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Abstract

Standard belief contraction assumes an underlying logic
containing full classical propositional logic, but there
are good reasons for considering contraction in less
expressive logics. In this paper we focus on Horn
logic. In addition to being of interest in its own right,
our choice is motivated by the use of Horn logic in
several areas, including ontology reasoning in descrip-
tion logics. We consider three versions of contraction:
entailment-based and inconsistency-based contraction
(e-contraction and i-contraction, resp.), introduced by
Delgrande for Horn logic, and package contraction (p-
contraction), studied by Fuhrmann and Hansson for the
classical case. We show that the standard basic form
of contraction, partial meet, is too strong in the Horn
case. We define more appropriate notions of basic con-
traction for all three types above, and provide associated
representation results in terms of postulates. Our results
stand in contrast to Delgrande’s conjectures that orderly
maxichoice is the appropriate contraction for both e-
and i-contraction. Our interest in p-contraction stems
from its relationship with an important reasoning task
in ontological reasoning: repairing the subsumption hi-
erarchy in EL. This is closely related to p-contraction
with sets of basic Horn clauses (Horn clauses of the
form p → q). We show that this restricted version of
p-contraction can also be represented as i-contraction.

Introduction
Belief change is a subarea of knowledge representation con-
cerned with describing how an intelligent agent ought to
change its beliefs about the world in the face of new and
possibly conflicting information. Arguably the most influ-
ential work in this area is the so-called AGM approach (Al-
chourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988) which focuses on two types of belief change: belief
revision, in which an agent has to keep its set of beliefs con-
sistent while incorporating new information into it, and be-
lief contraction, in which an agent has to give up some of its
beliefs in order to avoid drawing unwanted conclusions.

Although belief change is relevant to a wide variety of
application areas, most approaches, including AGM, as-
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sume an underlying logic which includes full propositional
logic. In this paper we deviate from this trend and inves-
tigate belief contraction for propositional Horn logic. As
pointed out by Delgrande (2008) who has also studied con-
traction for Horn logic recently, and to whom we shall fre-
quently refer in this paper, this is an important topic for
a number of reasons: (i) it sheds light on the theoreti-
cal underpinnings of belief change, and (ii) Horn logic
has found extensive use in AI and database theory. How-
ever, our primary reason for focusing on this topic is be-
cause of its application to ontologies in description log-
ics (DLs) (Baader et al. 2003). Horn clauses correspond
closely to subsumption statements in DLs (roughly speak-
ing, statements of the form A1 u . . . u An v B where the
Ai’s and B are concepts), especially in the EL family of
DLs (Baader 2003), since both Horn logic and the EL fam-
ily lack full negation and disjunction. A typical scenario
involves an ontology engineer teaming up with an expert to
construct an ontology related to the domain of expertise of
the latter with the aid of an ontology engineering tool such
as SWOOP [http://code.google.com/p/swoop]
or Protégé [http://protege.stanford.edu]. One
of the principal methods for testing the quality of a con-
structed ontology is for the domain expert to inspect and
verify the computed subsumption hierarchy. Correcting
such errors involves the expert pointing out that certain
subsumptions are missing from the subsumption hierar-
chy, while others currently occurring in the subsumption
hierarchy ought not to be there. A concrete example
of this involves the medical ontology SNOMED (Spack-
man, Campbell, and Cote 1997) which classifies the con-
cept Amputation-of-Finger as being subsumed by
the concept Amputation-of-Arm. Finding a solution to
problems such as these is known as repair in the DL com-
munity (Schlobach and Cornet 2003), but it can also be seen
as the problem of contracting by the subsumption statement
Amputation-of-Finger v Amputation-of-Arm.

The scenario also illustrates why we are concerned with
belief contraction of belief sets (logically closed theories)
and not belief base contraction (Hansson 1999). Ontologies
are not constructed by writing DL axioms, but rather using
ontology editing tools, from which the axioms are generated
automatically. Because of this, it is the belief set and not the
axioms from which the theory is generated that is important.



Logical Background and Belief Contraction
We work in a finitely generated propositional language LP

over a set of propositional atoms P, which includes the dis-
tinguished atoms > and ⊥, and with the standard model-
theoretic semantics. Atoms will be denoted by p, q, . . ., pos-
sibly with subscripts. We use ϕ,ψ, . . . to denote classical
formulas. They are recursively defined in the usual way.

