
On the Revision of Dynamic Intention Structures

Charles L. Ortiz, Jr.
Laboratory for Natural Language Understanding

Nuance Communications
Sunnyvale, CA 94085 U.S.A.

charles.ortiz@nuance.com

Luke Hunsberger
Department of Computer Science

Vassar College
Poughkeepsie, NY 12604 U.S.A.
hunsberg@cs.vassar.edu

Abstract

We developed the theory of Dynamic Intention Structures to
represent and reason with incompletely specified and, possi-
bly, mutually dependent intentions as well as the objects ref-
erenced within those intentions. The theory of DIS was ex-
pressed within a dynamic logic that drew its inspiration from
work on Discourse Representation Structures in the linguis-
tics community. In this paper, we extend our earlier work
to provide a solution to the problem of intention revision
in the context of incompletely specified DISs. We define a
syntactically-based intention revision operation that is suit-
able for the fine-grained revision of the content of intentions.

The belief revision literature has focused, for the most
part, on the revision of theories expressed in propositional
logic. The problem of revising intentions, however, intro-
duces several challenges involving partiality of content. In-
tentions typically pass through stages of elaboration (e.g.,
intending to rent a car without yet having decided on a
particular car). Further, the process of revising intentions
should be possible without requiring that successive elabo-
rations be captured by rewriting every intention (i.e., inten-
tions should be elaboration tolerant (McCarthy 1988)).

To illustrate the challenges, consider the following exam-
ple in which an agent, Adam, intends to rent a car as part of
his plan for an upcoming trip.
a. Adam intends to get a car by renting it.
b. Adam decides to rent a particular car, “Car39.”
c. Adam decides instead to borrow a car.

Ignoring time, sentence (a) might be represented as:

intends(Adam,∃(x)(car(x) ∧ get(x,Rent)))

in which the first argument of the predicate, “get”, refers
to an object and the second to the method or means of per-
forming the get action. This is a simplification that already
suffers from elaboration intolerance since means actions can
themselves have means actions associated with them, an is-
sue that will be taken up later. Sentence (b) involves the
modification of the contents of the original intention to:

intends(Adam, get(Car39 ,Rent))

Ideally, this would not require deleting the old intention and
replacing it with the above. The problem, here, is that the

contents of the original intention are within the scope of both
a modal operator and an existential quantifier. The revision
corresponding to sentence (c) should produce:

intends(Adam,∃(x)(car(x) ∧ get(x,Borrow)))

The difficulty in capturing this change arises from the need
to refer to a particular context (e.g., “the trip Adam is plan-
ning”) and then to state that within that context Adam in-
tends not to rent a car, but to borrow one. Representing
this change by a new intention—to borrow a car within that
context—would normally result in the addition of that new
intention and the deletion of the original intention, given, for
example, an auxiliary axiom against renting and borrowing
two separate cars for a single trip. This would not suffice,
however, since the information regarding the ends action—
getting a car—would be lost. Requiring such information to
accompany the revision would require re-specifying much
of the entire intention, contrary to our aims: we would like
to be able to modify the contents “from the outside.”

Finally, whereas the above examples involve “local” mod-
ifications to existing intentions, global changes that result in
the same sorts of modifications should also be supported.
For example, suppose that Adam’s decision to rent “Car39”
for his trip conflicts with a pre-existing intention to rent
“Car39” for some other purpose (e.g., to enable his children
to move some furniture). In such a case, it would be desir-
able for Adam’s decision to rent “Car39” for his trip, as in
sentence (b), to only affect the choice of the car to be rented
for his children’s use. Such fine-grained control over the re-
vision process is not possible within common belief revision
frameworks (Gärdenfors 1992).

The DIS Theory. We developed the theory of Dy-
namic Intention Structures (DIS) to handle incremental
modifications to agent intentions (Hunsberger and Ortiz
2008), particularly within collaborative contexts (Huns-
berger 1999). Inspired in part by Discourse Representation
Theory (DRT) (Kamp and Reyle 1993), each DIS represents
the structured content of an intention, while also providing
access to its parts. The semantics of each DIS is provided
by translating it into a formula in dynamic logic. Although
the DIS theory includes intention-update operators, they fo-
cus on augmentations to existing intentions, not revisions
involving local or global modifications. Furthermore, the

∅
T1

Int

{T2}
T2

Id
Adam
{X}
T2

Rent@Obj (X)@Agt(Adam)
{Car(X), (T2 > T1)}
∅

Figure 1: A DIS in “box notation”

DIS theory does not accommodate the calculation of logical
consequences. This paper extends DIS theory in these direc-
tions, while respecting the need for elaboration tolerance.

A preview of our approach. Our approach involves “un-
packing” intentions to enable a finer grained manipulation
of propositional content. For example, consider the DIS, D,
shown in Fig. 1, which represents Adam’s intention at time
T1 to rent a car at some later time T2. Using an intention
identifier, Id, enables subsequent reference to the content of
this intention. In this example, Id corresponds to Adam’s
plan to rent a car.1 Because the “box notation” can be quite
cumbersome, this paper uses an equivalent, but more com-
pact notation in which D would be notated as:

D = 〈∅, T1, Int[〈{T2}, T2,
〈〈Id,Adam, {X}, T2, α, C, ∅〉〉〉]〉

where: α = Rent@Obj (X)@Agt(Adam);
and: C = {Car(X), (T2 > T1)}.

