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Abstract

Previous results have shown that weak completion semantics
based on three-valued Łukasiewicz logic can adequately rep-
resent and explain human behavior in the suppression task.
This approach corresponds to well-founded semantics for
tight logic programs. In this paper we apply both semantics
to the selection task – probably the most famous and best in-
vestigated psychological study about human reasoning with
conditionals. In its abstract version, cards are shown to some
people and they have to check if a conditional statement about
the cards holds true. Numerous psychological studies show
that most people do not solve this task correctly in terms of
classical propositional logic and tend to make similar reason-
ing errors. Once the same reasoning problem is framed within
a social setting, most people solve the task correctly. By dis-
tinguishing between belief and social constraints, we apply
the abstract and the social case within the weak completion
and the well-founded semantics and show that when reason-
ing towards the corresponding representations, our computa-
tional approach adequately reflects the psychological results.
Finally, we present a psychological study testing different
predictions of the weak completion and the well-founded se-
mantics on programs which are not tight.

Introduction
In the last century the classical (propositional) logic calcu-
lus has played an important role as a normative concept for
psychologists investigating human reasoning. Psychological
research, however, showed that humans systematically devi-
ate from the logically correct answers. Some attempts to for-
malize such behavior have already been made in the field of
Computational Logic such as in non-monotonic logic, com-
mon sense reasoning or three-valued logics, where incom-
plete information is expressible. Furthermore, the fields of
Artificial Neural Networks and Cognitive Science focus on
challenging problems that aim to simulate and understand
human reasoning.

Computational approaches that try to explain human rea-
soning should be evaluated according to their cognitive ade-
quacy. The concept of adequacy has been defined in a lin-
guistic context to compare and explain language theories
and their properties (Strube, 1996). Two different adequacy
measures are defined: conceptual adequacy and inferential
adequacy. Conceptual adequacy reflects in how far a lan-
guage represents a content correctly. Inferential adequacy is

about the procedural part how language is applied to con-
tent (Strube, 1996). In Computational Logic, the interpreta-
tion of these measurements can be understood as follows:
conceptual adequacy deals with the representational part of
the system. The aim is to have a representation of the given
information such that it captures the structure of how it ap-
pears in human knowledge. Inferential adequacy measures
whether the computations are similar to the way humans
reason. Analogously, Stenning and van Lambalgen (2008)
argue that human reasoning should be modeled by, first, rea-
soning towards an appropriate representation and, second,
by reasoning with respect to this representation.

As appropriate representation for modeling the suppres-
sion task, Stenning and van Lambalgen (2008) propose logic
programs under completion semantics based on the three-
valued logic used by Fitting (1985), which itself is based on
the three-valued Kleene (1952) logic. Unfortunately, some
technical claims made by Stenning and van Lambalgen are
wrong. Hölldobler and Kencana Ramli (2009; 2009) have
shown that the three-valued logic proposed by Stenning
and van Lambalgen is inadequate for the suppression task.
Somewhat surprisingly, the suppression task can be ade-
quately modeled if the three-valued Łukasiewicz logic pre-
sented in (Łukasiewicz, 1920) is used instead. The computa-
tional logic approach (Hölldobler & Kencana Ramli, 2009;
Dietz, Hölldobler, & Ragni, 2012) models the suppression
task as logic programs under the so-called weak comple-
tion, a variation of Clark’s (Clark, 1978) completion. They
show that these conclusions drawn with respect to least mod-
els correspond to the findings of Byrne (1989) and con-
clude that the derived logic programs under Łukasiewicz
logic are inferentially adequate for the suppression task. Fur-
thermore, Dietz, Hölldobler, and Wernhard (2013) show that
there is a strong correspondence between weak completion
and well-founded semantics (Van Gelder, Ross, & Schlipf,
1991) for the class of tight programs.

In this paper, we apply our approach to another psycho-
logical study, the Wason selection task (Wason, 1968). In
the Wason selection task participants had to check a given
conditional statement on some instances. The problem was
presented as a rather abstract description and almost all par-
ticipants made the same classical logical mistakes. Griggs
and Cox (1982) developed an isomorphic representation of
the problem in a social context, and surprisingly almost all of



the participants solved this task correctly. Kowalski (2011)
gives an interesting interpretation of this difference, which
we will use for our approach.

