer formal guarantees do so under certain as-
sumptions (e.g., that each training instance is drawn inde-
pendently from some underlying probability distribution),
which are not necessarily true in a given real-world setting.
Furthermore, even if such assumptions were to hold, it is not
clear why one would expect that the actual implementation
of the learning algorithm faithfully (i.e., without any bugs)
captures the workings of the algorithm. It seems, then, that
the eventuality of an empirical evaluation cannot be avoided.



An empirical evaluation of the inferences of the engine
would require the presentation of pairs of sentences — a
user query and a returned response — and the rating of the
latter as an appropriate inference of the former. Much like
what is done in the Recognizing Textual Entailment (RTE)
task (Dagan, Glickman, and Magnini 2006) and the Wino-
grad Schema Challenge (WSC) task (Levesque 2011), hu-
man participants can be employed for this evaluation. Un-
like what is done in the RTE and WSC tasks, where both the
query and the response are available up front, our engine is
given as input only the first of the sentences and is expected
to generate the second one. Hence, human rating can be done
only a posteriori, after the engine produces its responses.

A second distinction compared to the evaluation settings
used for the RTE and WSC tasks is that the responses of our
engine should be interpreted as websense inferences, and not
as commonsense ones. Although in many cases the engine’s
inferences will also be commonsense inferences, the distin-
guished nature of the former may necessitate that the human
evaluators be given precise instructions in this regard.

To date we have evaluated our engine on a small number
of pre-selected user queries, and with a small number of hu-
man participants. The engine was trained only on web-pages
that included the word “spyware”, and this context was made
clear to the evaluators. To mitigate the effect that the perfor-
mance of the (currently rather simplistic implementation of
the) text generation component would have on the evalua-
tion of the inferences, we manually grammatically corrected
the engine’s responses, without affecting their essence. The
outcome of this informal proof-of-concept evaluation was
encouraging, with the evaluators acknowledging that the in-
ferences were appropriate for the given queries and context.

Below are two example sets of queries and associated re-
sponses as given in the aforementioned evaluation study:

User Query A: “members share something”
Response A.1: “something is an article”
Response A.2: “members share files”

User Query B: “people who steal from others”
Response B.1: “people are hackers”
Response B.2: “thieves steal from others”

Given the first query as input (cf. Figure 2), the engine rec-
ognizes the presence of two entities, one having the property
“member” and one having the property “something”, and the
existence of a relation “share” that holds on those entities.
When rules are applied on the scene constructed from the
query, the engine infers that the second entity also has the
properties “article” and “file”. Combining those inferences
with the scene information, the engine constructs a first sen-
tence to the effect that the entity having the property “some-
thing” also has the property “article”, and a second sentence
to the effect that the entity having the property “member” re-
lates through “share” to an entity that has the property “file”.
Given the engine’s training context, “member” is likely to
refer to members of online forums or download servers, and
thus the inference that they are sharing articles or files is a
reasonable one. The engine treats the second query analo-
gously, except now inferences are drawn for the first entity

in the scene. Like before, the inference that those who steal
are hackers is a reasonable one, given the training context.

Our next step is a large-scale systematic evaluation, stay-
ing, however, within a specific context (such as “spyware”).
In one direction, we will seek to employ crowdsourcing tools
like Amazon’s Mechanical Turk to allow humans to evaluate
pre-selected user queries and responses, or even to actively
choose queries and evaluate the responses that are returned.
In another direction, we will consider whether standardized
corpora of stories or existing WSC instances can be used as
a source of queries and expected responses, and investigate
how our engine can be extended so that its inferences can be
directly evaluated against what is already available.

Conclusions
The goal of developing machines able to employ common
sense (McCarthy 1959) has been one of the early and contin-
uing driving forces behind research in Artificial Intelligence.
We have argued in this work that the means are now avail-
able to develop such machines in a purely autonomous man-
ner, by allowing them to extract a commonsense-like type
of knowledge from the Web, and to represent such websense
knowledge in a logical form amenable to formal reasoning.
A working prototype of an engine endowed with such abil-
ities was discussed, through the lens of a novel web search
engine able to respond to user queries with inferences that
follow from the knowledge encoded collectively on the Web.

The benefits of building a machine able to extract and ag-
gregate websense in a computable form are numerous:

(i) Research in Good Old-Fashioned AI (McCarthy 1959)
assumes that knowledge in a computational form is already
available, and seeks to investigate how such knowledge is to
be reasoned with. Providing the means to actually acquire
this knowledge in a robust and scalable manner will aid in
fulfilling the goal of building machines with AI. Research
in Multi-Agent Systems and Human-Computer Interaction
seeks to build machines that interact naturally with humans,
and endowing machines with websense would be a step in
that direction. Research in Computational Models of Nar-
rative seeks to understand stories computationally, and the
availability of websense would offer an important resource
in doing so (Michael 2013; Diakidoy et al. 2013). Progress
on the Winograd Schema Challenge (Levesque 2011), or the
full-fledged Turing Test itself (Turing 1950), could be made
possible by allowing machines to draw websense inferences
close (if not indistinguishable) to those drawn by humans.

(ii) Conceptually, building machines able to acquire and
process websense would constitute a significant step towards
realizing the goal of the Semantic Web, in a manner com-
pletely devoid of human intervention and the currently em-
ployed approach of manual tagging with meta-data, and with
the financial gains that this automated approach may sug-
gest. It would amount to a paradigm shift in viewing the Web
no longer as a collection of information, but as a source of
collective knowledge, representing the experiences, beliefs,
biases, fears, and hopes of humans across the world.

(iii) The outcome of the websense acquisition task would
lead to a massive knowledge base, which may reveal infor-
mation about the collective human beliefs, prejudices, and



preferences (as stated across the Web), along with the socio-
logical, philosophical, or economical implications that such
information may have. This would facilitate large scale so-
cial studies, which, in the spirit of Unity of Science, would
employ the scientific method to analyze, hypothesize, and
evaluate using the available computable knowledge.

(iv) A solid framework for websense acquisition offers a
tangible empirical task for evaluating machine learning tech-
niques, suggesting new opportunities for the development
of algorithms, with emphasis on scalability, parallelizability,
and use of efficient data structures, as demanded by the ex-
plosion of web data. It would, in particular, offer an insight
into how learning and reasoning with learned knowledge can
fruitfully interact, with the derivation of plausible hypothe-
ses of how this interaction is done in humans also.

One could argue that a state of affairs where the aforemen-
tioned benefits can be realized is scientifically within reach,
and that it is, now, mostly an engineering task to build upon
existing frameworks and prototypes, such as the engine pre-
sented herein, to reach that state. This task would likely re-
quire a well-orchestrated multi-disciplinary effort, involving
researchers from Artificial Intelligence, Theoretical Com-
puter Science, Web Technologies, Machine Learning, Nat-
ural Language Processing and Generation, Parallel Process-
ing, and Database Management. But given the availability of
the human resources, there seems to be little reason why Mc-
Carthy’s vision of machines with common sense (McCarthy
1959) would not be a reality in the not-so-distant future.
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