In either case, this form of a DIS is called its canonical form.
As in the original DIS theory, the semantics of D is given

by translating it into an FOL formula notated as follows:

||D||w0
=

holds(int(Holds(exists({t2, x},Φ), t1)), w0, t1)

where: Φ = do(rent@id(id)@obj(x)@agt(adam))
& car(x) & gt(t2, t1);

and: w0 is the real world.

Note that ||.|| translates a DIS from its canonical form into
FOL. Details on this translation are given later.

Next, to support intention revision, each DIS, D, is first
converted into a predicate form, D, as illustrated below:

D = {id(id), agent(id, adam), var(id, x), time(id, t2),
timet(id, t2), vart(id, t2), timec(t1),
act(id, rent@@obj(x)@agt(adam)),
constr(id, car(x)), constr(id, gt(t2, t1))}

The identifier, id, plays a key role in the predicates in D. In
particular, it enables subsequent reference to various parts
of the content of the intention. As will be seen, for more

1An extended version of this paper (in preparation) derives a
number of rationality theorems and AGM properties, while also
examining the side-effects problem and intention overloading.

complex intentions involving action decomposition hierar-
chies, the structure of such hierarchies is also captured by
the predicate form of the corresponding DIS.

The inverse conversion—from predicate form to canoni-
cal DIS form—is also defined. IfDp is the predicate form of
a DIS, then Dp is the corresponding DIS in canonical form.
Furthermore, ||Dp|| is the translation of this DIS into FOL.

Suppose D and D′ are two intentions in canonical DIS
form, where D is a pre-existing intention and D′ is a newly
adopted intention that conflicts with D. Such a conflict can
be determined by comparing ||D|| and ||D′||. The process of
intention revision generates modifications to the pre-existing
intention, D, needed to restore consistency. Our approach
begins by converting D and D′ to their predicate forms, D
and D′. It then incrementally augments D′ with predicates,
P , from D, generating a maximal set of predicates, D′ ∪ P ,
such that ||D′ ∪ P|| is consistent. To guide the process, the
predicates in D are partitioned into priority classes such
that predicates representing the hierarchical structure of in-
tentions are given highest priority, and predicates involving
parameter-binding constraints are given lowest priority.

The DIS Language
The DIS language consists of a set, Vars , of variables; a set,
Ct = Agt ∪ Acts ∪ Obj ∪ Index ∪Times , of constants,
where Agt is a set of agent constants, Acts is a set of act
type constants, Obj is a set of object constants, Index is a
set of unique identifiers, and Times corresponds to the set
of positive integers; a set, F , of function symbols including
the function “@” to serve as an act-type constructor; a set, P ,
of predicate symbols ; and Int(·) to represent an intention.
Definition 1 NATerms is the smallest set such that:

1. If v ∈ Vars , then v ∈ NATerms,
2. If c ∈ Obj ∪ Agt, then c ∈ NATerms,
3. If f is an n-ary symbol in F −{“@”} and t1, t2, . . . , tn ∈

NATerms, then f(t1, . . . , tn) ∈ NATerms
Definition 2 (Act terms) ATerms is the smallest set such
that:

1. If e ∈ Acts , then e ∈ ATerms,
2. If e ∈ A, f ∈ F , and x ∈ NATerms, then e@f(x) ∈

ATerms. (We say that f(x) is a modifier of act-type e.)
The act-type constructor, @, allows the construction of

more complex act types from simpler ones (Ortiz 1999).
For example, suppose drive@agt(A)@to(Boston) repre-
sents the act type of agentA driving to Boston. That act type
could later be elaborated to any level of detail. For example,
drive@agt(A)@to(Boston)@on(Interstate), might repre-
sent the act type of agent A driving to Boston via In-
terstate 95. In this way, the act-type constructor enables
the representation of partially specified intentions with-
out committing to a particular predicate arity—such as,
drive(Agent ,Object)—and then incrementally construct-
ing increasingly detailed intentions.

To deal with partiality of action descriptions more sys-
tematically, the arguments to act-type modifiers will of-
ten be restricted to variables. For example, the pre-
ferred description of agent A driving to Boston would be

do(drive@agt(x)@to(y))∧ (x = A)∧ (y = Boston). This
technique has the advantage of enabling complex revisions
to be performed simply by assigning or de-assigning values
to variables.
Definition 3 The set TERMS = ATerms ∪ NATerms .

Definition 4 (Dynamic Intention Structure) We define the
set, DIS, by simultaneous induction as follows.