In the following we briefly review three-valued logics and
give the necessary definitions for weak completion seman-
tics. After that, we explain the Wason selection task and our
computational logic approach. Finally, we present results
from a psychological experiment to evaluate whether well-
founded or weak completion semantics is more adequate.

Three-valued Logics
Three-valued logics were first conceived by
Łukasiewicz (1920) and since then different interpretations
of the connectives have been proposed. The corresponding
truth values are >, ⊥ and U, which mean true, false and
and unknown, respectively. Kleene (1952) introduced
an implication (←K), whose truth table is identical to
Łukasiewicz implication (←Ł) except in the cases where
precondition and conclusion are both mapped to U: in this
case, the implication itself is mapped to U by Kleene, but
mapped to > by Łukasiewicz. The set of connectives under
Łukasiewicz semantics is {¬,∧,∨,←Ł,↔Ł}.

A further common variant of three-valued implication
(←S) is called seq3 in Gottwald (2001). The correspond-
ing equivalence (↔S) assigns > to F ↔ G if and only if F
and G are mapped to identical truth values, and⊥ is assigned
otherwise. Fitting (1985) combined the truth tables for ¬, ∨
and ∧ from Łukasiewicz with the equivalence ↔S for in-
vestigations within Logic Programming. Hence, the set of
connectives used by Fitting is {¬,∧,∨,↔S}. Table 1 gives
the truth tables of three-valued conjunction, disjunction and
the different variations of implication and equivalence.

Stenning and van Lambalgen (2008) modeled the sup-
pression task by extending the logic used by Fitting
with←K . Hölldobler and Kenana Ramli (2009) showed that
this logic is inadequate and proposed to use Łukasiewicz
semantics which corrects some technical mistakes and ad-
equately models the suppression task.

Under well-founded semantics the interpretation of the
implication corresponds to ←S (Przymusinski, 1989),
which corresponds to the interpretation of the implication in
the logic S3 (Rescher, 1969), that is {¬,∧,∨,←S ,↔S}. As
indicated by the highlighted > signs in Table 1, whenever
a formula is true under ←S then it is true under ←L, and
vice versa. The underlying three-valued logic for weak com-
pletion semantics which we present in the following, corre-
sponds to three-valued Łukasiewicz logic.

Preliminaries
We define the necessary notations we will use throughout
this paper and restrict ourselves to propositional logic as this
is sufficient for our purpose. A logic program P is a finite
set of clauses of the form

A← A1 ∧ · · · ∧An ∧ ¬B1 ∧ · · · ∧ ¬Bm (1)

where A is an atom called head and A1 ∧ · · · ∧ An ∧
¬B1 ∧ · · · ∧ ¬Bm is called body of the clause and Ai,
with 1 ≤ i ≤ n, and Bj , with 1 ≤ j ≤ m, are atoms.

> and ⊥ are special atoms where A← > expresses the fact
that A is true and A← ⊥ expresses the negative fact that A
is false. 1 Without loss of generality we assume that the bod-
ies of clauses are not empty and restrict the use of > and ⊥
to facts as indicated. Atoms(P) denotes the set of all atoms
occurring in the program P . An atom A is defined in P if
there is a clause with head A; otherwise it is said to be un-
defined in P; ud (P) = {A | there is no clause C in P such
that A is the head of C} is the set of undefined atoms in P .
A normal logic program is a logic program without negative
facts. If P is a logic program then P+ denotes the program
obtained from P by deleting all negative facts.

Program Classes
The following three programs can be classified with respect
to whether they contain cycles:

P1 P2 P3

{p← q} {p← q, q ← p} {p← ¬q, q ← ¬p}
Cycles occur in programs when at least one atom depends
on itself: we say that p depends on q if and only if there ex-
ists a clause p ← A1 ∧ · · · ∧ An ∧ ¬B1 ∧ · · · ∧ ¬Bmsuch
that q = Ai or q = Bj for some 1 ≤ i ≤ n or 1 ≤ j ≤ m.
Dependency is transitive, thus if p depends on q and q de-
pends on r, then p depends on r. We distinguish between two
types of dependency: p depends positively on q if q = Ai

and p depends negatively on q if q = Bj where one negative
dependency is sufficient to define the whole dependency as
negative. We have a cycle in a program if at least one atom
depends on itself. If the dependency is positive, then it is a
positive cycle, otherwise it is a negative cycle.

