
Progressing Basic Action Theories with Non-Local Effect Actions

Stavros Vassos
Department of Computer Science

University of Toronto
Toronto, Canada

stavros@cs.toronto.edu

Sebastian Sardina
School of Computer Science

RMIT University
Melbourne, Australia

ssardina@cs.rmit.edu.au

Hector Levesque
Department of Computer Science

University of Toronto
Toronto, Canada

hector@cs.toronto.edu

Abstract

In this paper we propose a practical extension to some re-
cent work on the progression of action theories in the situ-
ation calculus. In particular, we argue that the assumption
of local-effect actions is too restrictive for realistic settings.
Based on the notion of safe-range queries from database the-
ory and just-in-time action histories, we present a new type of
action theory, called range-restricted, that allows actions to
have non-local effects with a restricted range. These theories
can represent incomplete information in the initial database in
terms of possible closures for fluents and can be progressed
by directly updating the database in an algorithmic manner.
We prove the correctness of our method and argue for the ap-
plicability of range-restricted theories in realistic settings.

Introduction
One of the requirements for building agents with a pro-
active behavior is the ability to reason about action and
change. The ability to predict how the world will be af-
ter performing a sequence of actions is the basis for offline
automated planning, scheduling, web-service composition,
etc. In the situation calculus (McCarthy & Hayes 1969;
Reiter 2001) such reasoning problems are examined in the
context of the basic action theories (BATs). These are logi-
cal theories that specify the preconditions and effects of ac-
tions, and an initial database (DB) that represents the initial
state of the world before any action has occurred.

A BAT can be used to solve offline problems as well as
to equip a situated agent with the ability to keep track of the
current state of the world. As a BAT is a static entity, in the
sense that the axioms do not change over time, the reasoning
about the current state is typically carried over using tech-
niques based on regression, that transform the queries about
the future into queries about the initial state (Reiter 2001).
This is an effective choice for some applications, but a poor
one for many settings where an agent may act autonomously
for long periods of time. In those cases, it is mandatory that
the BAT be (periodically) updated so that the initial DB be
replaced by a new one reflecting the changes due to the ac-
tions that have already occurred. This is identified as the
problem of progression for BATs (Lin & Reiter 1997).

In general, a DB in a BAT is an unrestricted first-order
logical theory that offers great flexibility and expressiveness.
The price to pay is high: for most realistic scenarios it is

hard to find practical solutions. As far as progression is con-
cerned, it was shown by Lin and Reiter (1997) that the up-
dated DB requires second-order logic in the general case.
For this reason, many restrictions on the BATs have been
proposed so that the updated DB is first-order representable.
It was recently shown that progression is practical provided
actions are limited to have local effects only (Vassos, Ger-
hard, & Levesque 2008).

The restriction on so-called local-effects actions essen-
tially means that all the properties of the world that may be
affected by an action are directly specified by the arguments
of the action. For example, an action that may affect two
boxes box1 and box2 that are located next to the agent needs
to explicitly mention them in the arguments of the action,
e.g., break(box1, box2). In that way, global effects, which
are considered to be one of the reasons why progression may
be second-order, are avoided all-together (e.g., the explosion
of a bomb affecting all the objects in the world).

Clearly, the local-effect assumption is too restrictive for
many realistic scenarios. For instance, the action of moving
a container which causes all objects in it to be moved as
well cannot be represented. Similarly, the effect of objects
being broken when they are near an object that is exploded
cannot be captured with local-effect actions. Such type of
indexical, though not fully global-effect, information arises
naturally in many real domains, e.g., consider the case of a
non-player-character in a video game that needs to reason
about the effects of moving a container object.

In this paper, we extend local-effect BATs to account for
such kind of indexical information. To that end, we present
what we call range-restricted BATs, that allow effects to be
non-local but with a restricted range. For such theories, we
describe a method for progression such that the new DB is
first-order and finite, and we prove that the method is log-
ically correct. To our knowledge, it is the first result on
progression for BATs with an infinite domain, incomplete
information, and sensing that goes beyond local-effect.

Formal preliminaries
The situation calculus (McCarthy & Hayes 1969) is a first-
order logic language with some limited second-order fea-
tures, designed for representing and reasoning about dynam-
ically changing worlds. A situation represents a world his-
tory as a sequence of actions. The constant S0 is used to
denote the initial situation where no action has yet been per-

formed; sequences of actions are built using the function do:
do(a, s) denotes the situation resulting from performing ac-
tion a in situation s. Relations whose truth values vary from
situation to situation are called fluents, and are denoted by
predicate symbols taking a situation term as their last argu-
ment (e.g., Holding(x, s)). A special predicate Poss(a, s) is
used to state that action a is executable in situation s; and
special function sr(a, s) denotes the (binary) sensing out-
come of action a when executed in situation s (Scherl &
Levesque 2003).