1. IfR ∈ P is an n-ary predicate and T1, . . . , Tn ∈ TERMS,
then R(T1, . . . , Tn) ∈ COND.

2. If T1, T2 ∈ TERMS, then T1 = T2 ∈ COND.
3. If V ∈ 2V ars, C ∈ 2COND, then 〈V,C〉 ∈ ExtCOND .
4. If φ ∈ ExtCOND , then ¬φ ∈ COND.
5. If φ, ψ ∈ ExtCOND , then φ⇒ ψ ∈ COND.
6. If Id ∈ Index , A ∈ Agt , V ∈ 2Vars , T ∈ Vars ∪

Times,Act ∈ ATerms, C ∈ 2COND, S ∈ 2Index, then
〈〈Id,A, V, T,Act, C, S〉〉 ∈ NODES.

7. If V ∈ 2V ars, T ∈ Vars ∪ Times, α ∈ NODES, then
Int[〈V, T, α〉] ∈ MODAL.

8. If V ∈ 2V ars, T ∈ Vars ∪ Times, µ ∈ MODAL, then
〈V, T, µ〉 ∈ DIS.

9. Nothing else is in COND, ExtCOND, NODES, MODAL
or DIS, except as required by (1)-(8) above.

In (6) above, S represents the set of, possibly empty,
means actions for Act . One can think of the nodes com-
prising an action as representing a plan tree for that action.
Each plan tree node includes a set of variables, V , which
can be thought of as shared resources for Act and the sub-
actions in S. Analogous to programming languages, V can
be thought of as a set of variables local to a procedure.

In this paper, we only deal with the case of intentions
ranging over actions. For simplicity, we also do not allow
logical combinations of intentions (such as, “if p is true then
the agent will intend to do α”). However, these sorts of con-
structions can occur in the FOL knowledge base in which
inference takes place. During the revision process, we will
assume that all such rules are “protected”, that is, are main-
tained at a higher level of priority than individual intentions.
A negated intention is viewed in this paper as simply the
absence of an intention in the intention base. In the longer
version of this paper, we eliminate these simplifications.
Definition 5 (Intention Base) An intention base (IB) is any
element of 2DIS ∪ 2NODES .

The extended version of this paper formally describes the
following additional restrictions on an intention base: (1) no
loops in plan trees; (2) all plan trees must be rooted; and (3)
all sub-actions in any DIS must have corresponding NODEs.

Semantics of DISs
The semantics of any DIS in canonical form is specified by
translating it into an FOL formula in a meta-language, L.
The translation of a DIS, D, relative to a world, w, and an
intention base, I , is written ||D||Iw.2

2Reference to the intention base, I , is necessary since the set,
S, in a DIS (cf. Rule (6) in Defn. 4) is a set of identifiers that
correspond to other NODEs in the intention base.

The specification of the translation function follows a
reification strategy similar to that employed in the context
of reasoning about knowledge (Moore 1985). The meta-
language, L, contains: (1) the usual logical connectives,
{∧,⊃,∼}, that stand for conjunction, implication and nega-
tion, respectively; (2) a set of meta-language constants that
stand for variables and constants in the object language
(i.e., the DIS language); and (3) a set of meta-language
functions that stand for predicates and functions in the ob-
ject language. In addition, L includes a single predicate
symbol, holds , that ranges over terms, worlds and times:
holds(p, w, t). The term p in a holds(p, w, t) expression has
one of two forms: (1) int(Holds(q, t′))—with upper-case
Holds; or (2) having no leading belief or intention operator.

We use abstract syntax for logical operators in L; thus,
holds(p & q, w, t) stands for holds(p, w, t)∧holds(q, w, t).
In addition, if V is a set, {v1, . . . , vn}, we write exists(V, φ)
as shorthand for exists(v1, . . . , exists(vn, φ) . . .). Finally,
to report that act-type α is performed by doing act-type β,
we write: do(α@method(β)).

The following recursive definition of the translation func-
tion for DISs parallels the rules in Defn. 4. It also makes
use of the definitions listed in Table 1 and assumes that
all variables declared in (sub-)actions are unique. We also
assume cross-world identity for constants, terms, predicate
and function names: that is, that they have the same deno-
tation in each possible world. We use possible worlds only
to provide alternative timelines (futures) for intentions. We
assume that there is a function, D, that takes a name in the
object language and returns the corresponding name in the
meta-language. Because of our assumptions, we will then
have D(T) = t,D(P) = p, etc., where we adopt the con-
vention that object-language elements are in upper case and
meta-language elements are in lower case. Due to space lim-
itations and to simplify the presentation, we skip any steps
that involve calls to D and instead replace the constant with
the appropriate lower- or upper-case term.
Definition 6 (Translation from DIS to FOL)

1. ||R(T1, . . . , Tn)||Iw = r(||t1||Iw . . . , ||tn||Iw), r a function
2. ||T1 = T2||Iw = eq(t1, t2)

3. ||〈V,C〉||Iw = exists(v, ||C||Iw),
4. ||¬φ||Iw = not(||φ||Iw)

5. ||φ ⇒ ψ||Iw = all({v1, . . . , vm}, ||C1||Iw& . . .&||Cn||Iw →
||ψ||Iw), where φ = 〈{V1, . . . , Vm}, {C1, . . . , Cn}〉