Accordingly, we distinguish between the following pro-
gram classes: Acyclic programs do not contain cycles. P1 is
an acyclic program, whereas P2 and P3 are not. Stratified
programs (Apt, Blair, & Walker, 1988) only contain posi-
tive cycles. P2 is a stratified program, but P3 is not. Tight
programs (Erdem & Lifschitz, 2003) only contain negative
cycles. P3 is a tight program, but P2 is not.

Interpretations and Models
An interpretation I is a mapping from formulas to the set
of truth values {>,⊥,U}. The truth value of a given for-
mula under a given interpretation is determined according to
the corresponding three-valued logic. We represent an inter-
pretation as a pair I = 〈I>, I⊥〉 of disjoint sets of atoms
where I> is the set of all atoms that are mapped to > by I
and I⊥ is the set of all atoms that are mapped to ⊥ by I .
If atoms are mapped to U, they are neither in I> nor in I⊥.
A total interpretation with respect to a program P is an in-
terpretation I = 〈I>, I⊥〉 such that Atoms(P) = I> ∪ I⊥.

One should observe that in contrast to two-valued
logic, A ← B and A ∨ ¬B are not semantically equiva-
lent, neither for←Ł nor for←S . For example, consider the
case I(A) = I(B) = U. Then, I(A ∨ ¬B) = U whereas

I(A←Ł B) = I(A←S B) = >.
1The notion of falsehood appears to be counterintuitive at first

sight, but programs will be interpreted under completion semantics
where the implication sign is replaced by an equivalence sign.



Table 1: Truth tables for three-valued logics. The highlighted >’s indicate that formulas of the form A ← B which are true
under←L are true under←S , and vice versa.

F ¬F
> ⊥
⊥ >
U U

∧ > U ⊥
> > U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

←Ł > U ⊥
> > > >
U U > >
⊥ ⊥ U >

←S > U ⊥
> > > >
U ⊥ > >
⊥ ⊥ ⊥ >

←K > U ⊥
> > > >
U U U >
⊥ ⊥ U >

∨ > U ⊥
> > > >
U > U U
⊥ > U ⊥

↔Ł > U ⊥
> > U ⊥
U U > U
⊥ ⊥ U >

↔S > U ⊥
> > ⊥ ⊥
U ⊥ > ⊥
⊥ ⊥ ⊥ >

On the other hand, for the implication ←K we find that
I(A ∨ ¬ B) = I(A ←K B) = U.

A model of a formula F is an interpretation I such
that I(F ) = >. A model of a set of formulas is an interpre-
tation which is a model of each formula in the set. Whether a
formula is true under the given interpretation depends on the
underlying three-valued logic: I is a (three-valued) model
under Łukasiewicz logic for P (I |=Ł P) if and only if each
clause occurring in P is mapped to > using the truth tables
for {¬,∧,∨,←Ł,↔Ł} depicted in Table 1. As we can see
from Table 1, a model of P under S3 logic is a model of P
under Łukasiewicz logic, and vice versa.

Weak Completion Semantics
Consider the following transformation for a given P:
1 Replace all clauses with the same head A ← body1,

. . . , A← bodyn by A← body1 ∨ . . . ∨ bodyn.
2 For all atoms A, if A ∈ ud (P) then add A← ⊥.
3 Replace all occurrences of← by↔.
The resulting set of equivalences is called the completion
of P (Clark, 1978). If Step 2 is omitted, then the resulting
set is called the weak completion of P (wcP) (Hölldobler &
Kencana Ramli, 2009). For instance, the weak completion
of P = {p ← q} is wcP = {p ↔ q}. Consequently,
the three interpretations 〈{p, q}, ∅〉, 〈∅, ∅〉 and 〈∅, {p, q}〉 are
models for wcP under Łukasiewicz logic. But how to know
which model is the intended one?

In Computational Logic this model is often the least
model, which in many cases can be computed as least fixed
points of an appropriate semantic operator (Apt & van Em-
den, 1982). Stenning and Lambalgen (2008) devised such an
operator for programs discussed herein: Let I be an interpre-
tation in ΦP(I) = 〈J>, J⊥〉, where

J> = {A | there exists A← body ∈ P with I(body) = >},
J⊥ = {A | there exists A← body ∈ P and

for all A← body ∈ P we find I(body) = ⊥}.