In this paper, we shall restrict our attention to a language
L with a finite number of relational fluent symbols (i.e., no
functional fluents) that only take arguments of sort object
(apart their last situation argument), an infinite number of
constant symbols of sort object, and a finite number of func-
tion symbols of sort action that take arguments of sort object.
We adopt the following notation with subscripts and super-
scripts: α and a for terms and variables of sort action; σ and
s for terms and variables of sort situation; t and x, y, z, w for
terms and variables of sort object. Also, we use A for action
function symbols, F,G for fluent symbols, and b, c, d, e, o
for constants of sort object.

Often we will focus on sentences that refer to a particular
situation. For this purpose, for any σ, we define the set of
uniform formulas in σ to be all those (first-order or second-
order) formulas in L that do not mention any other situation
terms except for σ, do not mention Poss, and where σ is not
used by any quantifier (Lin & Reiter 1997).

Basic action theories
Within the language, one can formulate action theories that
describe how the world changes as the result of the available
actions. We focus on a variant of the basic action theories
(BAT) (Reiter 2001) of the following form:1

D = Dap ∪ Dss ∪ Duna ∪ Dsr ∪ D0 ∪ Dfnd ∪ E ,where:

1. Dap is the set of action precondition axioms (PAs), one per
action symbol A, of the form Poss(A(~y), s) ≡ ΠA(~y, s),
where ΠA(~y, s) is uniform in s.

2. Dss is the set of successor state axioms (SSAs), one
per fluent symbol F , of the form F (~x, do(a, s)) ≡
ΦF (~x, a, s), where ΦF (~x, a, s) is uniform in s. SSAs cap-
ture the effects, and non-effects, of actions.

3. Dsr is the set of sensing-result axioms (SRAs), one for
each action symbol A, of the form sr(A(~y), s) = r ≡
ΘA(~y, r, s), where ΘA(~y, r, s) is uniform in s. SRAs re-
late sensing outcomes with fluents.

4. Duna is the set of unique-names axioms for actions.
5. D0, the initial database (DB), is a set of sentences uni-

form in S0 that describe the initial situation S0.
6. Dfnd is the set of domain independent axioms of the situ-

ation calculus, formally defining the legal situations.
7. E is a set of unique-names axioms for object constants.

Progression
We follow the definition of the so-called strong progression
of (Vassos, Gerhard, & Levesque 2008); we only extend it
slightly to account for sensing actions.

1For legibility, we typically omit leading universal quantifiers.

Let D be a BAT over relational fluents F1, . . . , Fn, and
let Q1, . . . , Qn be second-order predicate variables. For any
formula φ in L, let φ〈~F : ~Q〉 be the formula that results from
replacing any fluent atom Fi(t1, . . . , tn, σ) in φ, where σ is
a situation term, with atom Qi(t1, . . . , tn).
Definition 1. Let D be a BAT over fluents ~F, α an action of
the form A(~c), and d a sensing result. Then, Pro(D,α,d) is
the following second-order sentence uniform in do(α, S0):

∃ ~Q. D0〈~F : ~Q〉 ∧ΘA(~c, d, do(α, S0)) ∧∧n
i=1∀~x. Fi(~x, do(α, S0)) ≡

(
Φi(~x, α, S0)〈~F : ~Q〉

)
.

We say that a set of formulas Dα uniform in do(α, S0) is a
strong progression of D wrt (α, d) iff Dα is logically equiv-
alent to Pro(D, α, d). �

The important property of strong progression is that Dα ∪
(D −D0) is equivalent to the original theory D wrt answer-
ing unrestricted queries about do(α, S0) and the future sit-
uations after do(α, S0), even queries that quantify over sit-
uations. Although Pro(D, α, e) is defined in second-order
logic we are interested in cases where we can find a Dα that
is first-order representable. In the sequel, we shall present a
restriction on D that is a sufficient condition for doing this
as well as a method for computing a finite Dα.

Range-restricted basic action theories
In this section we present a new type of basic action theo-
ries such that D0 is a database of possible closures and the
axioms in Dap, Dss, and Dsr are built on range-restricted
formulas.

