
Stability in a Commonsense Ontology of States

Haythem O. Ismail
Department of Engineering Mathematics, Cairo University,

and Department of Computer Science, German University in Cairo
Cairo, Egypt

Abstract

Despite their mostly-unchallenged acceptance in a reasoning
agent’s ontology, states, as opposed to events, have raised
some interesting questions over the years, particularly re-
garding the representation of their temporal incidence and
the striking similarity they have to propositions. I present
a family of languages, LogAS, for reasoning about states.
A LogAS language is algebraic in the sense that it does not
contain sentences, only terms, some of which denoting states.
In this paper, I study one particular aspect of the state ontol-
ogy, namely temporal stability, classifying states according
to their pattern of persistence over time. I identify four major
intuitive stability classes which partition the domain of states
and prove closure properties for each class under the various
Boolean operators. One of these classes, the class of atempo-
ral states, corresponds one-to-one to the set of propositions,
thus providing a unified treatment of propositions and states.

Introduction
In discussions of aspectual phenomena, “states” stand as one
prominent kind of entity of which temporal incidence is at-
tributable (Vendler 1957; Herweg 1991; Smith 1999). As
opposed to “events”, states do not wholly “occur”, but ho-
mogeneously “hold” over time. States appear in different
guises and under different names in the artificial intelligence
and related literature. They are the “states of affairs” of
metaphysics (Textor 2012), the “partial states” of (Bennett
and Galton 2004), the “properties” of (Allen 1984), and the
fluents of the situation calculus (McCarthy and Hayes 1969)
and some variants of the event calculus (Shanahan 1999). I
have argued elsewhere (Ismail 2008) for the primitiveness
of states in the commonsense ontology of an acting agent,
being the sole objects of experience from which all of an
agent’s beliefs are constructed through inference. As such, a
thorough investigation of states is at least insightful.

But states are not unanimously accepted as inhabitants of
the temporal ontology. As indicated, they do appear as flu-
ents in the situation calculus, and as properties in Allen’s
ontology (Allen 1984), for example. But these are all first-
order theories. In tense logics (Prior 1967), for instance,
we do not see any notion of states, only propositions which
may be true in the present, the past, or the future. It is
not clear whether first-order theories which endorse states
do that out of conviction or as a side-effect of their attempt

to secure the convenience of having state-denoting terms in
the logical language, which facilitates tersely axiomatizing
temporal properties. In particular, in first-order theories with
state-denoting terms, there is always a sense of redundancy
when the entire syntax for sentence formation is duplicated
to form the set of state terms. (See (Shoham 1987) who
criticizes (Allen 1984) particularly for this point.) The mys-
terious syntactic division between state terms and sentences,
and the corresponding semantic division between states and
propositions, is unsettling since it is (i) theoretically suspi-
cious, and (ii) both syntactically and ontologically uneco-
nomical.

In this paper, I present LogAS, a family of algebraic log-
ics of states. LogAS is algebraic in the sense that it only con-
tains terms, algebraically constructed from function sym-
bols. No sentences are included in a LogAS language. In-
stead, there are terms of a distinguished syntactic type that
are taken to denote states; some of these terms may, for
convenience, be regarded as sentences. LogAS is a vari-
ant of LogAB (Ismail 2012), which is, again, an algebraic
language for reasoning about propositions and propositional
attitudes. The main difference between LogAB and LogAS
is that whereas the ontology of the former includes propo-
sitions, taken at face value, the ontology of the latter trades
propositions for states.

In the LogAS ontology, states are structured in a Boolean
algebra. This gives us, almost for free, state-counterparts to
propositional truth conditions and standard notions of con-
sequence and validity. Here, I investigate one particular as-
pect of the state ontology, namely temporal stability, clas-
sifying states according to their pattern of persistence over
time. Four major classes are identified, disjointness between
four of the classes, and closure properties of each class under
the Boolean operators are proved. As it turns out, the class of
atemporal states corresponds one-to-one to the set of propo-
sitions. Thus, through its state-based syntax and semantics,
LogAS provides a unified, non-redundant treatment of states
and propositions.

LogAS Languages
LogAS is a class of many-sorted languages that share a com-
mon core of logical symbols and differ in a signature of non-
logical symbols. In what follows, we identify a sort σ with
the set of symbols of sort σ. A LogAS language is a set

of terms partitioned into three base syntactic types, σS , σT ,
and σI . Intuitively, σS is the set of terms denoting states, σT
is the set of terms denoting time points, and σI is the set of
terms denoting anything else.