6. Complex act terms are translated into complex terms:
||〈〈Id , A, V, T,Act , C, S〉〉||Iw =
exists(||vars∗(Id , I)||Iw, do(α) & ||cstr∗(Id , I)||Iw),

where: α = act@id(id)@agt(a)@time(t)@tree(Id , I, w).
7. ||Int[〈V, T,C〉]||Iw = int(Holds(||〈V,C〉||Iw, t)),
8. ||〈V, T, µ〉||Iw = (∃v1 . . . ∃vn)holds(||µ||Iw, w, t), where
V = {v1, . . . , vn}.
We add the following axioms:
holds(do(exists(v, do(e))), w, t) (1)

≡ holds(exists(v, do(e)), w, t)
holds(do(not(x)), w, t) ≡ ¬holds(do(x), w, t) (2)

holds(do(α@time(t)), w, t′) ≡ holds(do(α), w, t) (3)

• vars(Id , I) = V , where 〈〈Id , , V, , , , 〉〉 ∈ I
• cstr(Id , I) = C, where 〈〈Id , , , , , C, 〉〉 ∈ I
• subs(Id , I) = S, where 〈〈Id , , , , , , S〉〉 ∈ I
• subs∗(Id , I) = subs(Id , I)∪ (

⋃
s∈subs(Id,I) subs

∗(s, I))

• vars∗(Id , I) =
⋃

s∈subs∗(Id,I) vars(s, I)

• cstr∗(Id , I) =
⋃

s∈subs∗(Id,I) cstr(Id , I)

• ||{x1, . . . , xn}||Iw = {||x1||Iw, . . . , ||xn||Iw}
• tree(Id , I, w) = method(act(||s1||Iw)@tree(s1, I, w))

@ . . .@method(act(||sn||Iw)@tree(sn, I, w)),
where: subs(Id , I, w) = {s1, . . . , sn}

Table 1: Auxiliary functions used in Defn. 6.

We extend ||.|| to any intention base, IS, of DISs:

||IS||w = {||I||Iw | I ∈ IS}
We require that intentions be consistent: for any intention

base, IS, it is not the case that both φ and ¬φ ∈ ||IS||Iw,t.
We define consequence via the relation ||=. In particular, for
any I ∈ DIS, IS ||= I iff ||IS||w |= ||I||Iw.3

The semantics for intention is formalized in FOL by reify-
ing possible worlds (Moore 1985). We adopt the modal logic
(System K) (Chellas 1980). Let acci(., ., ., .) stand for the
accessibility relations for intention. Then:

holds(int(a,Holds(p, t′)), w, t) ≡
∀w′.acci(a,w,w′, t) ⊃ holds(p, w′, t′)

The function acci is serial (System K). We adopt a common
names assumption (Chellas 1980).

Intention revision
Most approaches to belief revision are founded on the idea
of minimal change: to revise a set of beliefs, S, with
some new p, where p is inconsistent with S, one should
make the minimal change necessary to S to accommo-
date p. Our approach is syntactic, assigning greater sig-
nificance to formulas, and their syntactic form, that appear
in a belief or intention base (Ginsberg 1986; Nebel 1989;
Ortiz 1999) than to the consequential closure of the corre-
sponding base (the resulting belief set). Intention revision
takes place in two steps within our framework as follows.
Let S be an agent’s current set of intentions. We translate
S into its predicate form, as described earlier, that explicitly
refers to components of a DIS so that they can be modified
according to the minimality criteria above. We use the same
meta level language for constants and terms as in L above,
augmented with special predicates to name the components
of a DIS (as in id(id), agent(id, a), and so on).

3In the extended version of this paper we provide a mapping,
[[.]], that takes a representation of an intention in a FOL formula of
a particular form and translates it back to canonical form, together
with an analog to the revision operation given in the next section
that ranges over DISs.

Definition 7 (Predicate form) If ISB is an IB in canoni-
cal form then the translation of ISB into predicate form is
(the subscripts Idc, Idt, Idr are mnemonic for, respectively,
“context”, “top” and “root” node):

ISB = {idr(idr), agentr(idr, ar), varr(idr, ur),

timer(idr, tr), actr(idr, atr), constrr(idr, kr),

subr(idr, br), vart(idr, ut), timet(idr, tt),

varc(idr, uc), timec(idr, tc),

for all Ur ∈ Vr,Kr ∈ Cr, Br ∈ Sr, Ut ∈ Vt, Uc ∈ Vc
| 〈Vc, Tc, int[〈Vt, Tt,
〈〈Idr, Ar, Vr, Tr, Atr, Cr, Sr〉〉〉]〉 ∈ ISB}

∪ nodes(ISB)

Where nodes(ISB) =

{id(id), agent(id, a), var(id, u), act(id, at), time(id, t),

constr(id, k), sub(id, id′) | U ∈ V,K ∈ C, Id′ ∈ S
for all 〈〈Id,A, V, T,At, C, S〉〉 ∈ ISB}

Definition 8 (Recovering DIS Canonical form) Let ISB
be an IB in predicate form, where, PActs , the set of
“positive acts”, is the set:
{α ∈ ATerms | α 6= not(β), for some β ∈ ATerms}.