We denote by V the set of all valuations or interpretations
v : P −→ {0, 1}, with 0 denoting falsity and 1 truth. Sat-
isfaction of ϕ by v is denoted by v  ϕ. The set of models
of a set of formulas X is [X]. We sometimes represent the
valuations of the logic under consideration as sequences of
0s and 1s, and with the obvious implicit ordering of atoms.
Thus, for the logic generated from p and q, the valuation in
which p is true and q is false will be represented as 10.

Classical logical consequence and logical equivalence are
denoted by |= and ≡ respectively. For sets of sentences X
and Φ, we understand X |= Φ to mean that X entails every
element of Φ. For X ⊆ LP, the set of sentences logically
entailed by X is denoted by Cn(X). A belief set is a logi-
cally closed set, i.e., for a belief setX , X = Cn(X). P(X)
denotes the power set (set of all subsets) of X .

A Horn clause is a sentence of the form p1 ∧ p2 ∧ . . . ∧
pn → q where n ≥ 0. If n = 0 we write q instead of→ q. A
Horn theory is a set of Horn clauses. Given a propositional
language LP, the Horn language LH generated from LP is
simply the Horn clauses occurring inLP. The Horn logic ob-
tained from LH has the same semantics as the propositional
logic obtained from LP, but just restricted to Horn clauses.
Thus a Horn belief set is a Horn theory closed under logical
entailment, but containing only Horn clauses. Hence, |=, ≡,
the Cn(.) operator, and all other related notions are defined
relative to the logic we are working in (e.g. |=

PL
for proposi-

tional logic and |=
HL

for Horn logic). Since the context always
makes it clear which logic we are dealing with, we shall dis-
pense with such subscripts for the sake of readability.

AGM (Alchourrón, Gärdenfors, and Makinson 1985) is
the best-known approach to contraction. It gives a set of pos-
tulates characterising all rational contraction functions. The
aim is to describe belief contraction on the knowledge level
independent of how beliefs are represented. Belief states
are modelled by belief sets in a logic with a Tarskian conse-
quence relation including classical propositional logic. The
expansion of K by ϕ, K + ϕ, is defined as Cn(K ∪ {ϕ}).
Contraction is intended to represent situations in which
an agent has to give up information from its current be-
liefs. Formally, belief contraction is a (partial) function from
P(LP)×LP to P(LP): the contraction of a belief set by a
sentence yields a new set.

The AGM approach to contraction requires that the fol-
lowing set of postulates characterise basic contraction.

(K−1) K − ϕ = Cn(K − ϕ)

(K−2) K − ϕ ⊆ K
(K−3) If ϕ /∈ K, then K − ϕ = K

(K−4) If 6|= ϕ, then ϕ /∈ K − ϕ
(K−5) If ϕ ≡ ψ, then K − ϕ = K − ψ

(K−6) If ϕ ∈ K, then (K − ϕ) + ϕ = K

The intuitions behind these postulates have been debated in
numerous works (Gärdenfors 1988; Hansson 1999). We will
not do so here, and just note that (K−6), a.k.a. Recovery, is
the most controversial. There is also a refined version of
AGM contraction involving two extended postulates, but a
discussion on that is beyond the scope of this paper.

Various methods exist for constructing basic AGM con-
traction. In this paper we focus on the use of remainder sets.

Definition 1 For a belief set K, X ∈ K ↓ϕ iff (i) X ⊆ K,
(ii) X 6|= ϕ, and (iii) for every X ′ s.t. X ⊂ X ′ ⊆ K,
X ′ |= ϕ. We call the elements of K ↓ϕ remainder sets of K
w.r.t. ϕ.

It is easy to verify that remainder sets are belief sets, and
that remainder sets can be generated semantically by adding
precisely one countermodel of ϕ to the models of K (when
such countermodels exist). Also, K ↓ϕ = ∅ iff |= ϕ.

Since there is no unique method for choosing between
possibly different remainder sets, AGM contraction presup-
poses the existence of a suitable selection function for do-
ing so.