Syntax
As is customary in type-theoretical treatments, an alphabet
of LogAS is made up of a set of syncategorematic punctua-
tion symbols and a set of denoting symbols each from a set
σ of syntactic types. The set σ is the smallest set contain-
ing all of the following types: σS , σT , σI , and ς1 −→ ς2,
for ς1 ∈ {σS , σT , σI} and ς2 ∈ σ. Intuitively, ς1 −→ ς2
is the syntactic type of function symbols that take a single
argument of type σS , σT , or σI and produce a functional
term of type ς2. Given the restriction of the first argument
of function symbols to base types, LogAS is, in a sense, a
first-order language.

A LogAS alphabet is a union of four disjoint sets: Ω∪Ξ∪
Σ ∪ Λ. The set Ω, the signature of the language, is a non-
empty set of constant and function symbols. Each symbol
in the signature has a designated syntactic type from σ. Ω is
what distinguishes one LogAS language from another. The
set Ξ = {xi, ti, si}i∈N is a countably infinite set of vari-
ables, where xi ∈ σI , ti ∈ σT , and si ∈ σS . Σ is a set
of syncategorematic symbols, including the comma, various
matching pairs of brackets and parentheses, and the symbol
∀. The set Λ is the set of logical symbols of LogAS, defined
as the union of the following sets.

1. ¬ ∈ σS −→ σS

2. {∧,∨} ⊆ σS −→ σS −→ σS

3. HoldsAt ∈ σS −→ σT −→ σS

4. ≺∈ σT −→ σT −→ σS

A LogAS language with signature Ω is denoted by LΩ. It
is the smallest set of terms formed according to the following
rules, where τ and τi (i ∈ N) are terms in LΩ.

• Ξ ⊂ LΩ

• c ∈ LΩ, where c ∈ Ω is a constant symbol.

• f(τ1, . . . , τn) ∈ LΩ, where f ∈ Ω is of type ς1 −→
. . . −→ ςn −→ ς (n > 0) and τi is of type ςi.

• ¬τ ∈ LΩ, where τ ∈ σS .

• (τ1 ⊗ τ2) ∈ LΩ, where ⊗ ∈ {∧,∨} and τ1, τ2 ∈ σS .

• ∀x(τ) ∈ LΩ, where x ∈ Ξ and τ ∈ σS .

• HoldsAT(τ1, τ2) ∈ LΩ, where τ1 ∈ σS and τ2 ∈ σT .

• (τ1 ≺ τ2) ∈ LΩ, where τ1, τ1 ∈ σT .

As usual, terms involving ⇒, ⇔, and ∃ may be introduced
as abbreviations in the standard way.

Semantics
The basic ingredient of the LogAS semantic apparatus is the
notion of a LogAS structure.

Definition 1 A LogAS structure is a quadruple S =
⟨D,A, h, <⟩, where

• D, the domain of discourse, is a set with two disjoint, non-
empty, countable subsets S and T .

• A = ⟨S,+, ·,−,⊥,⊤⟩ is a complete (closed under ar-
bitrary products and sums), non-degenerate (⊤ ̸= ⊥)
Boolean algebra.

• h : S × T −→ S satisfies the following properties, for
every Ŝ ⊆ S, s ∈ S and t, t1, t2 ∈ T :
1. h(−s, t) = −h(s, t).

2. h(
∏
s∈Ŝ

s, t) =
∏
s∈Ŝ

h(s, t).

3. h(h(s, t1), t2) = h(s, t1).

4. If
∏
t∈T

h(s, t) = ⊤, then s = ⊤.

• <: T × T −→ S defines an irreflexive linear order on T
which is serial in both directions; that is,< is constrained
as follows, for every distinct t1, t2, t3 ∈ T :
1. t1 < t2 = −(t2 < t1).
2. [(t1 < t2) · (t2 < t3)] + t1 < t3 = t1 < t3.
3. t1 < t1 = ⊥.
4.

∑
t∈T

t1 < t =
∑
t∈T

t < t1 = ⊤.

• For t1, t2, t3 ∈ T , h(t1 < t2, t3) = t1 < t2.

Intuitively, the domain D is partitioned by a set of states
S, structured as a Boolean algebra, a set of linearly-ordered
time points T , and a set of individuals S ∪ T . The function
h maps a state s and a time point t to the state of s’s hold-
ing at t. The first two properties of h indicate that it com-
mutes with the Boolean operators. (cf. (Allen 1984).) The
third property secures the intuition that the state h(s, t) of s’s
holding at t preserves its identity under further applications
of h. (More on this below.) The final property of h requires
that the only state which necessarily holds at all times is ⊤.
The following observations complete the characterization of
h.

Observation 1 h(
∑

s∈Ŝ , t) =
∑

s∈Ŝ h(s2, t).

Observation 2 If
∑

t∈T h(s, t) = ⊥, then s = ⊥.