ISB = {〈Vc, Tc, Int[〈Vt, Tt,
〈〈Idr, Ar, Vr, Tr, Actr, Cr, Sr〉〉〉]〉

| If actr(idr, actr) ∈ ISB and Actr ∈ PActs,

then: agentr(idr, ar), idr(idr), timer(idr, tr),

timet(idr, tt), timec(idr, tc) ∈ ISB,
Vr = {vr | var(idr, vr) ∈ ISB},
Vt = {vt | vart(idr, vt) ∈ ISB},
Vc = {vc | varc(idr, vc) ∈ ISB},
Cr = {cr | constr(idr, cr) ∈ ISB},
Sr = {sr | sub(idr, sr) ∈ ISB}}

∪ {〈〈Id,A, V, T,Act, C, S〉〉 | Act ∈ PActs &

id(id), agent(id, a), time(id, t), act(id, act) ∈ ISB
where V = {v | var(id, v) ∈ ISB},

C = {c | constr(id, c) ∈ ISB},
S = {s | sub(id, s) ∈ ISB}}

Note that if an act is not present in the predicate form,
act(Id,Act), or it is a negative action (not(Act)) then nei-
ther it nor the corresponding node will not appear in the DIS.

Let S stand for an IB; to revise S with some φ we create a
set of equivalence classes on S: {S1, S2, . . . , Sn} such that
S1 is meant to correspond to those elements of S that are
most important and Sn to those that are least important. Re-
visions involve either the addition or removal of (sub)actions
or constraints from or to an IB.

Definition 9 (Intention revision) Let I and I ′ be DISs in
predicate form and let Si be the set of induced equivalence
classes on I , i ≥ 1. The prioritized removal of elements of I
that conflict with ¬||I ′||, which we write as I • I ′, is (Nebel

1989):

I • I ′ = {Y ⊆ I | ||Y || 6` ¬||I ′||,
Y = ∪iYi, i ≥ 1

∀i ≥ 1 : (Yi ⊆ Si,

∀X : Yi ⊂ X ⊆ Si →

(

i−1⋃
j=1

Yj ∪X) ` ¬||I ′||)}

We can define the operation of intention revision by some I ′
that is inconsistent with I as:

I ? I ′ = ∩(Y ∈I•I′) ∪ I ′

This says that we start with I ′ and augment it with the maxi-
mal subset of S1 such that the result is consistent and where
consistency is determined via the translation to FOL. We
then repeat the process for each maximal subset of the next
equivalence class and stop when no additional elements of
S can be added without introducing an inconsistency.

Definition 10 (Priority classes) Next, we assume that the
root nodes of IB are totally ordered, producing the sequence:
[Id1, Id2, . . . , Idn]. There are 3n priority classes, with
1 ≤ i ≤ n and 1 ≤ j ≤ 3, written as Si,j(IB) and de-
fined as:

Si,1(IB) =

{îd(idj), âgt(idj , a), v̂ars(idj , v), âct(idj , act),

ŝub(idj , id), t̂ime(idj , t) | idj ∈ subs∗(idi, IB)}
Si,2(IB) =

{ ̂constr(idi, p) ∈ IB | id(idi) ∈ IB, p 6= eq(,)}
Si,3(IB) =

{ ̂constr(idi, eq(x, c)) ∈ IB | x ∈ vars(idi, IB),

C ∈ Ct}
where, for any p ∈ {id, agt, vars, . . . }, p̂ is an abbreviation
for any of p, pr, pt, or pc. For example, îd stands for any of
the predicates, id, idr, idt, or idc.

Si,1 contains the highest priority predicates that define the
structure of the plan tree: the node identifiers, the variables,
the actions, the times, and the methods. The maximum sub-
set of the elements of Si,1 that are consistent with the new
intention, I ′ (cf. Defn. 9), are included; then the next set,
Si,2, is considered. Si,2 contains all constraints other than
variable binding constraints. Again, a maximum consistent
subset is added to the maximal set obtained in the previous
step. The lowest priority set, Si,3, which contains variable
binding constraints, is considered in the same way. Finally,
note that if an act-type entry conflicts with the revising infor-
mation, as determined by the ||.|| translation into FOL, then it
will not be part of the revised IB. Thus, by Defn. 8, the cor-
responding sub-tree will be deleted from the canonical DIS,
and hence will not appear in the resulting translation.

When revising an intention base, IB, by some I ′ that is
inconsistent with IB, the highest priority is given to the root

node/DIS that includes I ′. In this way, the intention-revision
process would begin by attempting to include as much of
the DIS containing I ′ as possible. Then it would consider
the rest of the root nodes/DISs in the totally order list (cf.
Defn. 10). To capture this behavior, the identifier for the
root node/DIS that contains I ′ must appear first in the totally
ordered list of identifiers.

An extended example of revision
We consider seven steps, at times t1 < t2 < . . . < t7, of
adopting and revising intentions. At each time-step, ti, the
canonical form of the intention base is notated IS(ti).