Definition 2 A selection function σ is a function from
P(P(LP)) to P(P(LP)) s.t. σ(K ↓ ϕ) = {K}, if
K ↓ϕ = ∅, and ∅ 6= σ(K ↓ϕ) ⊆ K ↓ϕ otherwise.

Selection functions provide a mechanism for identifying the
remainder sets judged to be most appropriate, and the result-
ing contraction is then obtained by taking the intersection of
the chosen remainder sets.

Definition 3 For σ a selection function,−σ is a partial meet
contraction iff K −σ ϕ =

⋂
σ(K ↓ϕ).

One of the fundamental results of AGM contraction is a rep-
resentation theorem which shows that partial meet contrac-
tion corresponds exactly with the six basic AGM postulates.

Theorem 1 ((Gärdenfors 1988)) Every partial meet con-
traction satisfies (K−1)–(K−6). Conversely, every con-
traction function satisfying (K−1)–(K−6) is a partial meet
contraction.

Two subclasses of partial meet deserve special mention.

Definition 4 Given a selection function σ, −σ is a maxi-
choice contraction iff σ(K ↓ϕ) is a singleton set. It is a full
meet contraction iff σ(K ↓ϕ) = K ↓ϕ wheneverK ↓ϕ 6= ∅.
Clearly full meet contraction is unique, while maxichoice
contraction usually is not. Observe also that partial meet
contraction satisfies the following convexity principle.

Proposition 1 Let K be a belief set, let −mc be a maxi-
choice contraction, and let −fm be full meet contraction.
For every belief set X s.t. (K −fm ϕ) ⊆ X ⊆ K −mc ϕ,
there is a partial meet contraction −pm such that K −pm
ϕ = X .

That is, every belief set between the results from full meet
contraction and some maxichoice contraction is obtained
from some partial meet contraction. This result plays an im-
portant part in our definition of Horn contraction.



Horn Contraction Horn contraction differs from classi-
cal AGM contraction in a number of ways. The most basic
differences are the use of Horn logic as the underlying logic
and allowing for the contraction of finite sets of sentences Φ.

As recognised by Delgrande (2008), the move to Horn
logic admits the possibility of more than one type of con-
traction. He considers two types: entailment-based contrac-
tion (or e-contraction) and inconsistency-based contraction
(or i-contraction). In what follows, we recall Delgrande’s
approach and develop our theory of Horn contraction.

Entailment-based contraction
For e-contraction, the goal of contracting with a set of sen-
tences Φ is the removal of at least one of the sentences in
Φ. For full propositional logic, contraction with a set of sen-
tences is not particularly interesting since contracting by Φ
will be equivalent to contracting by the single sentence

∧
Φ.

For Horn logic it is interesting though, since the conjunction
of the sentences in Φ is not always expressible as a single
sentence. (An alternative, and equivalent approach, would
have been to allow for the conjunction of Horn clauses as
Delgrande (2008) does, but for reasons that will become
clear later, we have not opted for this choice.) Our start-
ing point for defining Horn e-contraction is in terms of Del-
grande’s definition of e-remainder sets.

Definition 5 (Horn e-Remainder Sets) For a belief set H ,
X ∈ H ↓e Φ iff (i) X ⊆ H , (ii) X 6|= Φ, and (iii) for every
X ′ s.t. X ⊂ X ′ ⊆ H , X ′ |= Φ. We refer to the elements of
H ↓eΦ as the Horn e-remainder sets of H w.r.t. Φ.

It is easy to verify that all Horn e-remainder sets are belief
sets. Also, H ↓eΦ = ∅ iff |= Φ.

We now proceed to define selection functions to be used
for Horn partial meet e-contraction.

Definition 6 (Horn e-Selection Functions) A partial meet
Horn e-selection function σ is a function from P(P(LH))
to P(P(LH)) s.t. σ(H ↓e Φ) = {H} if H ↓e Φ = ∅, and
∅ 6= σ(H ↓eΦ) ⊆ H ↓eΦ otherwise.

Using these selection functions, we define partial meet Horn
e-contraction.

Definition 7 (Partial Meet Horn e-Contraction) Given a
partial meet Horn e-selection function σ, −σ is a partial
meet Horn e-contraction iff H −σ Φ =

⋂
σ(H ↓eΦ).

We also consider two special cases.