The three parts of D stand in correspondence to the syn-
tactic sorts of LogAS. In what follows, we let DσS

= S,
DσT = T , and DσI = S ∪ T .

Definition 2 A valuation V of a LogAS language LΩ is a
triple ⟨S,VΩ,VΞ⟩, where
• S = ⟨D,A, h, <⟩ is a LogAS structure;
• VΩ is a function that assigns to each constant of sort ς

in Ω an element of Dς , and to each function symbol f ∈
Ω of sort ς1 −→ . . . −→ ςn −→ ς an n-adic function

VΩ(f) :
n

×
i=1

Dςi −→ Dς ; and

• VΞ : Ξ −→ D is a function (a variable assignment),
where for every x ∈ Ξ, if x ∈ ς then vΞ(x) ∈ Dς .

In what follows, for a valuation V = ⟨S,VΩ,VΞ⟩ with
x ∈ Ξ of sort ς and a ∈ Dς , V[a/x] = ⟨S,VΩ,VΞ[a/x]⟩,
where VΞ[a/x](x) = a, and VΞ[a/x](y) = VΞ(y) for every
y ̸= x.

Definition 3 Let LΩ be a LogAS language and let V be a
valuation ofLΩ. An interpretation of the terms ofLΩ is given
by a function [[·]]V :
• [[x]]V = VΞ(x), for x ∈ Ξ

• [[c]]V = VΩ(c), for a constant c ∈ Ω

• [[f(τ1, . . . , τn)]]
V = VΩ(f)([[τ1]]

V , . . . , [[τn]]
V), for an n-

adic (n ≥ 1) function symbol f ∈ Ω

• [[(τ1 ∧ τ2)]]V = [[τ1]]
V · [[τ2]]V

• [[(τ1 ∨ τ2)]]V = [[τ1]]
V + [[τ2]]

V

• [[¬τ]]V = −[[τ]]V

• [[∀x(τ)]]V =
∏

a∈Dς
[[τ]]V[a/x], where x is of sort ς

• [[HoldsAT(τ1, τ2)]]
V = h([[τ1]]

V , [[τ2]]
V)

• [[(τ1 ≺ τ2)]]
V = [[τ1]]

V < [[τ2]]
V

In LogAS, logical consequence is defined in pure alge-
braic terms without alluding to the notion of truth, or to the
holding of states. This is achieved using the natural par-
tial order ≤ associated with A (Burris and Sankappanavar
1982), where, for s1, s2 ∈ S , s1 ≤ s2 =def s1 · s2 = s1.
(Alternatively, s1 ≤ s2 =def s1 + s2 = s2.)

Definition 4 Let LΩ be a LogAS language. For every ϕ ∈
σS and Γ ⊆ σS , ϕ is a logical consequence of Γ, denoted
Γ |= ϕ, if, for every LΩ valuation V ,

∏
γ∈Γ

[[γ]]V ≤ [[ϕ]]V .

Intuitively, ϕ is a logical consequence of Γ if ϕ is already
part of Γ, so that their conjunction is nothing more than Γ
itself. This implies that, should Γ holds, ϕ necessarily does;
but it is not defined as such. By the above definition, and the
algebraic properties of S, we can easily verify the validity
of the following typical examples of logical consequence:

{ϕ ∧ ψ} |= ϕ, {ϕ} |= ϕ ∨ ψ, {ϕ⇒ ψ, ϕ} |= ψ, {⊥} |= ϕ

In (Ismail 2012), it is shown that |= has the distinctive prop-
erties of classical Tarskian logical consequence and that it
satisfies a counterpart of the deduction theorem.

Stability
One dimension along which to classify states, is that of tem-
poral stability. Temporal stability refers to the tendency, or
lack thereof, of a state to change from holding to not hold-
ing, and the general patterns of such changes. The most sta-
ble states are what I call eternal states.

Eternal states do not start or cease; they either always hold
or never hold (cf. Quine’s eternal sentences (Quine 1960).)
Examples of eternal states include whales’ being fish (yes,
fish), God’s existence, and the state of the date of John’s
graduation being June 1st, 2001.

Definition 5 s ∈ S is eternal if
∑
t∈T

h(s, t) ≤
∏
t∈T

h(s, t).

It follows from the above definition that, if s is eternal,
h(s, t1) = h(s, t2), for any t1, t2 ∈ T . Thus, the notion
of an eternal state’s holding at a particular time is rendered
meaningless, or redundant; an eternal state simply holds (or
not), period. Hence, it is not clear what exactly distinguishes
an eternal state s from a state h(s, t). In the final analysis, it

might turn out that, in general, such states are distinct; how-
ever, we are lead to identify the following important subset.

Definition 6 s ∈ S is atemporal if h(s, t) = s, for every
t ∈ T .

