
Narrative based Postdictive Reasoning for Cognitive Robotics

Manfred Eppe and Mehul Bhatt
University of Bremen

{meppe, bhatt}@informatik.uni-bremen.de

Abstract

Making sense of incomplete and conflicting narrative knowl-
edge in the presence of abnormalities, unobservable pro-
cesses, and other real world considerations is a challenge and
crucial requirement for cognitive robotics systems. An added
challenge, even when suitably specialised action languages
and reasoning systems exist, is practical integration and ap-
plication within large-scale robot control frameworks.

In the backdrop of an autonomous wheelchair robot con-
trol task, we report on application-driven work to realise
postdiction triggered abnormality detection and re-planning
for real-time robot control: (a). Narrative-based knowledge
about the environment is obtained via a larger smart envi-
ronment framework; and (b) Abnormalities are postdicted
from stable-models of an answer-set program corresponding
to the robot’s epistemic model. The overall reasoning is per-
formed in the context of an approximate epistemic action the-
ory based planner implemented via a translation to answer-set
programming.

Introduction

Researchers in the field of reasoning about action and
change have interpreted narratives in several ways, dif-
fering in the richness of their semantic characterisation
and ensuing formal properties (Miller and Shanahan 1994;
Pinto 1998),(Mueller 2007),(McCarthy and Costello 1998;
McCarthy 2000). For instance, within the context of for-
malisms such as the situation calculus and event calculus,
narratives are interpreted as “a sequence of events about
which we may have incomplete, conflicting or incorrect in-
formation” (Miller and Shanahan 1994; Pinto 1998). The
interpretation of narrative knowledge in this paper is based
on these characterisations, especially in regard to the repre-
sentation and reasoning tasks that accrue whilst modelling
the perceptually grounded, narrativised epistemic state of
an autonomous agent. In this paper, we are especially con-
cerned with large-scale cognitive robotics systems where
high-level symbolic planning and control constitutes one of
many AI sub-components guiding low-level control and at-
tention tasks (Suchan and Bhatt 2012).

Perceptual Narratives and Postdiction

Perceptual narratives correspond to declarative models of
visuo-spatial, auditory, haptic and other observations in the
real world that are obtained via artificial sensors and / or hu-
man input (Bhatt, Suchan, and Schultz 2013). From the for-
mal viewpoint of commonsense reasoning, computational
modelling and reasoning with perceptual narratives encom-
passes logics of space, actions, and change (Bhatt 2012).1

Declarative models of perceptual narratives can be used
for interpretation, plan generation, and control tasks in the
course of assistive technologies in everyday life and work
scenarios, e.g., in domains such as human activity recog-
nition, semantic model generation from video, ambient in-
telligence and smart environments (e.g., see narrative based
models in (Hajishirzi et al. 2012; Hajishirzi and Mueller
2011; Mueller 2007; Bhatt and Flanagan 2010; Dubba et
al. 2012; Bhatt, Suchan, and Schultz 2013)). The focus of
this paper is on particular inference patterns and an overall
control architecture for online / incremental reasoning with
narrative knowledge from the viewpoint of plan generation
and explanation. We are especially interested in completion
of narrative knowledge by inferring perceptual abnormali-
ties and causes of perceived changes in the agent’s world.
Explanation by postdictive reasoning within the framework
of perceptual narratives can be the basis of explaining phe-
nomena or properties perceived via sensory devices (Poole,
Goebel, and Aleliunas 1987; Miller and Shanahan 1994).
Given perceptual narratives available as sensory observa-
tions from the real execution of a system, the objective is
often to assimilate / explain them with respect to an under-
lying domain / process model and an approach to derive ex-
planations. The abductive explanation problem can be stated
as follows (Kakas, Kowalski, and Toni 1992): given the-
ory T , observations G, find an explanation4 such that: (a).
T
⋃
4 � G; and (b). T

⋃
4 is consistent. In other words,

the observation follows logically from the theory extended
given the explanation. Amongst other things, this can be
used to identify abnormalities in a narrative, which may in
turn affect subsequent planning and overall (agent) control
behaviour.

1This paper does not directly address spatial representation and
reasoning. Instead, the focus here is on action and change.

Narrative-based Incremental Robot Control

Our application of narrative-based incremental agent control
is based on plan monitoring, and combining it with a mech-
anism for explanatory reasoning: if a monitored world prop-
erty changed unexpectedly, then our system postdicts possi-
ble explanations that describe what may have happened that
caused this change. A common paradigm used in the plan-
ning community is strong planning, see e.g. (Bertoli et al.
2002). A strong plan guarantees that the goal is achieved,
no matter how the (partially unknown) world is. However,
this paradigm is not appropriate when considering abnor-
malities: it may always happen that a plan does not succeed
due to unexpected system failures. As such, we use an incre-
mental weak planning approach, and interleave the planning
with plan execution. A weak plan must not guarantee that
the goal will be achieved, it must only show possibilities to
achieve a goal. The overall system is implemented such that
as soon as one weak plan is found the system starts acting.
This weak plan is then extended (i.e. made “stonger”) during
plan-execution. Further, sensing results which are obtained
during plan-execution are integrated in an online manner,
and the search space is pruned accordingly during plan exe-
cution.
The narrative-driven explanation and control framework
of this paper is built on a planning formalism called h-
approximation (HPX) that is incomplete but sound wrt. the
possible-world semantics of knowledge (Eppe, Bhatt, and
Dylla 2013). For HPX a corresponding planning system
has been implemented via translation to an answer-set pro-
gram. The paper extends this planning system with new fea-
tures such that:

• it is capable of incremental online-planning, and
• it allows for abductive explanatory reasoning during plan

execution.