Step 1: Agent a intends at time t1 to do a travel-
preparation action at some later time tp.
IS(t1) = {〈∅, T1, Int[〈{Tp}, Tp,

〈〈Id1, A, ∅, Tp,Θ1, {Tp > T1}, ∅〉〉〉]〉}
where: Θ1 = Prep@Agt(A)@Time(Tp).

The predicate form of this intention is:
IS(t1) = { idr(id1), agtr(id1, a), vart(id1, tp),

timec(id1, t1), timet(id1, tp), timer(id1, tp),

actr(id1, θ1), constrr(id1, gt(tp, t1)) }
where: θ1 = prep@agt(a)@time(tp)

and gt(tp, t1) is the metalanguage translation of Tp > T1.
The translation to FOL, relative to the real world, w0, is:
||IS(t1)||w0 = holds(int(Holds(exists({tp},

do(θ1@id(id1)) & gt(tp, t1), tp)), w0, t1)

Step 2: Agent a intends to prepare by getting a truck
and loading it. The truck, referred to by variable x, is a
common resource for the getting and loading actions; it is
placed in the parent plan tree node. The notation IS[t′/t]
indicates that all instances of t in IS are substituted by t′.4

IS(t2) = IS(t1)[t2/t1] ? {var(id1, x), id(id2), id(id3),

subr(id1, id2), agt(id2, a), time(id2, tp),

subr(id1, id3), agt(id3, a), time(id3, tl),

var(id3, tl), act(id2, θ2), act(id3, θ3),

constr(id2, truck(x)), constr(id3, gt(tl, tp))}
where: θ2 = get@agt(a)@obj(x)@time(tp)

and: θ3 = load@agt(a)@obj(x)@time(tl).

The result, in canonical form, is:
IS(t2) = {〈∅, T2, Int[〈{Tp}, Tp, 〈〈Id1, A, {X}, Tp,

Θ1, {Tp > T2}, {Id2, Id3}〉〉〉]〉,
〈〈Id2, A, ∅, Tp,Θ2, {Truck(X)}, ∅〉〉,
〈〈Id3, A, {Tl}, Tl,Θ3, {Tl > Tp}, ∅〉〉}

4In the extended paper the persistence of intentions is handled
by revising the old IB with the new one (Ginsberg and Smith 1988;
Winslett 1988; Ortiz 1999). Also, since no revision takes place
until step 4, for simplicity, the changes are just shown as unions.

where: Θ2 = Get@Agt(A)@Obj(X)@Time(Tp)

and: Θ3 = Load@Agt(A)@Obj(X)@Time(Tl).

The translation into FOL yields:

||IS(t2)||w0 = holds(int(Holds(exists({tp, x, tl},
do(θ1@id(id1)@method(θ2@id(id2))

@method(θ3@id(id3))) & truck(x)

& gt(tl, tp) & gt(tp, t2)), tp)), w0, t2)

Step 3: Agent A intends to get the truck by renting.
IS(t3) = IS(t2)[t3/t2] ? {id(id4), sub(id2, id4),

agt(id4, a), time(id4, tp), act(id4, θ4)}
where: θ4 = rent@agt(a)@obj(x)@time(tp).

In canonical form, the result is:

IS(t3) = {〈∅, T3, Int[〈{Tp}, Tp,
〈〈Id1, A, {X}, Tp,Θ1, {Tp > T3}, {Id2, Id3}〉〉〉]〉,
〈〈Id2, A, ∅, Tp,Θ2, T ruck(X)}, {Id4}〉〉,
〈〈Id3, A, {Tl}, Tl,Θ3, {Tl > Tp}, ∅〉〉,
〈〈Id4, A, ∅, Tp,Θ4, ∅, ∅〉〉}

where: Θ4 = Rent@Agt(A)@Obj(X)@Time(Tp).

The translation into FOL yields:

||IS(t3)||w0
= holds(int(Holds(exists({tp, x, tl}

do(θ1@id(id1)@method(θ2@id(id2)

@method(θ4@id(id4)))@method(θ3@id(id3)))

& truck(x) & gt(tl, tp) & gt(tp, t3)), tp)), w0, t3).

Step 4: The agent intends to rent a car, identified as
car39. The agent has decided to rent car39, which is a car,
not a truck. This conflicts with the existing plan to rent a
truck, but not with the plan to load whatever vehicle is rented
(i.e., X). We assume that the knowledge base contains, with
highest priority, the following rule (here, given in FOL; this
could also be written in DIS form):

holds(car(x) ≡ ¬truck(x), w, t) (4)

IS(t4) = IS(t3)[t4/t3]

? {constr(id4, eq(x, car39)), constr(id4, car(x))}
S1,1(IS(t3)) = {idr(id1), agtr(id1, a),

varr(id1, x), vart(id1, tp), actr(id1, θ1),

timec(id1, t4), timet(id1, tp), timer(id1, tp),

id(id2), subr(id1, id2), agt(id2, a), time(id2, tp),

id(id3), subr(id1, id3), agt(id3, a), time(id3, tl),

id(id4), sub(id2, id4), agt(id4, a), time(id4, tp),

act(id2, θ2), act(id3, θ3), act(id4, θ4), var(id3, tl)}
S1,2(IS(t3)) = {constrr(id1, gt(tp, t3)),

constr(id2, truck(x)), constr(id3, gt(tl, tp)},
S1,3(IS(t3)) = ∅

During the revision, all of S1,1 will go through. However,
constr(id2, truck(x)) (in S1,2) conflicts with the revision
and, thus, will not be included in IS(t4). To see this, we
translate to FOL, and then apply axiom (1) to produce:

holds(int(Holds(exists({tp, x, tl},

do(θ1@id(id1)