In what follows, let ETER and ATEMP denote the set of
eternal states and the set of atemporal states, respectively.

Corollary 1 Range(h) ∪Range(<) ⊆ ATEMP ⊆ ETER.

Theorem 1
1. ⊥ ∈ ETER(ATEMP).
2. ⊤ ∈ ETER(ATEMP).
3. If s ∈ ETER(ATEMP), then −s ∈ ETER(ATEMP).

4. If Ŝ ⊆ ETER(ATEMP), then {
∑

s∈Ŝ s,
∏

s∈Ŝ s} ⊆
ETER(ATEMP).

Proof. We present the proof for the case of ETER.

1. Follows from Definition 1 and Corollary 1.

2. Follows from Observation 1 and Corollary 1.

3. Let s ∈ ETER. Now,∑
t∈T

h(−s, t) =
∑
t∈T

−h(s, t) = −
∏
t∈T

h(s, t)

≤ −
∑
t∈T

h(s, t)=
∏
t∈T

−h(s, t) =
∏
t∈T

h(−s, t)

Hence, −s ∈ ETER.

4. Let Ŝ ⊆ ETER. Hence,∑
t∈T

h(
∑
s∈Ŝ

s, t) =
∑
t∈T

∑
s∈Ŝ

h(s, t) =
∑
s∈Ŝ

∑
t∈T

h(s, t)

≤
∑
s∈Ŝ

∏
t∈T

h(s, t) ≤
∑
s∈Ŝ

∏
t∈T

h(
∑
ŝ∈Ŝ

ŝ, t)

=
∏
t∈T

h(
∑
ŝ∈Ŝ

ŝ, t) =
∏
t∈T

h(
∑
s∈Ŝ

s, t)

Thus,
∑
s∈Ŝ

s ∈ ETER. Moreover,
∏
s∈Ŝ

s ∈ ETER:

∑
t∈T

h(
∏
s∈Ŝ

s, t) =
∑
t∈T

∏
s∈Ŝ

h(s, t) ≤
∏
s∈Ŝ

∑
t∈T

h(s, t)

≤
∏
s∈Ŝ

∏
t∈T

h(s, t) =
∏
t∈T

∏
s∈Ŝ

h(s, t) =
∏
t∈T

h(
∏
s∈Ŝ

s, t)

�
Thus, both ETER and ATEMP are closed under the

Boolean operations.

Corollary 2 ⟨ETER(ATEMP),+, ·,−,⊥,⊤⟩ is a subalge-
bra of ⟨S,+, ·,−,⊥,⊤⟩.

The class of permanent states shares some of the stability
of ETER. Unlike eternal states, permanent states may start to
hold; once a permanent state starts to hold, however, it never
ceases. The prototypical example of a permanent state is
the perfect state of an event having occurred (Galton 1984).
Other examples may include the state of Fermat’s being dead
or the state of my holding a Ph.D.

Definition 7 A state s ∈ S is permanent if

1. s ̸= ⊥,
2.

∏
t∈T h(s, t) = ⊥, and

3. for every t1, t2 ∈ T , [h(s, t1) · (t1 < t2)] ≤ h(s, t2).

In the sequel, PERM denotes the set of permanent states.

Theorem 2 PERM ∩ ETER = ∅.

Proof. Suppose not. Then, there is some s ∈ PERM∩ETER.
Since s ∈ ETER, then

∑
t∈T h(s, t) ≤

∏
t∈T h(s, t). But

since s ∈ PERM, then
∑

t∈T h(s, t) ≤
∏

t∈T h(s, t) = ⊥.
Thus,

∑
t∈T h(s, t) = ⊥. By Observation 2, it follows that

s = ⊥, which is impossible since ⊥ /∈ PERM. �
Observation 3 For every s ∈ PERM and t1, t2 ∈ T ,
[h(−s, t1) · (t2 < t1)] ≤ h(−s, t2).
Theorem 3 If s ∈ PERM, then −s /∈ PERM.

Proof. Assume that −s, s ∈ PERM. Thus,

⊤ = ⊤ · ⊤ =
∑
t1∈T

h(s, t1) ·
∑
t2∈T

h(−s, t2)

=
∑
t1∈T

∑
t2∈T

h(s, t1) · h(−s, t2)

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(s, t1) · h(−s, t2)]

+[
∑
t3∈T

h(s, t3) · h(−s, t3)]

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(s, t1) · h(−s, t2)] + [
∑
t3∈T

h(⊥, t3)]

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(s, t1) · h(−s, t2)] + [
∑
t3∈T

⊥]

=
∑

t2 ̸=t1∈T

∑
t2∈T

h(s, t1) · h(−s, t2)