The paper presents an overview of the basic offline h-
approximation, and describes the extensions of the proposed
online version together with a detailed architecture of the
overall control approach.2 We also bring forth the applica-
tion guided motivations of our work by illustrating a real-
time control task involving an autonomous wheelchair robot
in a smart home environment. Finally, we present ongoing
work aimed at integrating and delivering our online planner
as a part of the experimental cognitive robotics framework
ExpCog (Suchan and Bhatt 2012).

Approximate Epistemic Planning as ASP
We choose HPX as the theoretical foundation for our
framework because it has native and elaboration tolerant
support for postdictive reasoning along with a low com-
putational complexity (the plan existence problem is in
NP). For alternative PWS based formalisms, plan existence
is ΣP

2 -complete, e.g. (Baral, Kreinovich, and Trejo 2000).

2The extended planning system uses the online ASP reasoner
oclingo (Gebser et al. 2011a) that dynamically adopts its knowl-
edge base according to sensing results.

To the best of our knowledge, no other implemented for-
malism supports postdiction in this complexity class. The
support for postdiction is crucial to realize abnormality-
and explanation-based error-tolerance in robotic systems: if
sensing reveals that the effect of an action is not as intended,
then postdiction can be used to abduce and explain the rea-
son for the failure. This is a partial solution to the qualifica-
tion problem: it is not possible to model all conditions un-
der which an action has the intended effect. In this work we
perform abnormality reasoning in an epistemic open-world
sense. That is, we do not further describe (and circumscribe)
abnormalities but rather use generic abnormality predicates
as qualifications (negative conditions) of actions.
HPX is formalized and implemented in ASP: a problem
specification is specified in PDDL-like syntax and is then
translated to an Answer-Set Program (Gelfond and Lifschitz
1988) via a set of translation rules. The stable models of the
generated Logic Program can be interpreted as conditional
plans. The fact thatHPX is implemented as ASP and not in
a procedural programming language like c++ makes it sim-
ple to extend the formalism and its semantics on a logical
level. For this paper, ASP solvers like oclingo (Gebser et al.
2011a) providing incremental and online problem solving-
capabilities are relevant. Online problem solving makes it
possible to dynamically add rules to a Logic Program. That
is, the solver is in running in a loop and constantly awaiting
new input via extra logical means. Whenever new rules are
received, the solver tries to find new stable models according
to the updated program.
Planning Problem Specification. A problem domain
is specified using a syntax similar to the planning domain
definition language (PDDL): (:init linit) represents
initial knowledge about a literal linit. (oneof loo1 . . . loon)
describes initial exclusive-or-knowledge. (:action a
:effect when (and lc1 . . . l

c
n) le) is called an effect

proposition (EP). It represents the conditional effect of an
action a, that if the condition literals lc1 . . . l

c
n hold, then the

effect le will also hold. (:action a :observe f) is a
knowledge proposition. It represents that an action a will
sense the value of a fluent f . (:action a :executable
(and lex1 . . . lexn)) is an executability condition. An action
is only executable if literals lex1 . . . lexn are known to hold.
Finally, (:goal weak lg) is used to state weak goals,
i.e. goals which are satisfied by a plan such that a desired
property lg is known to be achieved in at least one leaf of
the search tree. We do not consider strong goals (a goal that
must be known to hold in all leafs) because we consider an
open world where it is impossible to model all qualifications
of an action. Hence an action can always fail, and it is
impossible to predict that a goal is achieved in all leafs of a
transition tree.
Planning Problem Formalization. The h-approximation
for a planning problem P consists of two parts:
• Σhapx: a set or rules representing a foundational domain-

independent theory
• P T7−→ Σworld: the translation of a planning problem P

into a domain-specific theory Σworld using a set of trans-
lation rules T.

knows(!open(d1),0,0,0).t:0

br:0

occ(doOpen(d1),0,0).

occ(senseOpen(d1),1,0).

knows(!open(d1),0,1,0).t:1

br:0

sRes(!open(d1),1,7).

nextBr(1,0,7).uBr(2,7).

sRes(open(d1),1,0).

knows(!open(d1),0,2,0).

knows(open(d1),1,2,0).

knows(open(d1),2,2,0).

knows(!ab_doOpen(d1),0,2,0).

knows(!ab_doOpen(d1),1,2,0).

knows(!ab_doOpen(d1),2,2,0).

t:2

br:0

knows(!open(d1),0,2,7).

knows(!open(d1),1,2,7).

knows(!open(d1),2,2,7).

knows(ab_doOpen(d1),0,2,7).

knows(ab_doOpen(d1),1,2,7).

knows(ab_doOpen(d1),2,2,7).

t:2

br:0

Figure 1: Example transition tree forHPX

The resulting Logic Program, denoted by LP(P), is the con-
junction Σhapx ∪ Σworld.
The following are the main predicates used in the ASP for-
malization of theHPX :
• occ(a, t, b) denotes that action a occurs at step t in branch
b.