Definition 8 (Maxichoice and Full Meet) Given a partial
meet Horn e-selection function σ, −σ is a maxichoice Horn
e-contraction iff σ(H ↓e Φ) is a singleton set. It is a full
meet Horn e-contraction iff σ(H ↓e Φ) = H ↓e Φ when
H ↓eΦ 6= ∅.

Example 1 Let H = Cn({p→ q, q → r}). Then H ↓e
{p → r} = {H ′, H ′′}, where H ′ = Cn({p→ q}), and
H ′′ = Cn({q → r, p ∧ r → q}). So contracting with {p →
r} yields either H ′, H ′′, or H ′ ∩H ′′ = Cn({p ∧ r → q}).

Beyond Partial Meet Contraction
While all partial meet e-contractions (and therefore also
maxichoice and full meet e-contractions) are appropriate
choices for e-contraction, they do not make up the set of
all appropriate Horn e-contractions. This has a number of
implications, one of them being that it conflicts with Del-
grande’s conjecture that orderly maxichoice e-contraction is
the appropriate form of e-contraction.

The argument that maxichoice e-contraction is not suffi-
cient is a relatively straightforward one. In full propositional
logic the argument against maxichoice contraction relates to
the link between AGM revision and contraction via the Levi
Identity (Levi 1977): K ? ϕ = (K − ¬ϕ) + ϕ. For maxi-
choice contraction this has the unfortunate consequence that
a revision operator obtained via the Levi Identity will sat-
isfy the following “fullness result”, i.e., K ? ϕ is a complete
theory: If ¬ϕ ∈ K then for all ψ ∈ LP, ψ ∈ K ? ϕ or
¬ψ ∈ K ? ϕ. Semantically, this occurs because the models
of any remainder set for ϕ are obtained by adding a single
countermodel of ¬ϕ to the models of K. And while it is
true that e-remainder sets for Horn logic do not always have
this property, the fact is that they still frequently do, which
means that maxichoice e-contraction will frequently cause
the same problems as in propositional logic. For example,
consider the Horn belief set H = Cn({p, q}). It is easy
to verify that [H] = {11}, that the e-remainder sets of {p}
w.r.t.H areH ′ = Cn({p→ q, q → p}) andH ′′ = Cn({q}),
and that [H ′] = {11, 00} and [H ′′] = {11, 01}: i.e., the
models of H ′ and H ′′ are obtained by adding to the mod-
els of H a single countermodel of p. This is not to say that
maxichoice e-contraction is never appropriate. Similar to
the case for full propositional logic, we argue that all maxi-
choice Horn e-contractions ought to be seen as rational ways
of contracting. It is just that other possibilities may be more
applicable in certain situations. And, just as in the case for
full propositional logic, this leads to the conclusion that all
partial meet e-contractions ought to be seen as appropriate.

Once partial meet e-contraction has been accepted as nec-
essary for Horn e-contraction, the obvious next question is
whether partial meet Horn e-contraction is sufficient, i.e.,
whether there are any rational e-contractions that are not par-
tial meet Horn e-contractions. For full propositional logic
the sufficiency of partial meet contraction can be justified by
Proposition 1 which, as we have seen, states that every be-
lief set between full meet contraction and some maxichoice
contraction is obtained from some partial meet contraction.
It turns out that the same result does not hold for Horn logic.

Example 2 As we have seen in Example 1, for the
e-contraction of {p → r} from the Horn belief
set Cn({p→ q, q → r}), full meet yields Hfm =
Cn({p ∧ r → q}) while maxichoice yields either H1

mc =
Cn({p→ q}) or H2

mc = Cn({q → r, p ∧ r → q}). Now
consider the belief set H ′ = Cn({p ∧ q → r, p ∧ r → q}).
It is clear that Hfm ⊆ H ′ ⊆ H2

mc, but there is no partial
meet e-contraction yielding H ′.