=
∑

t2 ̸=t1∈T

∑
t2∈T

[h(s, t1) · h(−s, t2)] · ⊤

=
∑

t2 ̸=t1∈T

∑
t2∈T

[h(s, t1) · h(−s, t2)]

·[(t1 < t2) + (t2 < t1)]

=
∑

t2 ̸=t1∈T

∑
t2∈T

[h(s, t1) · h(−s, t2) · (t1 < t2))]

+[h(s, t1) · h(−s, t2) · (t2 < t1)]

≤
∑

t2 ̸=t1∈T

∑
t2∈T

[h(s, t2) · h(−s, t2)]

+[h(s, t1) · h(−s, t1)]
=

∑
t2 ̸=t1∈T

∑
t2∈T

h(⊥, t2) + h(⊥, t1) = ⊥

But then ⊤ = ⊥, which is impossible since A is non-
degenerate. �

In what follows, let CO-PERM denote the set of comple-
ments of states in PERM:

CO-PERM = {s| − s ∈ PERM}

By duality, the prototypical example of a CO-PERM state is
the state of an event’s occurrence being in the future.

Observation 4 A state s ∈ CO-PERM if and only if

1. s ̸= ⊤,
2.

∑
t∈T h(s, t) = ⊤, and

3. for every t1, t2 ∈ T , [h(s, t1) · (t2 < t1)] ≤ h(s, t2).

Theorem 4 For every non-empty, finite Ŝ ⊆ PERM, if∏
s∈Ŝ s ̸= ⊥ then {

∑
s∈Ŝ s,

∏
s∈Ŝ s} ⊆ PERM.

Proof. We only prove that
∑

s∈Ŝ s ∈ PERM; the proof for
products is simpler. We proceed by induction on the size n
of Ŝ.

Basis. For Ŝ = {ŝ},
∑

s∈Ŝ s = ŝ, which is permanent.

Induction Hypothesis. For any Ŝ ⊆ PERM, with |Ŝ| ≤ n,∑
s∈Ŝ s ∈ PERM.

Induction Step. Let Ŝ ⊆ PERM with |Ŝ| = n + 1. Pick
some ŝ1 ∈ Ŝ, and let ŝ2 =

∑
s∈Ŝ−{ŝ1} s. By the in-

duction hypothesis, ŝ2 ∈ PERM. We need to show that∑
s∈Ŝ s = ŝ1 + ŝ2 ∈ PERM.

1. Assume that ŝ1+ ŝ2 = ⊥. Hence, ŝ1 = ŝ2 = ⊥, which
is impossible since ⊥ /∈ PERM.

2. In what follows, let ϕ = −(s1 + s2) and Φ =∑
t∈T h(ϕ, t). We need to show that Φ = ⊤. Hence,

⊤ = ⊤ · ⊤ =
∑
t1∈T

h(−s1, t1) ·
∑
t2∈T

h(−s2, t2)

=
∑
t1∈T

∑
t2∈T

h(−s1, t1) · h(−s2, t2)

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(−s1, t1) · h(−s2, t2)]

+[
∑
t3∈T

h(−s1, t3) · h(−s2, t3)]

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(−s1, t1) · h(−s2, t2)] + Φ

= [
∑

t2 ̸=t1∈T

∑
t2∈T

h(−s1, t1) · h(−s2, t2)

·[(t1 < t2) + (t2 < t1)]] + Φ

= [
∑

t2 ̸=t1∈T

∑
t2∈T

[h(−s1, t1) · h(−s2, t2) · (t1 < t2))]

+[h(−s1, t1) · h(−s2, t2) · (t2 < t1)]] + Φ

≤ [
∑

t2 ̸=t1∈T

∑
t2∈T

[h(−s1, t1) · h(−s2, t1)]

+[h(−s1, t2) · h(−s2, t2)]] + Φ

= [
∑
t1∈T

∑
t2∈T

h(ϕ, t1) + h(ϕ, t2)] + Φ

= Φ+ Φ+ Φ = Φ

But since Φ ≤ ⊤, it follows that Φ = ⊤.
3. Let t1, t2 ∈ T . Thus,

h(s1 + s2, t1) · (t1 < t2)

= [h(s1, t1) + h(s2, t1)] · (t1 < t2)
= [h(s1, t1) · (t1 < t2)] + [h(s2, t1) · (t1 < t2)]
≤ h(s1, t2) + h(s2, t2)
= h(s1 + s2, t2)

�

Theorem 5 For every non-empty, finite Ŝ ⊆ CO-PERM, if∑
s∈Ŝ s ̸= ⊤ then {

∑
s∈Ŝ s,

∏
s∈Ŝ s} ⊆ CO-PERM.