• apply(ep, t, b) denotes that an effect proposition ep is ap-
plied at step t in branch b.3

• sRes(l, t, b) denotes that the literal l is potentially sensed
at step t in branch b.

• knows(l, t, t′, b) states that at step t′ in branch b it is
known that l holds (or did hold) at step t (with t ≤ t′).
That is,HPXdoes not only consider knowledge about the
present state but also about the past.

• nextBr(t, b, b′) denotes that sensing happened at step t in
branch b, resulting in a child-branch b′.

• uBr(t, b) denotes that branch b is a valid branch at step t.
Actions can only be executed when a branch is valid.

• goal(l) denotes a (weak) goal for a literal l.

Example: Consider the following action specification:
(:action doOpen :parameters (?d - Door)

:effect when ¬ab_doOpen (open ?d))

This represents an action where a door will be open if
there is no abnormality. This specification is translated into
an ASP formalization via the translation rules (T6a-c) pre-
sented in (Eppe, Bhatt, and Dylla 2013). For instance, trans-
lation rule (T6a) generates:
knows(open(D), T + 1, T1, BR)←

apply(doOpen(D)0 ,T ,BR),

knows(¬ab doOpen(D),T ,T1 ,BR),T1 > T .

That is, if the 0-th EP of the action doOpen(D) is applied at
T, and at T1>T it is known that at T there is no abnormality
then at T1 it is known that after the action occurrence (at
T+1) the door is open. Similarly, translation rule (T6c) in
(Eppe, Bhatt, and Dylla 2013) generates:

knows(ab doOpen(D),T ,T1 ,BR)←
knows(¬open(D),T + 1 ,T1 ,BR),

apply(doOpen(D)0 ,T ,BR),T1 > T .

3In HPX , actions are partitioned in EP to simplify reasoning
with concurrency. Whenever occ(a, t, b) and ep is an effect propo-
sition of a, then apply(ep, t, b)

This reflects negative postdiction: If the open-action was ex-
ecuted at step T and at a step T1 the effect of the open-action
is known not to hold at T+1, then it is known that there must
have been an abnormality at T. A similar positive postdic-
tion rule is generated by (T6b) which produces knowledge
that there is no abnormality if it is known that the effect of
the action holds after execution but not before execution.
Consider a sensing action specification

(:action senseOpen :parameters (?d - Door)
:observe (open ?d))

This generates knowledge as follows (see Figure 1): Assume
the drive-action occurs in the initial node (t = 0, br = 0)
in the transition tree. senseOpen is applied after doOpen,
i.e. at step 1 in branch 0: i.e. occ(senseOpen(d1), 1 , 0).
Then the positive sensing result is associated with the
original branch 0: (sRes(open(d1), 1 , 0)). The nega-
tive result is associated with a child branch, e.g. 7:4
sRes(¬open(d1), 1 , 7). Further, nextBr(1 , 0 , 7) is gener-
ated to reflect that branch 7 is generated as a child of branch
0 at step 1. Finally, uBr(2 , 7) is indicates that branch 7 is
valid from step 2 on, and hence the planner may consider
actions to occurr in branch 7.

Narrativised Online Robot Control
The original h-approximation formalism and planning sys-
tem is designed for offline problem solving. That is, a con-
ditional plan is generated and the projected future world
states are checked for whether a predefined goal holds. In
this work, we extend h-approximation such that it is capa-
ble of online planning and abductive explanation. We also
define several measures to assess the quality of a plan (e.g.
robustness wrt. to unknown contingencies). A key feature of
the h-approximation is the support for postdiction; we use
postdiction to find explanations of why an action did or did
not succeed. We propose to model actions such that the non-
existence of an abnormality is a condition for the action to
succeed. After executing the action, sensing can be applied
to verify whether an action succeeded, and thus to postdict
whether there was an abnormality. Identified abnormalities
can then be used, for instance, in support of other kinds of
reasoning or control tasks.

I. An Extended Online h-approximation
The overall online h-approximation architecture is depicted
in Fig. 2: it consists of an online ASP solver and a controller,
which serves as interface to human input devices and the
robotic environment.
The complete LP to be solved is the conjunction of the LP
translation of the domain specificationD, the goal specifica-
tion G and an execution narrative N : LP (P) = LP (D) ∪
LP (G)∪LP (N). Here, the execution narrative contains in-
formation about which actions were actually executed and
which sensing results were actually obtained.

4The number of the child branch is randomly generated via a
choice rule.

Figure 2: System Architecture

Once a stable model SM(P) is found, it is sent to the con-
troller which interprets this as a conditional plan and starts
to execute it. It reports the execution narrativeN back to the
solver. The solver adopts the search space according to this
information and refines / expands the plan accordingly. The
updated stable models are thereupon sent to the controller
again which acts accordingly. The loop is repeated until the
goal is achieved or the problem becomes unsolvable.
Online Controller. We implement a controller which com-
municates new goals, sensing results and execution state-
ments to the solver. It is also responsible for the plan exe-
cution and the communication with actuators and sensors.
Once an action is executed, the planner has to commit to
this action, i.e. it must always consider the occurrence of this
action. This mechanism is implemented with the following
rule:

occ(A, t,B)←
exec(A, t ,B), a(A), uBr(t ,B).