As shown in Hölldobler and Kencana Ramli (2009) the
least fixed point of ΦP is identical to the least model of
the weak completion of P (lmŁwcP). Starting with the
empty interpretation I = 〈∅, ∅〉, lmŁwcP can be com-
puted by iterating ΦP . Furthermore, Hölldobler and Ken-
cana Ramli showed that the model intersection property
holds for weakly completed programs. This guarantees the
existence of a least model for every program.

Well-founded Semantics
Well-founded semantics is a widely accepted approach
in the field of non-monotonic reasoning which has been
introduced by Van Gelder et al. (1991). As shown
by Przymusinski (1990), the well-founded model coincides
with the least partial stable model. Partial stable model
semantics (Przymusinski, 1990) is an extension of stable
model semantics (Gelfond & Lifschitz, 1988) to three-
valued interpretations. Stable model and partial stable se-
mantics are only defined for normal logic programs P+.

Considering the least model of the weak comple-
tion of P (lmŁwcP) and the well-founded model
of P+ (wfmP+), we observe that undefined atoms and
atoms involved in positive cycles in P are unknown
in lmŁwcP , whereas in wfmP they are false. However,
when atoms are involved in a negative cycle in P they stay
unknown in both lmŁwcP and wfmP+.

Without loss of generality, we consider only programs
where negative facts are only formulated when A is not the
head of any other clause in P . Under weak completion se-
mantics this does not restrict the expressiveness of programs
as we can only conclude that A is in I⊥ if for all clauses
where A is the head of, the body is in I⊥. Thus, A ← ⊥
would not add any more information when there is another
clause with A in its head for which the body is not in I⊥.
Theorem 1 (Dietz et al. (2013)) For every tight logic pro-
gram P and interpretation I the following two statements
are equivalent:
1 I is the least model of the weak completion of P .
2 I is the well-founded model of Pmod, where

Pmod = P+∪{A← ¬n A, n A← ¬A | A ∈ ud (P)}.

and for each A ∈ ud (P), n A is a new atom.

The programs we discussed in Dietz et al. (2012) to model
the suppression task and the programs we will discuss in the
following to model the two cases of the selection task, are
acyclic and thus tight. Therefore, our results hold for both
of them: programs under weak completion semantics and
modified programs under well-founded semantics.

The Selection Task
In the original selection task (Wason, 1968) participants
were given the conditional

If there is a D on one side of the card,
then there is 3 on the other side



Table 2: The results of the abstract case of the selection task.
D F 3 7

89% 16% 62% 25%

Table 3: The results of the social case of the selection task.
beer coke 22 years old 16 years old

95% 0.025% 0.025% 80%

and four cards on a table showing the letters D and F as well
as the numbers 3 and 7. Furthermore, they know that each
card has a letter on one side and a number on the other side.
Which cards must be turned over to prove that the condi-
tional holds? Assume the conditional is represented in clas-
sical propositional logic by the implication

3← D, (2)

where the propositional variable 3 represents the fact that the
number 3 is shown and D represents the fact that the letter D
is shown. Then, in order to verify the implication one must
turn over the cards showing D and 7. However, as repeated
experiments have shown consistently (see Table 2), partic-
ipants believe differently. Whereas 89% of the participants
correctly conclude that the card showing D must be turned
(a number other than 3 on the other side would falsify the
implication), 62% of the participants incorrectly suggest to
turn over the card showing 3 (no relevant information can
be found which would falsify the implication). Likewise,
whereas 25% of the participants correctly believe that the
card showing 7 needs to be turned over (if the other side
would show a D, then the implication is falsified), 16% in-
correctly believe that the card showing F needs to be turned
over (no relevant information can be found which would fal-
sify the implication). In other words, the overall correctness
of the answers given for the abstract selection task if mod-
eled by an implication in classical two-valued logic is pretty
bad.

Griggs and Cox (1982) adapted Wason’s selection task to
a social case. Consider the conditional

If a person is drinking beer,
then the person must be over 19 years of age

and again consider four cards, where on one side there is
the person’s age and on the other side of the card is written
what the person is drinking: drinking beer, drinking coke,
22 years old and 16 years old. Which drinks and persons
must be checked to prove that the conditional holds? If the
conditional is represented by the implication

o← b, (3)
where o represents a person being older than 19 years and b
represents the person drinking beer. In order to verify the
implication one must turn over the cards drinking beer and
16 years old. Participants usually solve the social case of
the selection task quite correctly in accordance with the
laws of classical logic. Table 3 shows the results represented
in Griggs and Cox (1982) for the social case. Why are the
results of these two experiments so different?