@method(θ2@id(id2)@method(θ4@id(id4)))

@method(θ3@id(id3)))

& truck(x) & car(x) & eq(x, car39)

& gt(tl, tp)>(tp, t4)), t4)), w0, t4)

Applying (1), converting ”&” to conjunction:

∀w.acci(w0, w, t4) ⊃
∃tp∃x∃tl.holds(do(θ1@id(id1)

@method(θ2@id(id2)@method(θ4@id(id4)))

@method(θ3@id(id3))), t2)), w, t4)

∧ holds(truck(x), w, t4) ∧ holds(car(x), w, t4)

∧ holds(eq(x, car39) & gt(tl, tp) & gt(tp, t4), w, t4)

If we eliminate the holds expressions by explicitly referring
to the accessibility relation, we can see that this is inconsis-
tent, given axiom (4). Hence, the largest subset of S1,2 that
can be included is:

{constr(id3, gt(tl, tp)), constr(id1, gt(tp, t3)}

The remaining priority classes do not conflict and we arrive
at:

IS(t4) = {〈∅, T4, Int[〈{Tp}, Tp, 〈〈Id1, A, {X}, Tp,
Θ1, {Tp > T4}, {Id2, Id3}〉〉〉]〉,

〈〈Id2, A, ∅, Tp,Θ2, ∅, {Id4}〉〉,
〈〈Id3, A, {Tl}, Tl,Θ3, {Tl > Tp}, ∅〉〉
〈〈Id4, A, ∅, Tp,Θ4, {X = Car39, Car(Car39)}, ∅〉〉}

In FOL:

||IS(t4)||w0
= holds(int(Holds(exists({tp, x, tl},

do(θ1@id(id1)@method(θ2@id(id2)@method(θ4))

@method(θ3@id(id3)))

& eq(x, car39) & car(x) & gt(tl, tp) & gt(tp, t4)),

tp)), w0, t4)

We also have the following entailments:

||IS(t4)||w0
|=

holds(int(Holds(do(rent@agt(a)@obj(car39)), tp)),

w0, t4)

∧ holds(int(Holds(do(load@agt(a)@obj(car39)), tl)),

w0, t4)

||IS(t4)||w0 6|= holds(int(Holds(do(load@agt(a)

@obj(car39)) & truck(car39), tl)), w0, t4)

Step 5: The agent decides not to rent.

IS(t5) = IS(t4)[t5/t4] ? {act(id4, not(rent))}

We have that S1,1(IS(t4)) = S1,1(IS(t3)); hence, by Ax-
iom (2), act(id4, rent@agt(a)@obj(x)@time(tp)) will not
survive the revision. Thus, since the act will not be present,
the constraints, X = Car39 and Car(X), will not be in-
cluded in the canonical or FOL forms:

IS(t5) = {〈∅, T5, Int[〈{Tp}, Tp,
〈〈Id1, A, {X}, Tp,Θ1, {Tp > T5}, {Id2, Id3}〉〉〉]〉,
〈〈Id2, A, ∅, Tp,Θ2, ∅, ∅〉〉,
〈〈Id3, A, {Tl}, Tl,Θ3, {Tl > Tp}, ∅〉〉}

||IS(t5)||w0
= holds(int(Holds(exists({tp, x, tl},

do(θ1@id(id1)

@method(θ2@id(id2))@method(θ3@id(id3)))

& gt(tl, tp) & gt(tp, t5)), tp)), w0, t5)

The resulting IB does not entail that the agent intends to
load any car. Again, DIS provides a fine-grained revision.

Steps 6 and 7: Agent a also had intended to lend a hand
truck to someone else (at some future time, th). After
the above steps, a decides to instead use the hand truck
for his own loading action. The above focused on “local”
changes to an IB (i.e., changes to an intention that could
have rippling effects to other parts of the intention). More
interesting is the automatic global change to other intentions
in an IB. This can lead to the automatic deletion of parts of
other existing intentions that conflict with the revision. We
make use of:

holds(int(Holds(do(α@β), t)), w, t′) ⊃
holds(int(Holds(do(α), t)), w, t′)

holds(int(Holds(do(α@with(z)), t)), w, t′) ≡
¬∃β.β 6= α

∧ holds(int(Holds(do(β@with(z)), t)), w, t′)

That is, one can’t use a tool for two different actions.
Consider now adding that agent a intends to help someone

with hand truck H42, followed by intending to load with
H42. We will assume that the second intention is held at a
higher priority than the first one.