(1)

where exec(a, t, b) represents that an action a is executed at
step t in branch b. The controller sends this information to
the solver when it starts to execute the action. Once an action
is initiated its execution will not be aborted.
The following choice rule generates plans.

{occ(A, t ,B) : a(A)} ←
uBr(t ,B),notGoal(t ,B),

not exec(A′, t ,B) : a(A′).

(2)

where notGoal(t, b) denotes that the goal is not yet
achieved in branch b at step t. This prunes the search space
because actions are only considered if the goal is not yet
achieved at that node. Finally, not exec(A′, t ,B) causes the
solver not to generate any actions at step t if another action
was already physically executed at that step.
Real-World sensing results are communicated from the con-
troller to the solver in terms of sensed atoms. These are in-
tegrated into the agent’s knowledge state by disabling the ef-
fect of projected sensing results which do not coincide with
the actual sensing:

sRes(F , t ,B)← occ(A, t ,B), hasKP(A,F),

not knows(¬F , t , t ,B),not sensed(¬F , t). (3)

sRes(¬F , t ,B ′)← occ(A, t ,B), hasKP(A,F),

not kw(F , t , t ,B),nextBr(t ,B ,B ′),not sensed(F , t). (4)

hasKP(a, f) denotes that an action a has a knowledge
proposition concerning a fluent f (i.e. it will sense f).

Whenever such an action occurs, the positive sensing result
is always projected to the original branch, while the negative
result is projected on a child branch given through nextBr .
Projected sensing results are only valid if they do not contra-
dict the actual sensing results (implemented by not sensed
statements).
Also, when receiving the actual sensing value, we have to
take care that nodes which were valid in the projected search
tree become invalid when the sensing contradicts the projec-
tions. The following rule implements that the original branch
(where the pos. fluent was projected) becomes invalid if the
sensing was negative (¬ F) and the child branch becomes
invalid if the sensing was positive:

brInvalid(t, B)← sensed(¬F, t),
occ(A, t, B), hasKP (A,F).

brInvalid(t, B′)← sensed(F, t),

occ(A, t, B), hasKP (A,F), nextBr(t, B,B′).

(5)

The information about invalid nodes is used for the genera-
tion of child branches. That is, a branch does not persist if it
is invalid (6a) and it is also not created if invalid (6b).

uBr(t + 1, B)← uBr(t, B), not brInvalid(t, B). (6a)

uBr(t + 1, B′)← nextBr(t, B,B′), not brInvalid(t, B′).
(6b)

Incremental Planning Horizon Extension In online ASP
solving, a single integer iterator (we use t) is incremented
continuously until a solution is found.6 This is sensible for
quickly finding a first solution for a planning problem, as
it guarantees that if a plan is found then it is minimal in
length. Also, this plan is usually found very quickly because
the search space is relatively small in the beginning.
However, as we perform weak planning, it may well be the
case that the first found plan does not lead to the goal in
practice. Therefore the planning-horizon is constantly incre-
mented while the robot is executing the plan. That is, the
plan is expanded to consider more contingencies while the
robot is already acting.
Exogenous Actions (EA) are actions that occur but which
the planning agent can not control. These actions can not be
planned for as it is the case for endogenous actions, i.e. ac-
tions which can be executed by the controller. In our frame-
work, we restrict exogenous actions in that they must have
disjoint effect literals. This is necessary to avoid unwanted
side-effects on knowledge which occur due to postdiction.
Apart from that, we generate the ASP formalisation of an
EA a as usual with HPX translation rules but flag it as ex-
ogenous by generating the fact ea(a). In the context of Smart

6Incremental problem solving is realized by splitting a LP
up into three parts: #base , #cumulative and #volatile . The
#base part is an ordinary Logic Program while #cumulative and
#volatilecontain the iterator which expands the problem horizon.
With each incrementation a new “slice” of the Logic Program is
grounded and added to the set of rules. Incrementation takes place
until a solution is found or up to a certain limit, depending on the
configuration of the solver.

ASP solver

 exec(doOpen(d1),0,0),
exec(monOpen(d1),1,0),sensed(!open(d1),1)

{…,knows(ab_doOpen(d1),0,1,0),

occ(doOpen(d2),2,1),

occ(monOpen(d2),3,1),

occ(doOpen(d3),4,1),

occ(monOpen(d3),5,1),

occ(drive(wc,d2,corridor1,

 office),6,1),

occ(drive(wc,d3,office,

 bedroom),7,1),

occ(getOnWc(paul,wc),8,1),

occ(doOpen(d4),9,1),

occ(monOpen(d4),10,1),

occ(bring(wc,d4,paul,

 bedroom,bathroom,11,1)}

exec(doOpen(d2),2,1),

exec(monOpen(d2),3,1),exec(doOpen(d3),4,1),
exec(monOpen(d3),5,1),exec(drive(wc,d2,

corridor1,office),6,1),sensed(!open(d3),6)