Several attempts were made to explain these differences.
Wason (1968) proposed a defective truth table to explain
how humans reason with conditionals. When the antecedent
of a conditional is false, then normally people consider

Table 4: The computational logic approach for the social
case of the selection task.

Griggs
Card P lmŁwcP/wfmPmod & Cox

beer {ab2 ← ⊥, b← >} 〈{b}, {ab2}〉 6|=Ł (5) 95%
coke {ab2 ← ⊥, b← ⊥} 〈∅, {b, ab2}〉 |=Ł (5) 0.025%
16 years {ab2 ← ⊥, o← ⊥} 〈∅, {o, ab2}〉 6|=Ł (5) 80%
22 years {ab2 ← ⊥, o← >} 〈{o}, {ab2}〉 |=Ł (5) 0.025%

the whole conditional as irrelevant and ignore it in fur-
ther reasoning. Evans (1972) describes a phenomenon called
the matching bias, where people tend to consider only the
present values in the conditional. For instance, in the ab-
stract case, card D is the easiest one to solve, because this
rule is only true when both values present in the rule are
on the card. On the other hand, card 7 is the most difficult
one, because people have to make a double mismatch, that
is, they have to consider the situation where 3 is not on the
card and therefore something different than D has to be on
the other side. Why do people not make these mistakes in
the social case?

One explanation can be found in Kowalski (2011), namely
that people view the conditional in the abstract case as a be-
lief. For instance, the participants perceive the task to ex-
amine whether the rule is either true or false. On the other
hand, in the social case, the participants perceive the rule
as a social constraint, a conditional that ought to be true.
People intuitively aim at preventing the violation of such a
constraint, which is normally done by observing whether the
state of the world complies with the rule. We adopt this view
and model our formalism accordingly.

Modeling the Abstract and the Social Case
As already mentioned in the introduction, Stenning and van
Lambalgen distinguish between two steps when modeling
human reasoning. We adopt the first step, in particular, the
idea to implement conditionals by licenses for implications.
This can be achieved by adding an abnormality predicate to
the antecedent of the implication. Applying this idea to the
Wason selection task we obtain

3← D ∧ ¬ab1 (4)
instead of (2) and

o← b ∧ ¬ab2 (5)
instead of (3), where ¬ab1 and ¬ab2 are used to express that
the corresponding rules hold unless there are some abnor-
malities.

The Social Case
In this case most humans are quite familiar with the con-
ditional as it is a standard law. They are also aware – it is
common sense knowledge – that there are no exceptions or
abnormalities and, hence, ab2 is set to ⊥.

Let us assume that conditional (5) is viewed as a social
constraint which must follow logically from the given facts.
Now consider the four different cases: One should observe
that for the card 16 years old the least model of the weak
completion of P , i.e. 〈∅, {o, ab2}〉, assigns U to b and, con-
sequently, to both, b∧¬ab2 and (5), as well. Overall, for the



cards drinking beer and 16 years old the social constraint (5)
is not entailed by the least model of the weak completion of
the program. Hence, we need to turn over these cards and,
hopefully, find that the beer drinker is older than 19 and that
the 16 years old is not drinking beer. The results of the social
case are shown in Table 4, where the last column shows the
experimental results of Griggs and Cox (1982). The results
of our approach correspond to the results of how the major-
ity of the participants responded and, therefore, appears to
be adequate.

The Abstract Case
This case is artificial, and consequently, there is no common
sense knowledge about the conditional. Following Kowal-
ski (2011), let us assume that conditional (4) is viewed as a
belief. As there are no known abnormalities, ab1 is set to ⊥.
Furthermore, let D, F , 3, and 7 be propositional variables
denoting that the corresponding symbol or number is on one
side. Altogether, we obtain the program

P = {3← D ∧ ¬ab1, ab1 ← ⊥}.
Its weak completion is

wcP = {3↔ D ∧ ¬ab1, ab1 ↔ ⊥}
and admits the least model

〈∅, {ab1}〉
under weak completion semantics as well as under well-
founded semantics. Unfortunately, this least model does not
explain any symbol on any card. We need to extend the pro-
gram based on which card we observe. In order to explain
an observed card, we apply abduction.

In the following we will explain abduction in the con-
text of weak completion semantics. For tight logic programs,
identical results are obtained using well-founded semantics
(see Dietz et al. (2013)).