Our contention is that Horn e-contraction should be ex-
tended to include cases such as H ′ above. Since full meet
Horn e-contraction is deemed to be appropriate, it stands



to reason that any belief set H ′ bigger than it should also
be seen as appropriate, provided that H ′ does not con-
tain any irrelevant additions. But since H ′ is contained
in some maxichoice Horn e-contraction, H ′ cannot contain
any irrelevant additions. After all, the maxichoice Horn e-
contraction contains only relevant additions, since it is an
appropriate form of contraction. Hence H ′ is also an appro-
priate result of e-contraction.
Definition 9 (Infra e-Remainder Sets) For belief sets H
and X , X ∈ H ⇓e Φ iff there is some X ′ ∈ H ↓e Φ s.t.
(
⋂
H ↓eΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓eΦ

as the infra e-remainder sets of H w.r.t. Φ.
Note that all e-remainder sets are also infra e-remainder sets,
and so is the intersection of any set of e-remainder sets. In-
deed, the intersection of any set of infra e-remainder sets is
also an infra e-remainder set. So the set of infra e-remainder
sets contains all belief sets between some Horn e-remainder
set and the intersection of all Horn e-remainder sets. This
explains why Horn e-contraction is not defined as the inter-
section of infra e-remainder sets (cf. Definition 7).
Definition 10 (Horn e-Contraction) An infra e-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓e Φ) = H whenever |= Φ, and τ(H ⇓e Φ) ∈
H ⇓e Φ otherwise. A contraction function −τ is a Horn
e-contraction iff H −τ Φ = τ(H ⇓eΦ).

A Representation Result
Our representation result makes use of all of the basic AGM
postulates, except for the Recovery Postulate (K − 6). It
is easy to see that Horn e-contraction does not satisfy Re-
covery. As an example, take H = Cn({p→ r}) and let
Φ = {p ∧ q → r}. Then H − Φ = Cn(∅) and so
(H −e Φ) + Φ = Cn({p ∧ q → r}) 6= H . In place of
Recovery we have a postulate that closely resembles Hans-
son’s (1999) Relevance Postulate, and a postulate handling
the case when trying to contract with a tautology.
(H−e 1) H −e Φ = Cn(H −e Φ)
(H−e 2) H −e Φ ⊆ H
(H−e 3) If Φ 6⊆ H then H −e Φ = H

(H−e 4) If 6|= Φ then Φ 6⊆ H −e Φ
(H−e 5) If Cn(Φ) = Cn(Ψ) then H −e Φ = H −e Ψ
(H−e 6) If ϕ ∈ H \ (H −e Φ) then there is a H ′ such that⋂

(H ↓eΦ) ⊆ H ′ ⊆ H , H ′ 6|= Φ, and H ′ + {ϕ} |= Φ
(H−e 7) If |= Φ then H −e Φ = H

Postulates (H −e 1)–(H −e 5) are analogues of (K−1)–
(K−5), while (H −e 6) states that all sentences removed
from H during a Φ-contraction must have been removed for
a reason: adding them again brings back Φ. (H−e7) simply
states that contracting with a (possibly empty) set of tautolo-
gies leaves the initial belief set unchanged. We remark that
(H −e 3) is actually redundant in the list, since it can be
shown to follow mainly from (H−e 6).
Theorem 2 Every Horn e-contraction satisfies (H −e 1)–
(H −e 7). Conversely, every contraction function satisfying
(H−e 1)–(H−e 7) is a Horn e-contraction.

Inconsistency-based Contraction
We now turn our attention to Delgrande’s second type of
contraction for Horn logic: inconsistency-based contraction,
or i-contraction. The purpose of this type of contraction by a
set Φ is to modify the belief set H in such a way that adding
Φ to H does not result in an inconsistent belief set: (H −i
Φ) + Φ 6|= ⊥. Our starting point for defining i-contraction is
in terms of Delgrande’s definition of i-remainder sets with
respect to Horn logic.

Definition 11 (Horn i-Remainder Sets) For a belief set
H , X ∈ H ↓i Φ iff (i) X ⊆ H , (ii) X + Φ 6|= ⊥, and
(iii) for every X ′ s.t. X ⊂ X ′ ⊆ H , X ′ + Φ |= ⊥. We refer
to the elements of H ↓iΦ as the Horn i-remainder sets of H
w.r.t. Φ.

It is again easy to verify that Horn i-remainder sets are
belief sets and that H ↓iΦ = ∅ iff Φ |= ⊥.