{…,

occ(doOpen(d1),0,0),

occ(monOpen(d1),1,0),

occ(drive(wc,d1,corridor1

 ,bedroom),2,0),

occ(getOnWc(paul,wc),3,0),

occ(doOpen(d4),4,0),

occ(monOpen(d4),5,0),

occ(bring(wc,d4,paul,

 bedroom,bathroom,6,0)}

Controller
goal(

 inRoom(paul,bedroom))

horizon: t=7 t=8 t=9
t=10 t=11 t=12 t=13

{…,

occ(exoClosed(d3),5,1),

occ(doOpen(d3),7,1),

occ(drive(wc,d3,office,

 bedroom),8,1),

occ(getOnWc(paul,wc),9,1),

occ(doOpen(d4),10,1),

occ(monOpen(d4),11,1),

occ(bring(wc,d4,paul,

 bedroom,bathroom,12,1)}

t=14
t=14

t=13

Figure 3: Communication between controller and ASP solver in Smart Home scenario5

Homes, the motivation behind to considering EA in planning
is that “external” human agents often intuitively know what
to do in a certain situation: For instance, if an autonomous
wheelchair approaches a person and if the person needs this
wheelchair, then it will “automatically” sit down on it. If hu-
man reaction is less automatic, then exogenous actions can
often still be triggered by sending appropriate messages to
human agents. For instance, one can model an exogenous
action to fix an abnormality: The controller will notify ex-
ternal maintenance personnel about an abnormality and this
should trigger fixing. Note that sensing is also allowed as
exogenous action.
Though exogenous actions may lead to solutions which
would not be found otherwise, the planner should first try to
find a plan that does not contain exogenous actions. Limiting
the number of exogenous actions is realized by the following
rules:

maxExo(N, t)← N = @mod(t,n). (7a)
numExo(N, t)← N = {occ(A, ,) : ea(A)}. (7b)
← maxExo(N, t), numExo(M, t),M > N. (7c)

Instead of defining an absolute limit, we make the number of
allowed exogenous actions dependent on the planning hori-
zon: @mod(t ,n)7 returns the modulo of t and a constant n
(1st rule), and determines the number of EA that may hap-
pen in a certain planning horizon. The second rule counts
the number of exogenous actions and the integrity constraint
(third rule) disables stable models where the number of ex-
ogenous actions is higher than allowed.8

Explanation Where a certain world property may change
unexpectedly, it is useful to monitor this property continu-
ously to make sure that the correct value of this property is
always known. For instance, we may open a door and then
send a robot through the door. However, we never know

7The clingo family of ASP solvers (Gebser et al. 2012) support
the definition of lua functions which can be used for simple auxil-
iary computation tasks.

8The integrity constraint appears in the #volatile part of the
program, the other two rules in the #cumulative part.

whether the door was accidentally closed by another (hu-
man) agent in the meanwhile.
In our framework, unexpected change of world properties
is modeled by explanation. We apply the usual inertia laws
and consider unexpected change with abductive explanatory
reasoning: If a world property changes unexpectedly, then
our framework adds the updated knowledge to the domain
model indirectly, by considering candidates for exogenous
actions that may have caused this change. We implement
this explanation mechanism as follows:

0{exoHappened(A, t ,BR)

: hasEP(A,EP) : hasEff (EP ,L) : ea(A)} ←
knows(L, t , t ,B), sensed(L, t + 1)

occ(A, t ,BR)← exoHappened(A, t ,BR).

(8)

If it is known that at step t a literal L holds, but it is sensed
that at t + 1 the complement, L holds, then an exogenous
action can have happened that has set L. Note that exoge-
nous actions are only used for explanation if there occurred
no endogenous action which may also have set the value of
concern: The h-approximation has the restriction that no two
actions with the same effect literal may happen concurrently.
Therefore, if an endogenous action with the respective effect
literal has been executed, an exogenous action with the same
effect literal will not be considered for explanation. Further,
explanation relies on the closed world assumption that all ac-
tions which can possibly occur are modeled in the domain,
and that all exogenous actions have disjoint effect literals.
Without these requirements it may happen that wrong beliefs
are produced: If there are multiple actions which could ex-
plain an unexpected sensing result, then not all explanations
will be true. If the explanation is wrong, and if the action
which is used in the explanation has a condition, then false
knowledge about these conditions could be postdicted. An
alternative to the closed-world assumption is to restrict ex-
ogenous actions to have only one effect literal and no condi-
tions. In that case, even though explanations about the occur-
rence of actions may be wrong they do not have side-effects
on knowledge.

Monitoring By monitoring we refer to continuous obser-
vation of a world property. As a methodological solution to
represent monitoring in the domain specification we suggest
to model pseudo-physical effects: If a sensor can monitor the
value of a fluent f , then we add the physical effect (mon f)
to the action specification. For example, the following rep-
resents monitoring the open-state of a door:

(:action monOpen
:parameters (?d - Door)
:effect (mon_open ?d)
:observe (open ?d))

Now, to model a “safe” drive-action where a door’s open
state is always known before passing it we add the precon-
dition that the open-state of a door is monitored:

(:action drive
:parameters (?robo - Robot ?door - Door

?from ?to - Room)
:precondition (and (mon_open ?d)
...