Proof. Since
∑

s∈Ŝ s ̸= ⊤, then
∏

s∈Ŝ −s ̸= ⊥. By
Theorem 4,

∏
s∈Ŝ −s ∈ PERM. Hence,

∑
s∈Ŝ s =

−
∏

s∈Ŝ −s ∈ CO-PERM. The same follows, mutatis mu-
tandis, for

∏
s∈Ŝ . �

Hence, both PERM and CO-PERM are closed under non-
trivial, finite products and sums, but not under complemen-
tation. Infinite sums and products are, in general, not (co-
)permanence-preserving. For example, for any time t, the
state that t is in the past is permanent. However, the state
that some time is in the past, which is an infinite sum of
PERM states, is eternal, given the left-seriality of <.

Definition 8 A state s is temporary if s ∈ TEMP = S −
(ETER ∪ PERM ∪ CO-PERM).

Theorem 6 If s ∈ TEMP then −s ∈ TEMP.

Temporary states are totally unconstrained and may, thus,
contingently exhibit patterns of holding similar to those of
ETER, PERM, and CO-PERM. However, some states strictly
resist the anti-temporary patterns. For example, the state of
an event being in progress is a temporary state which will
never hold eternally, permanently, or co-permanently, since
an event necessarily starts and ends (Ismail 2008).

Definition 9 A state s is transient if

1.
∑
t1∈T

∑
t2∈T

[(t1 < t2) · h(s, t1) · −h(s, t2)] = ⊤, and

2.
∑
t1∈T

∑
t2∈T

[(t2 < t1) · h(s, t1) · −h(s, t2)] = ⊤

In what follows, TRANS denotes the set of transient states.

Theorem 7 TRANS ⊆ TEMP.

Proof. We prove the statement by demonstrating that
TRANS ∩ [ETER ∪ PERM ∪ CO-PERM] = ∅.

1. Assume that s ∈ TRANS ∩ ETER. Given Definition 5,∑
t∈T h(s, t) ≤

∏
t∈T h(s, t). But since s ∈ TRANS

then, by definition, ⊤ =
∑

t1∈T
∑

t2∈T [(t1 < t2) ·
h(s, t1) · −h(s, t2)]. Thus,

⊤ ≤ [
∑
t1∈T

h(s, t1)] · [
∑
t2∈T

−h(s, t2)]

≤ [
∏
t1∈T

h(s, t1)] · [
∑
t2∈T

−h(s, t2)]

=
∑
t2∈T

[−h(s, t2) ·
∏
t1∈T

h(s, t1)] =
∑
t2∈T

⊥ = ⊥

But this is impossible since A is non-degenerate.
2. Assume that s ∈ TRANS ∩ PERM. Hence, by Definition

7, for any t1, t2 ∈ T , [h(s, t1) ·(t1 < t2)] ≤ h(s, t2). But,
then, it follows that
⊤ ≤

∑
t1∈T

∑
t2∈T

[h(s, t2) · −h(s, t2)] =
∑
t1∈T

∑
t2∈T

⊥ = ⊥.

Again, this is impossible since A is non-degenerate.
3. Similar to the above case, TRANS ∩ CO-PERM = ∅.

�

Theorem 8 If s ∈ TRANS then −s ∈ TRANS.

Proof. Let s ∈ TRANS. Since, −− s = s ∈ TRANS, then

⊤ =
∑
t1∈T

∑
t2∈T

[(t2 < t1) · h(s, t1) · −h(s, t2)]

=
∑
t1∈T

∑
t2∈T

[(t2 < t1) · h(−− s, t1) · h(−s, t2)]

=
∑
t1∈T

∑
t2∈T

[(t2 < t1) · −h(−s, t1) · h(−s, t2)]

=
∑
t2∈T

∑
t1∈T

[(t2 < t1) · h(−s, t2) · −h(−s, t1)]

Similarly, we can show that∑
t2∈T

∑
t1∈T

[(t2 < t1) · h(−s, t2) · −h(−s, t1)] = ⊤

Hence, −s ∈ TRANS. �
Now, the class TEMP does not have the nice closure prop-

erties that other classes enjoy; it is closed neither under · nor
under +.

Lemma 1 If s ∈ TRANS and se ∈ ETER − {⊤}, then s +
se ∈ TEMP.