Following Kakas, Kowalski, and Toni (1993) we con-
sider an abductive framework consisting of a program P as
knowledge base, a setA of abducibles consisting of the (pos-
itive and negative) facts for each undefined atom in P and
the logical consequence relation |=lm wc

Ł , where P |=lm wc
Ł F

if and only if lmŁwcP(F ) = > for the formula F . As ob-
servations we consider literals.

Let 〈P,A, |=lm wc
Ł 〉 be an abductive framework and O an

observation.O is explained by E if and only if E ⊆ A, P∪E
is satisfiable, and P ∪ E |=lm wc

Ł O. Usually, minimal ex-
planations are preferred. In case there exist several mini-
mal explanations, then two forms of reasoning can be dis-
tinguished. F follows skeptically from program P and ob-
servation O if and only if O can be explained and for all
minimal explanations E we find P∪E |=lm wc

Ł O, whereas F
follows credulously from P and O if and only if there exists
a minimal explanation E such that P ∪ E |=lm wc

Ł O.
In the case of the abstract case of the Wason selection task,

the set of abducibles is
{D ← >, D ← ⊥, F ← >, F ← ⊥, 7← >, 7← ⊥}.

Now consider the four different cases, where the explana-
tions E are minimal. In the cases where F or 7 were ob-
served, the least model of the weak completion of P ∪ E
does not contain any information that needs to be verified

Table 5: The computational logic approach for the abstract
case of the selection task.
O E lmŁwc (P ∪ E)/wfm (P ∪ E)mod Wason

D {D ← >} 〈{D, 3}, {ab1}〉 ; turn over 89%
F {F ← >} 〈{F}, {ab1}〉 ; no turn over 16%
3 {D ← >} 〈{D, 3}, {ab1}〉 ; turn over 62%
7 { 7← >} 〈{ 7}, {ab1}〉 ; no turn over 25%

and simply confirms the observation; no further action is
needed. In some sense, the belief about the premises and
conclusions of the conditional is irrelevant. The truth val-
ues of them are unknown and under Łukasiewicz logic this
makes the conditional true.

In the case where D was observed, the least model maps
also 3 to >. That means, in order to be sure that this cor-
responds to the real situation, we need to check if 3 is true.
Therefore, the card showing D is turned over. Likewise, in
the case where 3 is observed, D is also mapped to > in
the least model, which can only be confirmed if the card
is turned over. As in each case there is a single minimal ex-
planation, there is no need to distinguish between sceptical
and credulous reasoning. The results of the abstract case are
shown in Table 5, where the last column shows the experi-
mental results of Wason (1968). The results of our approach
correspond to the results of how the majority of the partici-
pants responded and, therefore, appears to be adequate.

A Psychological Study
One of the main differences between weak completion and
well-founded semantics is how they deal with positive cycles
in logic programs. While in a well-founded model atoms in-
volved in positive cycles are false, they are mapped to un-
known under the weak completion semantics. In order to
determine which semantics is more adequate for human rea-
soning, we need to investigate which conclusions are typi-
cally drawn by human reasoners with respect to cyclic con-
ditionals. For this purpose we carried out a psychological
study.

Participants We tested 35 participants on an online web-
site (Amazon Mechanical Turk). They were paid for their
participation.

Material, Procedure and Design Participants were pre-
sented with 17 problems consisting of cyclic conditionals of
length 1, 2 and 3. Consider the following cyclic conditional
of length 1:

If they open the window, then they open the window.

Participants were asked about the consequences of this con-
ditional and could choose between one of the following three
offered conclusions: They open the window, they do no open
the window, and it is unknown whether they open the win-
dow. Another example is the following cyclic conditional of
length 3:

If they open the window, then it is cold.
If it is cold, then they wear their jackets.

If they wear their jackets, then they open the window.

We investigated three kinds of atoms, viz. whether they open
the window, whether it is cold, and whether they wear their



Table 6: The length of the cycles, the given answers, and
their mean response times.

Length Chosen answer in percentage Mean response
of cycle Positive Negative Unknown times in msec

1 75 0 25 5267
2 60 3 37 11516
3 55 4 41 11680

jacket; each of them under the three conditions positive, neg-
ative, and unknown.