II. Assessing Plan Quality

So far we have considered “raw” weak plans. These plans
may still not be very appropriate in practice, e.g. because
they contain cycles, are unlikely to lead to the goal or involve
many exogenous events.
We use several optimization criteria to asses the quality of
plans. An optimal plan should i) contain few exogenous ac-
tions ii) achieve the goal for as many contingencies as pos-
sible and iii) it should be possible to define soft-constraints
or maintenance goals which must hold whenever possible.
Finally, iv) the number of actions should be minimal. (With
the priority of these criteria in the given order.)

Plan Strength The plan strength reflects for how many
contingencies, i.e. unknown world properties, the goal is
solved.

Definition 1 (Strength of a plan). Given a plan p and a plan-
ning problem P . Let nl(p,P) be the number of leafs of the search
tree and ng(p,P) the total number of leafs in which the goal is
achieved, then the strength s of p wrt. P is s(p,P) =

ng(p,P)

nl(p,P)

In the logic program, the strength for each level t of the con-
ditional plan is determined as follows:

leafs(L, t)← L = {uBr(t ,B)}.
goals(G , t)← G = {wGoal(t ,B) : uBr(t ,B)}.

strength(S , t)←
S = @div(G ∗ 100 ,L), goals(G , t), leafs(L, t).

(9)

where L is the number of leafs, G is the number of leafs in
which the goal is achieved and S is the plan strength. oclingo
does only support integer numbers, so G is multiplied by a
factor 100 and then divided by L. wGoal(t, b) denotes that
all weak goals are achieved in the respective node.

Maintenance Goals A maintenance goal is a soft-
constraint which should hold as often as possible. The more
nodes a search tree has where a maintenance goal is fulfilled,
the higher is its quality. We call the corresponding assess-
ment measure the m-value of a plan p wrt. a planning prob-
lem P:
Definition 2 (m-value of a plan). Given a plan p and a planning
problemP . Let nn(p,P) be the number of nodes of the search tree.
Let m1, . . . ,mn be maintenance goals. Then the m-value m of p

wrt. P is m(p,P) =
∑

mi
nmi

(p,P)

nn(p,P)
, where nmi is the number of

nodes in which a maintenance goal mi holds.

In terms of Logic Programming, the m-value wrt. a planning
horizon t is obtained as follows:

nodes(N , t)←N = uBr(T ,B) : s(T) : br(B).

mSum(M , t)←M = {knows(L, t , t ,B) :

uBr(t ,B) : mGoal(L)}.
mVal(V , t)←V = @div(M ∗ 100 ,N),

mSum(M , t),nodes(N , t).

(10)

where mGoal(l) atoms denote maintenance goals for a lit-
eral l.

Applying plan quality measures State-of-the-art ASP
solvers like clingo (Gebser et al. 2011b) offer optimization
statements to select an optimal stable model among the en-
tire answer set. For example, the following statements cause
an ASP solver to select one stable model with the minimal
number of exogenous actions, maximal strength, maximal
m-value and minimal number of actions (with descending
priority):

#minimize[numExo(A, t) = A@4]

#maximize[strength(S , t) = S@3]

#maximize[mVal(M , t) = M @2]

#minimize[act(A, t) = A@1]

(11)

Unfortunately there is currently no ASP solver available
which supports both incremental online problem solving
and optimization statements.9 As long as this is not imple-
mented, selecting the plan with the highest quality has to be
done by the controller, while the ASP solver can only per-
form the assessment of the plans. However, this is currently
not implemented in our prototype.

Case Study: Abnormality Aware
Wheelchair Robot

Our framework is integrated into a larger assistance system
in a Smart Home environment, namely the Bremen Ambi-
ent Assisted Living Lab (BAALL) (Krieg-Brückner et al.
2010). The environment has at its disposal many actua-
tors and sensors such as automatic doors, a smart TV, and
also an autonomous robotic wheelchair. A typical (simpli-
fied) use case in this environment is illustrated in Fig. 3:

9However, this is currently being worked on and a version of
oclingo which supports optimization will be released in near future
(Source: personal conversation with Torsten Schaub, University of
Potsdam).

Paul is in the bedroom and wants to get to the bathroom.
This goal is sent from the controller to the ASP solver, and
the planning starts. The solver finds the first plan with a
horizon of 7 steps. The plan is sent to he controller and
execution starts. Door d1 is opened and its open-state is
verified by monitoring its open-state. It turns out that the
door actually is not open and an abnormality is postdicted:
knows(ab doOpen(d1), 0 , 1 , 0). While these first actions
were executed, the solver already incremented the planning
horizon up to 10. However, to find an alternative this is not
sufficient: the route via the office requires 12 steps in total,
and accordingly the planning horizon must be at least 12
as well. This causes plan execution to be interrupted until
the horizon is expanded. When the new plan is found, ex-
ecution continues: Doors d2 and d3 are opened, and their
open-states are monitored. However, while the wheelchair is
driving through d2, Mary accidentally closes d3. This is im-
mediately reported to the solver: sensed(¬open(d3), 6). It
interrupts horizon extension to 14, and instead finds an ex-
planation for the closed door – occ(exoClosed(d3), 5 , 1) –
with a horizon of 13. It adopts the plan to the new situation,
which considers that d3 has to be opened again. Thereafter
the rest of the plan can be executed.