A database of possible closures
Intuitively, we treat each fluent as a multi-valued function,
where the last argument of sort object is considered as the
“output” and the rest of the arguments of sort object as the
“input” of the function.2 This distinction then is important
as we require thatD0 expresses incomplete information only
about the output of fluents.
Definition 2. Let V = {e1, . . . , em} be a set of constants
and τ a fluent atom of the form F (~c, w, S0), where ~c is a
vector of constants and w a variable. We say that τ has the
ground input ~c and the output w. The atomic closure χ of τ
on {e1, . . . , em} is the following sentence:

∀w.F (~c, w, S0) ≡ (w = e1 ∨ · · · ∨ w = em).
The notion generalizes to the vector of atoms ~τ and the vec-
tor of sets of constants ~V, as the conjunction of each of the
atomic closures of τi on Vi. A possible closures axiom
(PCA) for ~τ is a disjunction of closures of ~τ . We say that
each atomic closure mentioned in the PCA is a possible clo-
sure wrt the PCA. �

The following is a straightforward property of closures.
Lemma 1. Let φ be the closure of ~τ and ψ be a closure of
~π on some appropriate vectors. Then φ ∧ ψ is a consistent
closure iff for every i, j such that τi = πj , the atomic closure
of τi in φ and the one of πj in ψ are identical.

2The notion of input-output arguments is similar to that of
modes in logic programming (Apt & Pellegrini 1994). Also, the
results obtained here generalize easily to multiple outputs.

A closure of ~τ expresses complete information about
the output of ~τ while a PCA for ~τ expresses disjunc-
tive information it. For example, let Near(x, y, s) rep-
resent that y is lying near the object x, and χ1 be
∀w.Near(bomb, w, S0) ≡ (w = agent ∨ w = box1). Then,
χ1 is the atomic closure of Near(bomb, w, S0) on
{agent, box1} which states that there are exactly two objects
near the bomb, namely agent and box1. Similarly, let χ2 be
the closure of Near(bomb, w, S0) on {agent, box2}. Then,
χ1 ∨ χ2 is a PCA for Near(bomb, w, S0) expressing that
there are exactly two objects near the bomb, one being the
agent and the other being either box1 or box2.

Next, let us define the form of the initial database D0.

Definition 3. A database of possible closures (DBPC) is a
finite set of PCAs such that there is no fluent atom with a
ground input that appears in more than one PCA. �

This implies that for every fluent atom τ with a ground input,
either the output of τ is completely unknown in S0 or there
is a finite list of possible closures for τ that are explicitly
listed in exactly one PCA.

Going back to the bomb example, let Status(x, y, s) rep-
resent that the object x has the status y and let D0 be
the following DBPC: {χ1 ∨ χ2, χ3, χ4, χ5}, where χ3 is
the closure of Status(agent, w, S0) on {ready}, χ4 the clo-
sure of Status(box1, w, S0) on {closed}, χ5 the closure of
Status(box2, w, S0) on {closed, broken}, and χ1, χ2 as be-
fore. Each sentence in D0 is a PCA: χ1 ∨ χ2 lists two pos-
sible closures for Near(bomb, w, S0), while χ3, χ4, χ5 list
one possible closure and express complete information.

We now turn our attention to the so-called possible an-
swers to a query γ(~x) wrt a DBPC D0.

Definition 4. Let D0 be a DBPC, and γ(~x) a first-order for-
mula uniform in S0 whose only free variables are in ~x. The
possible answers to γ wrtD0, denoted as pans(γ,D0), is the
smallest set of pairs (~c, χ) such that:

• χ is a closure of some vector ~τ s.t. E ∪ {χ} |= γ(~c);
• χ is consistent with D0 and minimal in the sense that ev-

ery atomic closure in χ is necessary. �

Intuitively, pans(γ,D0) is a way to characterize all the cases
where the query formula γ(~x) is satisfied in a model of
D0 for some instantiation of ~x. For example, let γ(x) be
the query Near(bomb, x, S0). Then, pans(γ,D0) is the set
{(agent, χ1), (box1, χ1), (agent, χ2), (box2, χ2)}.

It is important to observe that the possible answers
to a query may be infinite. For instance, let γ1(x) be
Near(agent, x, S0). Since nothing is said about the ob-
jects near the agent in D0, for every constant c in L,
(c, χc) ∈ pans(γ1(x),D0), where χc is the closure of
Near(agent, w, S0) on {c}, i.e., there is always a model
in which Near(agent, c) would indeed hold. Similarly, let
γ2(x) be ¬Near(bomb, x, S0). Then, pans(γ2(x),D0) in-
cludes the infinite set {(c, χ1) | c 6= agent, c 6= box1}, since
everything but agent or box1 is far when χ1 is assumed.