Results and Discussion The results (cf. Table 6) indicate
two kinds of groups each taking a different interpretation
of the statements: One group consists of participants un-
derstanding the programs as a conditional, which in our ap-
proach is modeled by p← p ∧ ¬ab for cycles of length one
(p ← q ∧ ¬ab1, q ← p ∧ ¬ab2 for cycles of length 2, and
accordingly for cycles of length 3). If we assume that noth-
ing abnormal is known, (i.e., ab← ⊥), then the least model
of the weak completion is 〈∅, {ab}〉. In contrast, the well-
founded semantics always and independently of the truth
value of ab concludes ¬p, a conclusion almost no partici-
pant has drawn. The other interpretation, where participants’
chose to give a positive answer, apparently treats the state-
ment as a fact p ← >. If we consider this as the result of
the first step of the Stenning and van Lambalgen procedure
(reasoning towards an adequate representation) then both,
weak completion and well-founded semantics seem to be
adequate. The findings show that the chosen answers asso-
ciated with positive atoms decrease from cycles of length 1
(75% positive answers) to cycles of length 3 (55% positive
answers) with an increase of choosing the truth-value un-
known. The response times indicate a higher degree of un-
certainty in case of problems involving cycles of length 2
and 3 in contrast to the simpler problems involving a cy-
cle of length 1. Taken together, the increase in choosing the
truth value unknown and the increase in response time shows
an increasing likelihood of the participants to adopt a weak
completion semantics.

When participants were given conditionals with negative
cycles of the form p ← ¬q ∧ ¬ab1, q ← ¬p ∧ ¬ab2, then
the majority concluded that the given facts were unknown.
This result corresponds to both, weak completion and well-
founded semantics.

Summing up, it seems that, when we consider the two
representational forms for the conditionals, then weak com-
pletion semantics can better explain and predict partici-
pants’ responses than well-founded semantics. As discussed
in (Wernhard, 2012), it would be interesting to further exam-
ine whether there are real world situations in which humans
actually reason with cycles and how they extract knowledge
based on these seemingly meaningless data.

Conclusion
We have presented a computational logic approach for mod-
eling human reasoning in the Wason selection task. It is
based on a previously proposed approach that adequately
models another psychological study, the suppression task.

We extended our approach following an idea from Kowal-
ski’s task representation: in order to solve the social case
correctly, the conditional must be seen as a social constraint,
whereas the abstract case is correctly represented when the
conditional is seen as a belief. show The second case can be
modeled by extending the formalization to reasoning (either
credulously or sceptically) within an abductive framework.
Hölldobler, Philipp, and Wernhard (2011) have shown that
sceptical reasoning has to be applied to solve the suppres-
sion task.

Stenning and van Lambalgen analyzed the Wason selec-
tion task but did not attempt to formalize this task based
on their previous approach for the suppression task. On the
other hand, Kowalski showed how to formalize the abstract
and the social case of the selection task, but did not propose
a solution to the suppression task. In our paper, we present
one approach which seems to adequately model both tasks.

However, there are still aspects we did not consider yet
and which need to be further examined. Our approach does
not deal with the so-called first step of modeling human rea-
soning: reasoning with respect to an adequate representa-
tion. We just assume that in the social case people take the
conditional as a social constraint whereas they take it as a
belief in the abstract case. These differences are modeled
outside of the formal framework.

Dawson and Regan (2002) show by some psychological
experiments that the so-called confirmation bias plays an
important role in the Wason selection task: if people disagree
with the statement of the conditional, they are more likely to
find the solution because they are motivated to search for a
counterexample which refutes the conditional. On the other
hand, people who agree with the statement of the conditional
take it as a confirmation of their believes and therefore will
not extensively search to falsify the conditional.

An interesting observation discussed in Stenning and
Lambalgen (2008) is that similar to the verification bias,
people might transfer the truth of the card to the truth of the
rule. In the social case, this confusion cannot occur, because
it is commonsense that the rule is true, independent from
whether people behave accordingly. This leads to another
phenomenon, namely that participants see a dependency be-
tween the card choices and might prefer to solve the problem
by reactive planning. They would only like to decide what
to do after they saw the outcome of the first card. For in-
stance, if one turns over card D first and there is no 3 on
the other side, no further cards needs to be examined, be-
cause the rule has been falsified. However, if there is a 3
on the other side, the other options need to be considered
again. This kind of behavior could be described in a frame-
work with belief change: Each card which is turned over is a
piece of new information which needs to be integrated into
the current knowledge base and updates new inferences ac-
cordingly.
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