Proof. We prove the result by showing that s+se /∈ ETER∪
PERM ∪ CO-PERM. First, we show that s+ se /∈ ETER. To
that end, assume that s+se ∈ ETER. Given that s ∈ TRANS
and that se ∈ ETER − {⊤}, we have

⊤ =
∑
t1∈T

∑
t2∈T

[(t1 < t2) · h(s, t1) · −h(s, t2)]

≤
∑
t1∈T

∑
t2∈T

[(t1 < t2) · h(s+ se, t1) · −h(s, t2)]

≤
∑
t1∈T

∑
t2∈T

[(t1 < t2) · h(s+ se, t2) · −h(s, t2)]

=
∑
t1∈T

∑
t2∈T

[(t1 < t2) · h(se, t2) · −h(s, t2)]

≤
∑
t1∈T

∑
t2∈T

[(t1 < t2) ·
∏
t∈T

h(se, t) · −h(s, t2)]

=

[∏
t∈T

h(se, t)

]
·

[∑
t1∈T

∑
t2∈T

[(t1 < t2) · −h(s, t2)]

]
≤

∏
t∈T

h(se, t)

But, then,
∏
t∈T

h(se, t) = ⊤, and, by the properties of h,

it follows that se = ⊤. This is contradictory since se ∈
ETER − {⊤}. Hence, s + se /∈ ETER. Similarly, we can
prove that s + se /∈ PERM. Likewise, s + se /∈ CO-PERM.
(Although in this case we use the second clause in Definition
9.) �
Theorem 9 There are two states s1, s2 ∈ TEMP, where s1 ·
s2 ̸= ⊥ and s1 · s2 /∈ TEMP.

Proof. Let s ∈ TRANS and se ∈ ETER − {⊤,⊥}. By
Lemma 1, s+ se ∈ TEMP. Given Theorem 8, −s ∈ TRANS
and by Lemma 1 again, −s + se ∈ TEMP. Now take s1 =
s + se and s2 = −s + se. Hence, s1 · s2 = (s + se) ·

(−s+ se) = se. Since se ∈ ETER −{⊤,⊥}, it follows that
s1 · s2 ̸= ⊥ and s1 · s2 /∈ TEMP. �

Similarly, we can prove the following.

Theorem 10 There are two states s1, s2 ∈ TEMP, where
s1 + s2 ̸= ⊤ and s1 + s2 /∈ TEMP.

Similar to TEMP, TRANS is closed under neither · nor +.
For example, the state s1 of my running my first mile on a
particular day and the state s2 of John’s running his first mile
on the same day may be totally unrelated that neither s1 · s2
nor s1 + s2 is guaranteed to satisfy Definition 9. The fol-
lowing result holds, but the proof is omitted for limitations
of space

Theorem 11 For every ∅ ̸= Ŝ ⊆ TRANS, if
∏

s∈Ŝ s ̸= ⊥
(
∑

s∈Ŝ s ̸= ⊤), then
∏

s∈Ŝ s (
∑

s∈Ŝ s) ∈ TEMP.

Truth
As should be clear, the semantics of LogAS has no place for
a notion of truth. While we can happily accommodate the
standard semantic relations of consequence and equivalence
and the property of logical validity, our semantic appara-
tus has nothing to say about truth. One question, which we
will first have to answer, regards the syntactic elements of
LogAS of which we may claim truth or falsity. After all,
we have no sentences and, unlike LogAB (Ismail 2012), we
have no proposition-denoting terms.

We can, nevertheless, replace the notion of truth in a
world by that of holding in a world, where the latter is
readily attributable to states. Whether there are differences
between the two notions is the subject of extensive study
in metaphysics. However, from a (commonsense) logical
perspective, I do not believe that such difference pose any
threats. Thus, we only need to revise the notion of a “world
structure” in (Ismail 2012).

Definition 10 For every LogAS structure S, a bivalent
world structure W2(S) is a countably-complete ultrafilter
of ⟨ATEMP,+, ·,−,⊥,⊤⟩.

Intuitively, the world structure W2(S) comprises the set
of holding atemporal states, constrained in a such a way to
yield sets which agree with our intuitive interpretation of the
logical connectives. (See (Burris and Sankappanavar 1982),
for the exact definition of ultrafilters.) In what follows, a
bivalent model of a LogAS language LΩ is a pair M2 =
⟨V,W2(S)⟩, where V = ⟨S,VΩ,VΞ⟩ is an LΩ valuation
and W2(S) is a bivalent world structure for S. σS terms
denoting atemporal states will, for convenience, be referred
to as “sentences.”

Definition 11 A sentence ϕ is true in a bivalent model
M2 = ⟨V,W2(S)⟩, denoted TrM2(ϕ), if [[ϕ]]V ∈ W2(S).
Otherwise, ϕ is false in M2, denoted FlM2(ϕ).

The classical truth conditions for compound sentences
follow from the above definition. (See (Ismail 2012) for the
proof.)

Proposition 1 Let LΩ be a LogAS language with a bivalent
model M2 = ⟨V,W2(S)⟩ and let ϕ and ψ be sentences and
x ∈ τ .