Formulas with finite possible answers
We distinguish two ways that the set of possible answers can
be infinite. In the query γ1 above, this happens because what
is being queried is completely unknown inD0. In the second

query though, fluent atom Near(bomb, w) is mentioned in
some PCA and the infinite number of instantiations c for x
are in fact due to the possible closure χ4 of the PCA.

Our objective is to useD0 to answer queries for which the
possible answers depend on the information that is explicitly
expressed in the PCAs. This is captured with the following
just-in-time assumption for formulas.
Definition 5. Let D0 be a DBPC and γ(~x) a first-order for-
mula uniform in S0 whose only free variables are in ~x. Then
γ(~x) is just-in-time (JIT) wrt D0 iff for every vector of con-
stants ~c, γ(~c) is consistent with D0 ∪ E iff there exists a
closure χ such that {χ} ∪ E |= γ(~c), where χ is a conjunc-
tion of closures such that each conjunct is a possible closure
wrt a PCA in D0. �

Assuming that a formula is JIT is not enough to avoid an
infinite set of possible answers. We need also to ensure that
it is range-restricted in the following sense.
Definition 6. The situation-suppressed formula γ in L is
safe-range wrt a set of variables X according to the rules:

1. let ~c,~c1,~c2 be a vectors of constants, c, d constants, and
x, y distinct variables, then:
• x = c is safe-range wrt {x};
• F (~c, d, S0), F (~c1, x,~c2, d, S0) are safe-rage wrt {};
• F (~c, y, S0), F (~c1, x,~c2, y, S0) are safe-range wrt {y};

2. if φ is safe-range wrt Xφ, ψ is safe-range wrt Xψ then,
• φ ∨ ψ is safe-range wrt Xφ ∩Xψ;
• φ ∧ ψ is safe-range wrt Xφ ∪Xψ;
• ¬φ is safe-range wrt {};
• ∃xφ is safe-range wrt X/{x} provided that x ∈ X;

3. no other formula is safe-range.
A formula is said to be range-restricted iff it is safe-range
wrt the set of its free variables. �

For example, the formula Near(x, y, S0) is safe-range wrt
{y}, but not range-restricted and not JIT wrt the D0

of our example. The formulas Near(bomb, y, S0) and
Near(bomb, y, S0) ∧ Status(y, z, S0) are range-restricted as
well as JIT wrt D0.

We now state the main result of this section.
Theorem 1. Let D0 be a DBPC and γ(~x) a first-
order formula uniform in S0 that is range-restricted and
just-in-time wrt D0. Then, pans(γ,D0) is a finite set
{(~c1, χ1), . . . , (~cn, χn)} such that the following holds:

D0 ∪ E |= ∀~x.γ(~x) ≡
n∨
i=1

(~x = ~ci ∧ χi).

Proof sketch. It suffices to prove a stronger lemma about
the safe-range formulas as follows. Let γ(~x, ~y) be a first-
order formula that is just-in-time wrt D0, safe-range wrt
the variables in ~x, and does not mention any free vari-
able other than ~x, ~y. Then for every constant vector ~d that
has the same size as ~y, pans(γ(~x, ~d),D0) is a finite set
{(~e1, χ1), . . . , (~en, χn)} such that the following holds:

D0 ∪ E |= ∀~x.γ(~x, ~d) ≡
n∨
i=1

(~x = ~ei ∧ χi).

We prove this lemma by induction on the construction of
the formulas γ. Since γ is safe-range wrt the variables in
~x we only need to consider the cases of the Definition 6.
Due to space limitations we only show the case that γ(x, y)
is F (~c1, y,~c2, x). Let d be an arbitrary constant of the lan-
guage. Then γ(x, d) is the formula F (~c1, d,~c2, x). By the
fact that γ(x, y) is JIT wrt D0 it is not difficult to show
that there is a PCA φ in D0 that mentions F (~c1, d,~c2, w).
Without loss of generality we assume that φ is a PCA for
F (~c1, d,~c2, w). We will show how to rewrite φ in the form
that the lemma requires. The axiom φ has the form

∨n
i=1 χi,

where each χi is an atomic closure of F (~c1, d,~c2, w) on
some set of constants {e1, . . . , em}, i.e, a sentence of the
form ∀w.F (~c1, d,~c2, w) ≡ w = e1 ∨ . . . ∨ w = em. For
each χi of this form let χ′i be the formula