〈∅, T6, Int[〈{Th}, Th, 〈〈Id6, A, {Th}, Th,
Help@Agt(a)@With(Z),

{Th > T6, Z = H42,HandTruck(Z)}, ∅〉〉〉]〉

If we now revise our intention base with the intention to
load Car39 with H42, modifying IS(t5) so that we have
“...Load@Agt(A)@Obj(X)@With(X)...” with Z = H42
as a constraint, then the constraint, constr(id6, eq(z, h42))
will be removed.

Summary of contributions and related work
As agents form plans, their intentions pass through stages
of elaboration; at inception, an intention will typically lack

sufficient specificity for execution. In this paper, we have
have put forward a theory of intention revision that supports
a fine-grained revision of the content of an intention. The
revision process makes use of three distinct levels of repre-
sentation. Canonical Dynamic Intention Structures (DISs)
are data structures that explicitly capture the structure of
an intention and, from the perspective of an agent designer,
can be conveniently visualized in terms of constituent el-
ements, such as resources, actions, constraints and sub-
actions. Canonical DISs are given a formal semantics via
a translation into first order logic which is also used for con-
sistency checking during the revision process. To support
the augmentation of a DIS with new information, some of
which may conflict with either the intention under revision
or other intentions in an intention base, we have provided a
translation into an equivalent flat representation called pred-
icate form which is more amenable to syntactically-based
revision approaches based on minimality criteria developed
within the belief revision community. Revisions can be ex-
pressed through reference to the context of a particular in-
tention together with a description of the new elements of
the intention. The revision operation minimally revises the
intention as well as the contents of any other intentions that
might also conflict with the revision.

Prior work in intention revision has made use of proposi-
tional languages to capture content. Much of the prior work
has focused on the interaction of intentions with other atti-
tudes such as belief as well as on when an intention should
be dropped not how the contents can be changed (van der
Hoek, Jamroga, and Wooldridge 2007). Such approaches
provide a less fine-grained framework for revision.

Our approach was motivated by work in DRSs from the
linguistics community. However, none of the prior work has
examined the revision of previously constructed Discourse
Representation Structures (DRSs) with new utterances (for
a good overview of Discourse Representation Theory (DRT)
see the work of Kamp (1993). Our semantics for DISs, how-
ever, is similar to one put forward for DRT (Kamp and Reyle
1993). Alternative proof-theoretic approaches are examined
by van Eijck (2005). Kamp (1990) explores the represen-
tation, but not the revision, of mental attitudes such as be-
lief. In that work, the semantics of modalities is dealt with
in a different manner: instead, ours builds on ideas involv-
ing the reification of possible worlds as first proposed by
Moore (Moore 1985). Segmented Discourse Representation
Structures (Lascarides and Asher 2007) have complex em-
beddings of “boxes”, or discourse structure elements. How-
ever, the focus there is on the handling of discourse relations
and not on the representation of actions or intentions.

References
Chellas, B. F. 1980. Modal Logic: An Introduction. Cam-
bridge University Press.
Gärdenfors, P., ed. 1992. Belief Revision. Cambridge Uni-
versity Press.
Ginsberg, M. L., and Smith, D. E. 1988. Reasoning about
action I: A possible worlds approach. Artificial Intelligence
35:165–195.
Ginsberg, M. L. 1986. Counterfactuals. Artificial Intelli-
gence 30:35–79.
Hunsberger, L., and Ortiz, C. 2008. Dynamic Inten-
tion Structures I: A theory of intention representation. Au-
tonomous Agents and Multiagent Systems 298–326.
Hunsberger, L. 1999. Making SharedPlans more concise
and easier to reason about. In Agent Architectures, Theories
and Languages V, volume 1555 of Lecture Notes in Artificial
Intelligence. Springer-Verlag. 81–98.
Kamp, H., and Reyle, U. 1993. From Discourse to logic: In-
troduction to modeltheoretic semantics of natural language,
formal logic, and discourse representation theory. Kluwer
Academic Publishers.
Kamp, H. 1990. Prolegomena to a Structural Account of
Belief and Other Attitudes. CSLI. 27–90.
Lascarides, A., and Asher, N. 2007. Segmented discourse
representation theory: Dynamic semantics with discourse
structure. Computing meaning 87–124.
McCarthy, J. 1988. Mathematical logic in artifical intelli-
gence. In Daedalus, volume (12,45). 297–311.
Moore, R. C. 1985. A formal theory of knowledge and ac-
tion. In Formal Theories of the Commonsense World. Ablex
Publishing Corporation.
Nebel, B. 1989. A knowledge level analysis of belief revi-
sion. In Proceedings of the First International Conference
on Principles of Knowledge Representation and Reasoning,
301–311.
Ortiz, C. L. 1999. Explanatory update theory: Applications
of counterfactual reasoning to causation. Artificial Intelli-
gence 108:125–178.
van der Hoek, W.; Jamroga, W.; and Wooldridge, M.
2007. Towards a theory of intention revision. Synthese
155(2):265–290.
van Eijck, J. 2005. Discourse representation theory.
Winslett, M. 1988. Reasoning about actions using a possi-
ble models approach. In Proceedings of the National Con-
ference on Artificial Intelligence, 89–93.