Related Work

The present work copes with planning, dynamic plan re-
pair, abductive explanation and postdiction under incom-
plete knowledge and sensing actions. Therefore we are in-
terested in other frameworks which have similar features.
There are many action-theoretic frameworks and implemen-
tations such as the Event Calculus Planner by Shanahan
(2000), but these often assume complete knowledge about
the world and have no semantics that cover sensing actions.
We are interested in formalizations and implementations that
cover incomplete knowledge, as found in the literature from
the contingent planning community (e.g. CFF (Hoffmann
and Brafman 2005) or MBP (Bertoli et al. 2001)). How-
ever these PDDL-based approaches are usually designed for
offline-usage and hence not suitable for control tasks as il-
lustrated in our case study. In addition, these approaches are
usually based on some form of a PWS formalization and
hence have a higher complexity than HPX (e.g. the plan-
existence problem forAk withPWS-semantics is ΣP

2 com-
plete).
PROSOCS (Bracciali et al. 2006) is a rich multi-agent
framework which supports online reasoning. The agents are
built according to the KGP model of agency (Kakas et al.
2004). The authors use an specialized form of the Event Cal-
culus (Kowalski and Sergot 1986) as reasoning formalism.
PROSOCS supports planning, reactive behavior, goal revi-
sion, plan revision and many more features. Active sensing
actions can be specified, but the framework does not support
postdiction as part of a contingent planning process: It is not
possible to plan for the observation of the effect of an action
and then to reason (within the planning) about the condition
under which the effect holds. Instead, the framework focuses
more on multi-agent aspects.

ExpCog – An Experimental Cognitive Robotics Framework
ExpCog is aimed at integrating logic-based and cognitively-driven agent-control
approaches, qualitative models of space and the ability to apply these in the form
of planning, explanation and simulation in a wide-range of robotic-control plat-
forms and simulation environments. In addition to its primary experimental func-
tion, ExpCog is also geared toward educational purposes. ExpCog provides an easy
to use toolkit to integrate qualitative spatial knowledge with formalisms to reason
about actions, events, and their effects in order to perform planning and explana-
tion tasks with arbitrary robot platforms and simulators. As demonstrators, support
has been included for systems including ROS, Gazebo, iCub. The core integrated
agent-control approaches include logic-based approaches like Situation Calculus,
Fluent Calculus, or STRIPS, as well as cognitively-driven approaches like Belief-
Desire-Intention. Furthermore, additional robot platforms and control approaches
may be seamlessly integrated. ExpCog. (Suchan and Bhatt 2012)
Listing 1 http://tinyurl.com/expcog

MAPSIM (Brenner and Nebel 2009) is a continual planning
framework based on the planning language MAPL. MAPL
is similar to PDDL, but relies on a multi-valued logic. In
MAPL, the not-knowing of the value of a certain fluent is
modeled with a special unknown value. It is not possible
to model conditional effects in MAPL, and hence postdic-
tion is not possible. IndiGolog is a high-level programming
language by De Giacomo and Levesque (1998) which has a
search-operator that can also be used to perform planning.
IndiGolog is capable of planning with incomplete knowl-
edge via a generalized search operator (Sardina et al. 2004).
However, postdiction and other inference mechanisms have
to be implemented by hand, and are thus not elaboration tol-
erant (McCarthy 1998).

Conclusion and Outlook
We have formalized and implemented an online-planning
framework and demonstrated its application in a Smart
Home environment. Error-tolerance is achieved by postdict-
ing abnormalities. This requires a formalism like HPX ,
which supports sensing along with postdiction.
On the application side, work is presently in progress to in-
tegrate the online h-approximation of this paper within the
general experimental cognitive robotics framework ExpCog
(Listing 1; (Suchan and Bhatt 2012)). This integration will
make is possible for us to release the online planner in a
manner such that it may be seamlessly applied for a wide-
range for robot control tasks and existing platforms such
as ROS (http://www.ros.org). On the theoretical side
we are currently investigating domain-independent heuris-
tics and their formalization in terms of ASP to improve the
overall performance of the planner: A huge body of research
about heuristics in planning can be found in PDDL-planning
related literature, but these heuristics are usually formalized
and implemented in procedural formalisms. Transferring
these ideas to declarative formalisms such as ASP presents
many challenges.