The definition of i-remainder sets is similar enough to
that of e-remainder sets (Definition 5) that we can define
partial meet Horn i-selection functions, partial meet Horn
i-contraction, maxichoice Horn i-contraction, and full meet
Horn i-contraction by repeating Definitions 6, 7, and 8, but
referring to H ↓iΦ rather than H ↓eΦ.

Beyond Partial Meet
As in the case for e-contraction we argue that while par-
tial meet Horn i-contractions are all appropriate forms of
i-contraction, they do not represent all rational forms of
i-contraction. The argument against maxichoice Horn i-
contraction is essentially the same one put forward against
maxichoice Horn e-contraction. That is, the result H −i Φ
of maxichoice Horn i-contraction frequently results in a be-
lief set which differs semantically from H by adding a sin-
gle valuation to the models of H in order to avoid incon-
sistency. We can, in fact, use a variant of the same exam-
ple used against maxichoice Horn e-contraction. Let H =
Cn({p, q}) and Φ = {p → ⊥}. Then [H] = {11}, the i-
remainder sets of Φ w.r.t. H are H ′ = Cn({p→ q, q → p})
and H ′′ = Cn({q}), and [H ′] = {11, 00} and [H ′′] =
{11, 01}: i.e., the models of H ′ and H ′′ are obtained by
adding to the models of H a single valuation in order to
avoid inconsistency. The case against partial meet Horn
i-contraction is again based on the fact that it does not al-
ways include all belief sets between some maxichoice Horn
i-contraction and full meet Horn i-contraction, leading us to
infra i-remainder sets.

Definition 12 (Infra i-Remainder Sets) For belief sets H
and X , X ∈ H ⇓i Φ iff there is some X ′ ∈ H ↓i Φ s.t.
(
⋂
H ↓iΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓iΦ

as the infra i-remainder sets of H w.r.t. Φ.

Horn i-contraction is defined i.t.o. infra i-remainder sets:

Definition 13 (Horn i-Contraction) An infra i-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓i Φ) = H whenever Φ |= ⊥, and τ(H ⇓i Φ) ∈
H ⇓i Φ otherwise. A contraction function −τ is a Horn i-
contraction iff H −τ Φ = τ(H ⇓iΦ).



A Representation Result
Our representation result for i-contraction is very similar to
that for e-contraction and Postulates (H−i1)–(H−i7) below
are clearly close analogues of (H−e 1)–(H−e 7).
(H−i 1) H −i Φ = Cn(H −i Φ)
(H−i 2) H −i Φ ⊆ H
(H−i 3) If H + Φ 6|= ⊥ then H −i Φ = H

(H−i 4) If Φ 6|= ⊥ then (H −i Φ) + Φ 6|= ⊥
(H−i 5) If Cn(Φ) = Cn(Ψ) then H −i Φ = H −i Ψ
(H−i 6) If ϕ ∈ H \ (H −i Φ), there is a H ′ s.t.

⋂
(H ↓i

Φ) ⊆ H ′ ⊆ H , H ′ + Φ 6|= ⊥, and H ′ + (Φ ∪ {ϕ}) |= ⊥
(H−i 7) If |= Φ then H −i Φ = H

Analogously with e-contraction, rule (H−i3) can be shown
to follow mainly from (H −i 6). We show that Horn i-
contraction is characterised precisely by these postulates.
Theorem 3 Every Horn i-contraction satisfies (H −i 1)–
(H −i 7). Conversely, every contraction function satisfying
(H−i 1)–(H−i 7) is a Horn i-contraction.

Package Horn Contraction
The third and last type of contraction we consider is referred
to as package contraction, a type of contraction studied by
Fuhrmann and Hansson (1994) for the classical case (i.e.,
for logics containing full propositional logic). The goal is to
remove all sentences of a set Φ from a belief set H . For full
propositional logic this is similar to contracting with the dis-
junction of the sentences in Φ. For Horn logic, which does
not have full disjunction, package contraction is more inter-
esting. Our primary interest in package contraction relates to
an important version of contraction occurring in ontological
reasoning, as we shall see below.