∨m
j=1(x = ej∧χi),

and let φ′ be ∀x.F (~c1, d,~c2, x) ≡
∨n
i=1 χ

′
i. It suffices to

show that D0 ∪ E |= φ′. Let M be an arbitrary model
of D0 ∪ E . Since φ is a sentence in D0 it follows that
M |= φ. By the definition of a possible closures axiom and
the Lemma 1 it follows that there is exactly k, 1 ≤ k ≤ n,
such that M |= χk. Observe that if we simplify χk to true
and all the other χi to false in φ′ we obtain the sentence χk.
Therefore, M |= φ′ and since M was an arbitrary model
of D0 ∪ E , it follows that D0 ∪ E |= φ′. Also, by the
Definition 4 and the structure of φ′ it follows that the set
pans(γ(x, d),D0) is the set that the lemma requires. �

In other words, the range-restricted and the JIT assump-
tions on queries are sufficient conditions to guarantee finitely
many possible answers. The idea then is to build action the-
ories from range-restricted formulas and allow progression
to take place only when the JIT assumption also holds. In
this case we shall show in the next session that we are able
to effectively progress D0 in a logically correct way.

First, we assume that the formulas ΦF (~x, a, s) of SSAs
have the usual general form (Reiter 2001):

γ+
F(~x, a, s) ∨ (F (~x, s) ∧ ¬γ−F(~x, a, s)),

where γ+
F and γ−F characterize the positive and negative ef-

fects of actions. A range-restricted BAT is built on formulas
such that when instantiated with any action argument α and
any sensing result e, they become range-restricted.
Definition 7. An SSA for F is range-restricted iff
γ+
F(~x, a, s) and γ−F(~x, a, s) are disjunctions of formulas of

the form:
∃~z(a = A(~y) ∧ φ(~y, ~w, s)),

where ~z corresponds to the variables in ~y but not in ~x, ~w
to the ones in ~x but not in ~y, and φ(~x, ~w, s), called a context
formula, is such that φ(~c, ~w, S0) is range-restricted for any~c.
Similarly, an SRA for A is range-restricted iff ΘA(~c, d, S0)
is range-restricted for any ~c and d. A range-restricted basic
action theory (RR-BAT) is a BAT such that all axioms in
Dss,Dsr are range-restricted and D0 is a DBPC. �

For example, consider an SSA for Status(x1, x2, s). The
context formula in γ+

Status that refers to the action of the bomb
exploding may be as follows:

a = expl ∧ Near(bomb, x1, s) ∧ x2 = broken,
This has the effect of setting the “broken” status to all ob-
jects near the bomb. Note that the action expl has no argu-
ments, and that the context formula is range-restricted. It is

easy to verify that the formula is JIT wrt D0 as well. The
same holds for a context formula in γ+

Status that removes any
other status for all the affected objects:

a= expl∧Near(bomb, x1, s)∧Status(x1, x2, s)∧x26=broken.

Just-in-time progression
The RR-BATs are defined so that the axioms in Dss,Dsr are
built on range-restricted formulas. We now show that under
a just-in-time assumption there is a finite set of ground flu-
ent atoms that may be affected. The intuition is that in this
case we can progress D0 by appealing to the techniques in
(Vassos, Gerhard, & Levesque 2008) that work when the set
of fluents that may be affected is fixed by the action.

The progression method for the general case
The next definition captures the condition under which our
method for progression is logically correct.
Definition 8. An RR-BAT D is just-in-time (JIT) wrt the
ground action α and the sensing result d iff for all fluent
symbols F , γ+

F(~x, α, S0) and γ−F(~x, α, S0) are JIT wrt D0,
and ΘA(~c, d, S0) is JIT wrt D0, where α is A(~c). �

We introduce the following notation.
Definition 9. LetD be an RR-BAT that is JIT wrt the ground
action α and the sensing result d. The context set of (α, d)
wrt D, denoted as J , is the set of all the fluent atoms
F (~e, w, S0) such that one of the following is true:3

1. for some b, χ, the pair (〈~e, b〉, χ) is a possible answer to
γ∗F(〈~x,w〉, α, S0) wrt D0;

2. for some ~o, b, χ, the pair (〈~o, b〉, χ) is a possible answer to
γ∗F(〈~x, y〉, α, S0) wrt D0 and F (~e, w, S0) appears in χ;

3. for some χ, the pair (∅, χ) is a possible answer to
ΘA(~c, d, S0) wrt D0, where α is the term A(~c) and ∅ the
empty vector and F (~e, w, S0) appears in χ. �

Intuitively, the context set J specifies all those atomic clo-
sures that need to be updated after the action is performed
(case 1) as well as those on which the change is conditioned
on (case 2), and the atomic closures for which some condi-
tion is sensed to be true (case 3). The important property of
J , which follows from Theorem 1, is that it is a finite set.
Lemma 2. Let D be an RR-BAT that is JIT wrt the ground
action α and the sensing result d. Then the context set of
(α, d) wrt D is a finite set.