References
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Compu-
tational complexity of planning and approximate planning
in the presence of incompleteness. Artificial Intelligence
122(1-2):241–267.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP : a Model Based Planner. In IJ-
CAI Proceedings.
Bertoli, P.; Cimatti, A.; Lago, U. D.; and Pistore, M. 2002.
Extending PDDL to nondeterminism, limited sensing and it-
erative conditional plans. In ICAPS Workshop on PDDL.
Bhatt, M., and Flanagan, G. 2010. Spatio-temporal ab-
duction for scenario and narrative completion. In Bhatt,
M.; Guesgen, H.; and Hazarika, S., eds., Proceedings of the
International Workshop on Spatio-Temporal Dynamics, co-
located with ECAI-10, 31–36. ECAI Workshop Proceed-
ings.
Bhatt, M.; Suchan, J.; and Schultz, C. 2013. Cognitive Inter-
pretation of Everyday Activities — Toward Perceptual Nar-
rative Based Visuo-Spatial Scene Interpretation. In Compu-
tational Models of Narrative (CMN 2013), CMN. OASIcs –
Open Access Series in Informatics. (to appear).
Bhatt, M. 2012. Reasoning about space, actions and change:
A paradigm for applications of spatial reasoning. In Qual-
itative Spatial Representation and Reasoning: Trends and
Future Directions. IGI Global, USA.
Bracciali, A.; Demetriou, N.; Endriss, U.; Kakas, A.; Lu,
W.; and Stathis, K. 2006. Crafting the Mind of PROSOCS
Agents. Applied Artificial Intelligence.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
De Giacomo, G., and Levesque, H. J. 1998. An incremental
interpreter for high-level programs with sensing. Techni-
cal report, Department of Computer Science, University of
Toronto.
Dubba, K.; Bhatt, M.; Dylla, F.; Hogg, D.; and Cohn, A.
2012. Interleaved inductive-abductive reasoning for learn-
ing complex event models. In Muggleton, S.; Tamaddoni-
Nezhad, A.; and Lisi, F., eds., Inductive Logic Program-
ming, volume 7207 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg. 113–129.
Eppe, M.; Bhatt, M.; and Dylla, F. 2013. h-approximation:
History-Based Approximation to Possible World Semantics
as ASP. Technical report, arXiv:1304.4925v1.
Gebser, M.; Grote, T.; Kaminski, R.; and Schaub, T. 2011a.
Reactive Answer Set Programming. In Proceedings of LP-
NMR.
Gebser, M.; Kaminski, R.; König, A.; and Schaub, T. 2011b.
Advances in gringo series 3. In Proceedings of the Eleventh
International Conference on Logic Programming and Non-
monotonic Reasoning, number X.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan and Clay-
pool.

Gelfond, M., and Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. In Proceedings of the
International Conference on Logic Programming (ICLP).
Hajishirzi, H., and Mueller, E. T. 2011. Symbolic proba-
bilistic reasoning for narratives. In AAAI Spring Symposium:
Logical Formalizations of Commonsense Reasoning. AAAI.
Hajishirzi, H.; Hockenmaier, J.; Mueller, E. T.; and Amir, E.
2012. Reasoning about robocup soccer narratives. CoRR
abs/1202.3728.
Hoffmann, J., and Brafman, R. I. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS Proceedings, volume 2005.
Kakas, A.; Mancarella, P.; Sadri, F.; and Stathis, K. 2004.
The KGP model of agency. In ECAI Proceedings.
Kakas, A.; Kowalski, R.; and Toni, F. 1992. Abductive logic
programming. Journal of logic and computation 2(6):719.
Kowalski, R., and Sergot, M. 1986. A Logic-based calculus
of events. New generation computing 4:67–94.
Krieg-Brückner, B.; Röfer, T.; Shi, H.; and Gersdorf, B.
2010. Mobility Assistance in the Bremen Ambient Assisted
Living Lab. GeroPsych: The Journal of Gerontopsychology
and Geriatric Psychiatry 23(2):121–130.
McCarthy, J., and Costello, T. 1998. Combining narratives.
In KR, 48–59.
McCarthy, J. 1998. Elaboration tolerance. In Commonsense
Reasoning.
McCarthy, J. 2000. Logic-based artificial intelligence. Nor-
well, MA, USA: Kluwer Academic Publishers. chapter Con-
cept of logical AI, 37–56.
Miller, R., and Shanahan, M. 1994. Narratives in the situa-
tion calculus. J. Log. Comput. 4(5):513–530.
Mueller, E. T. 2007. Modelling space and time in narratives
about restaurants. LLC 22(1):67–84.
Pinto, J. 1998. Occurrences and narratives as constraints
in the branching structure of the situation calculus. J. Log.
Comput. 8(6):777–808.
Poole, D.; Goebel, R.; and Aleliunas, R. 1987. Theorist: A
logical reasoning system for defaults and diagnosis. In Cer-
cone, N., and McCalla, G., eds., The Knowledge Frontier.
Springer. 331–352.
Sardina, S.; Giacomo, G. D.; Lespérance, Y.; and Levesque,
H. J. 2004. On the semantics of deliberation in IndiGolog
from theory to implementation. Annals of Mathematics and
Artificial Intelligence 259–299.
Shanahan, M. 2000. An abductive event calculus planner.
The Journal of Logic Programming 207–240.
Suchan, J., and Bhatt, M. 2012. The ExpCog Frame-
work: High-Level Spatial Control and Planning for Cogni-
tive Robotics. In Bridges between the Methodological and
Practical Work of the Robotics and Cognitive Systems Com-
munities - From Sensors to Concepts. Intelligent Systems
Reference Library, Springer. (in press).