Our starting point is again in terms of remainder sets.
Definition 14 (Horn p-Remainder Sets) For a belief set
H , X ∈ H ↓p Φ iff (i) X ⊆ H , (ii) Cn(X) ∩ Φ = ∅,
and (iii) for every X ′ s.t. X ⊂ X ′ ⊆ H , Cn(X ′) ∩ Φ 6= ∅.
We refer to the elements of H ↓pΦ as the Horn p-remainder
sets of H w.r.t. Φ.
It is easily verified that Horn p-remainder sets are belief sets.
In addition, the following definition will be useful.
Definition 15 A set Φ is tautologous iff for every valuation
v, there is a ϕ ∈ Φ such that v  ϕ.
It can be verified thatH ↓pΦ = ∅ iff Φ is tautologous. (Note
that tautologous is not the same as tautological.)

The definition of p-remainder sets is similar enough to
that of e-remainder sets (Definition 5) that we can define
partial meet Horn p-selection functions, partial meet Horn
p-contraction, maxichoice Horn p-contraction, and full meet
Horn p-contraction by repeating Definitions 6, 7, and 8, but
referring to H ↓pΦ rather than H ↓eΦ.

Since e- and p-contraction coincide for contraction by
singleton sets, our argument also holds for p-contraction.
Also, Example 2 is also applicable to p-contraction, from
which it follows that partial meet p-contraction is not suffi-
cient either. Consequently, as we did for e-contraction and
i-contraction, we move to infra p-remainder sets.

Definition 16 (Infra p-Remainder Sets) For belief sets H
and X , X ∈ H ⇓p Φ iff there is some X ′ ∈ H ↓p Φ s.t.
(
⋂
H ↓pΦ) ⊆ X ⊆ X ′. We refer to the elements of H ⇓pΦ

as the infra p-remainder sets of H w.r.t. Φ.
Horn p-contraction is then defined in terms of infra p-
remainder sets in the obvious way.
Definition 17 (Horn p-contraction) An infra p-selection
function τ is a function from P(P(LH)) to P(LH) s.t.
τ(H ⇓p Φ) = H whenever Φ is tautologous, and τ(H ⇓p
Φ) ∈ H ⇓p Φ otherwise. A contraction function −τ is a
Horn p-contraction iff H −τ Φ = τ(H ⇓pΦ).

A Representation Result
The representation result for p-contraction is very similar to
that for e-contraction, with Postulates (H −p 1)–(H −p 7)
being close analogues of (H−e 1)–(H−e 7).

Observe that the following definition is used in (H−p 5).
Definition 18 For sets of sentences Φ and Ψ, Φ≡̂Ψ iff either
both are tautologous, or ∀v ∈ V , ∃ϕ ∈ Φ s.t. v  ϕ iff
∃ψ ∈ Ψ s.t. v  ψ.
This definition describes a notion of set equivalence which
is appropriate to ensure syntax independence.
(H−p 1) H −p Φ = Cn(H −p Φ)
(H−p 2) H −p Φ ⊆ H
(H−p 3) If H ∩ Φ = ∅ then H −p Φ = H

(H−p 4) If Φ is not tautologous then (H −p Φ) ∩ Φ = ∅
(H−p 5) If Φ≡̂Ψ then H −p Φ = H −p Ψ
(H−p 6) If ϕ ∈ H \ (H −p Φ), there is a H ′ s.t.

⋂
(H ↓p

Φ) ⊆ H ′ ⊆ H , Cn(H ′) ∩ Φ = ∅, and (H ′ + ϕ) ∩ Φ 6= ∅
(H−p 7) If Φ is tautologous then H −p Φ = H

Once more (H−p3) is actually redundant here. We show that
these postulates characterise Horn p-contraction exactly.
Theorem 4 Every Horn p-contraction satisfies (H −p 1)–
(H −p 7). Conversely, every contraction function satisfying
(H−p 1)–(H−p 7) is a Horn p-contraction.

p-Contraction as i-Contraction
In addition to p-contraction being of interest in its own right,
we have a specific interest in the case where Φ contains only
basic Horn clauses: those with exactly one atom in the head
and in the body. Our interest in it is because of its rela-
tion to an important version of contraction for ontological
reasoning in the EL family of DLs. Briefly, basic Horn
clauses correspond closely to basic subsumption statements
in the EL family: statements of the form A v B where A
and B are concept names. Its importance stems from the
fact that basic subsumption statements are used to repair
the subsumption hierarchy. A detailed investigation of this
form of contraction for the EL family is beyond the scope of
this paper. Here we just show that Horn p-contraction with
basic Horn clauses can be represented as a special case of
Horn i-contraction. Define i as a function from sets of basic
Horn clauses to sets of Horn clauses, such that for any set
Φ = {p1 → q1, . . . , pn → qn} of basic Horn clauses, we
have i(Φ) = {p1, . . . , pn, q1 → ⊥, . . . , qn → ⊥}.