• TrM2(¬ϕ) if and only if FlM2(ϕ).
• TrM2(ϕ ∧ ψ) if and only if TrM2(ϕ) and TrM2(ψ).
• TrM2(ϕ ∨ ψ) if and only if TrM2(ϕ) or TrM2(ψ).
• TrM2(∀x(ϕ)) if and only if TrMb

2
(ϕ), for all b ∈ Dς (x

is of type ς), where Mb
2(ϕ) is identical to M2(ϕ) with V

replaced by V[b/x].

Conclusion
The ontology of states I have presented here is rather sim-
ple; states are taken at face value, and their proposition-like
nature is manifested in their organization in a Boolean alge-
bra. I have consciously avoided all philosophical questions
related to the exact nature of states, taking them to be mere
particulars, and not even committing to whether they are ab-
stract or concrete. This is just as well; for nothing much
hangs on the exact metaphysics of states if our motivation is
commonsense temporal reasoning.

This being said, I have not discussed much temporal rea-
soning in LogAS. Neither have I demonstrated the expres-
sivity of the language in representing temporal discourse.
These tasks anticipate completing LogAS with an account
of events and a proof theory. My primary conclusion here is
twofold.

First, I hope I have convinced the reader of the utility of
the algebraic approach to temporal logic. Unlike most tem-
poral logics in artificial intelligence, LogAS provides a uni-
fied treatment of states and propositions. This is done by
doing without propositions at all. “Sentences” in LogAS are
terms, albeit ones that denote atemporal states. The syn-
tactic and ontological redundancy which one finds in first-
order temporal logics endorsing states are avoided by the al-
gebraic approach. In first-order temporal logics, reference to
composite states (conjunctions thereof, for example) either
is forbidden (as, for example, in the situation calculus (Mc-
Carthy and Hayes 1969)) or results in duplicating the logical
connectives for statements and state-denoting terms (as, for
example, in (Allen 1984).) In LogAS, reference to compos-
ite states is straightforward, with a single set of state-based
logical connectives.

Second, I have classified states according to their tem-
poral stability. The four intuitive classes ETER, PERM,
CO-PERM, and TEMP which partition the set of states are
motivated by their hosting aspectully-significant state types:
states of states holding in ETER (ATEMP, in particular), past
perfect states in PERM, future perfect states in CO-PERM,
and progressive states in TEMP (TRANS, in particular). I
have provided (original, as far as I can tell) proofs of the
mostly intuitive closure and separation properties of the
identified classes of states. ETER and ATEMP are them-
selves Boolean algebras, whereas PERM and CO-PERM are
closed under finite, non-trivial sums and products, but not
under complementation. On the other hand, TEMP and
TRANS are closed under complementation, but not under
sums and products. It is possible that such proofs may have
been simpler if carried out in the object language LogAS,
rather than at the level of semantics. This, however, requires
a sound (and, preferably, complete) proof theory of LogAS
which, at this stage of the work, is not mature enough.

References
Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23:123–154.
Bennett, B., and Galton, A. 2004. A unifying semantics for
time and events. Artificial Intelligence 153(1–2):13–48.
Burris, S., and Sankappanavar, H. P. 1982. A Course in
Universal Algebra. Springer-Verlag.
Galton, A. 1984. The Logic of Aspect. Oxford: Clarendon
Press.
Herweg, M. 1991. A critical examination of two classical
approaches to aspect. Journal of Semantics 8:363–402.
Ismail, H. O. 2008. On the syntax and semantics of effect
axioms. In Formal Ontology in Information Systems: Pro-
ceedings of the Fifth International Conference (FOIS-08),
223–236. IOS Press.
Ismail, H. O. 2012. LogAB: A first-order, non-paradoxical,
algebraic logic of belief. Logic Journal of the IGPL
20(5):774–795.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, D., and Michie, D., eds., Machine Intelligence, vol-
ume 4. Edinburgh, Scotland: Edinburgh University Press.
463–502.
Prior, A. 1967. Past, Present and Future. Oxford: Clarendon
Press.
Quine, W. V. O. 1960. Word and Object. Cambridge, MA:
The MIT Press.
Shanahan, M. 1999. The Event Calculus Explained, volume
1600 of LNAI. Berlin: Springer Verlag. 409–430.
Shoham, Y. 1987. Temporal logics in AI: Semantical and
ontological considerations. Artificial Intelligence 33:89–
104.
Smith, C. S. 1999. Activities: States or events? Linguistics
and Philosophy 22:479–508.
Textor, M. 2012. States of affairs. In Zalta, E. N., ed., The
Stanford Encyclopedia of Philosophy. Summer 2012 edition.
Vendler, Z. 1957. Verbs and times. The Philosophical Re-
view 66(2):143–160.