Proposition 2 Let H be a Horn belief set and let Φ be a set
of basic Horn clauses. Then K −p Φ = K −i i(Φ).

It is worth noting that this result does not hold for the case
where Φ includes general Horn clauses.

Related Work
In recent years there has been considerable interest in deal-
ing with inconsistent ontologies represented in description
logics (Baader et al. 2003) but for the most part, this has not
been presented explicitly as a contraction problem. While
there has been some work on revision for Horn logics (Eiter
and Gottlob 1992; Liberatore 2000; Langlois et al. 2008),
the only work of importance on Horn contraction, to our
knowledge, is that of Delgrande (2008), and this section is
mainly devoted to a discussion of his work.

Delgrande defines and characterises a version of e-
contraction which introduces additional structure in the
choice of e-remainder sets by placing a linear order on all
e-remainder sets involving a belief set H (i.e., for all pos-
sible Φs). When performing contraction by a set Φ, one is
obliged to choose the remainder set ofH w.r.t. Φ that is min-
imal w.r.t. the linear order. The additional structure imposed
by the use of these linear orders ensures that this kind of
e-contraction is actually more restrictive than maxichoice e-
contraction, although Delgrande refers to it as maxichoice
e-contraction. We shall refer to it as orderly maxichoice e-
contraction. Delgrande conjectures that orderly maxichoice
e-contraction is the appropriate form of e-contraction for
Horn logic. Our work is not directly comparable to that of
Delgrande since he works on the level of full AGM contrac-
tion, obtained by also considering the extended postulates,
whereas we are concerned only with basic contraction, and
leave the extension to full contraction for future work. Nev-
ertheless, it is clear that an extension to full contraction will
involve more than just orderly maxichoice e-contraction.

Delgrande also defines a version of orderly maxichoice
i-contraction, but his representation result is in terms of
maxichoice i-contraction: he refers to it as singleton i-
contraction. He takes a fairly dim view of i-contraction,
primarily because of the following result: If p → ⊥ ∈ H
then either q ∈ H −i {p} or q → ⊥ ∈ H −i {p} for every
atom q. His main concern with this is related to the fact that
revision defined in terms of the Levi Identity (i-contraction
followed by expansion) will yield a result in which all struc-
ture ofH , given in terms of Horn clauses, is lost. This means
that for him a move to partial meet i-contraction is not the
solution either, since any prior structure contained in H will
still be lost. We view this objection as somewhat surprising
in this context, since Horn contraction is intended to operate
on the knowledge level in which the structure of the theory
from which the belief set is generated is irrelevant. So, while
we agree that the formal result on which he bases his objec-
tions is a good argument against maxichoice i-contraction
(it is closely related to our argument against maxichoice e-
contraction above, it does not provide a persuasive argu-
ment against partial meet i-contraction. It is worth noting
that he does not consider i-contraction in terms of infra i-
remainder sets at all. Finally, Delgrande expresses doubts

about i-contraction, but our result for p-contraction shows
that this is too pessimistic.

Conclusion and Future Work
In this paper we have laid the groundwork for contraction in
Horn logic by providing formal accounts of basic versions of
three types of contraction: e-contraction, i-contraction, and
p-contraction. Both e-contraction and i-contraction have
previously been studied by Delgrande (2008). We have
shown that Delgrande’s conjectures about orderly maxi-
choice contraction being the appropriate version for these
two forms of contraction were perhaps a bit premature.

Here we focus only on basic Horn contraction. For future
work we plan to investigate Horn contraction for full AGM
contraction, obtained by adding the extended postulates.

And finally, arguably the most interesting of the three ver-
sions of contraction we considered is p-contraction, because
of its close links with contraction in DLs, specifically the
EL family of DLs. Consequently, for future work we plan
to extend our results for Horn contraction to DLs.
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