We now define the J -models which provide a way of sep-
arating D0 into two parts: one that remains unaffected after
the action is performed and one that needs to be updated.
Definition 10. Let J = {τ1, . . . , τn} be the context set of
(α, d) wrt a RR-BAT D. A J -model χ is a closure of the
vector 〈τ1, . . . , τn〉 such that for every i, 1 ≤ i ≤ n, the
atomic closure of τi in χ is a possible closure wrt some PCA
in D0. �

Note that there are finitely many J -models. The disjunc-
tion φ then of all the J -models is a larger PCA that corre-
sponds to the “cross-product” of the PCAs inD0 that capture
the same information about ~τ . Observe that φ corresponds to

3Whenever the notation γ∗ is used, γ∗ can be either γ+ or γ−.

the part of D0 that needs updating. The intuition then is that
we can progress D0 by progressing each of the J -models.
Definition 11. Let D be an RR-BAT that is JIT wrt the
ground action α and sensing result d, J the context set
of (α, d), and χ a J -model, where χ is the closure of
〈F1(~c1, w, S0), . . . , Fn(~cn, w, S0)〉 on 〈V1, . . . , Vn〉. The
progression of χ wrt (α, d) is the closure ψ1 ∧ · · · ∧ ψn,
where ψi is the closure of Fi(~ci, w, S0) on (Vi ∪ Γ+

i)/Γ−i
and Γ∗i is the following set of constants:

{e | (〈~ci, e〉, ω) ∈ pans(γ∗Fi
(〈~x,w〉, α, S0)), ω ∧ χ 6|= ⊥}.

The J -model χ is filtered iff for all possible answers (~o, φ)
to ΘA(~c, d, S0) wrt D0, where α = A(~c), χ ∧ φ is inconsis-
tent. �

Each of the J -models χ is updated based on the possible
answers of the formulas γ∗F in Dss. For every possible an-
swer (~o, ω) of the instantiated γ∗F , the atom F (~o) is either re-
moved or added to the closure provided that the condition ω
for the change is consistent with the J -model χ in question.
Moreover, a J -model may be filtered if it is not consistent
with the conditions that are implied by the sensing result d.

We now state the main result of this section that illustrates
how the new database is constructed from D0.
Theorem 2. Let D be an RR-BAT that is consistent and
JIT wrt the ground action α and the sensing result d, J the
context set of (α, d) wrt D, {χ1, . . . , χn} the set of all the
J -models that are not filtered, and {φ1, . . . , φm} the set of
all PCAs in D0 that do not have any atoms in common with
any J -model. Let Dα be the following set:{ n∨

i=1

ψi, φ1, . . . , φm
}
,

where ψi is the progression of χi wrt (α, d). Then, the set
Dα(S0/do(α, S0)) is a strong progression of D wrt (α, d),
whereDα(σ/σ′) denotes the result of replacing every occur-
rence of σ in every sentence in Dα by σ′.
Observe that the progression of D0 is again a DBPC.

A practical case
Our method of progression is based on the ability to com-
pute possible answers. The time complexity of the method,
as well as the size of Dα, is dominated by the size of the
sentence

∨
i φi in Theorem 2. Roughly speaking, we do two

things that have a high computational cost: first, we compute
pans(γ,D0) for formulas γ inDss,Dsr, and second, we com-
bine the answers in a way that is similar to a cross-product.

In order to give some insight on the practicality of our
method, we examine the case that the formulas γ that need to
be evaluated are similar to the so-called conjunctive queries
(Abiteboul, Hull, & Vianu 1994), in particular, formulas of
the form ∃~x(φ1 ∧ · · · ∧ φn), where φi is a possibly non-
ground fluent atom with variables that may not be in ~x.

Given a conjunctive query γ as input and a DBPCD0, Al-
gorithm 1 checks whether γ is range-restricted and JIT wrt
D0, and if so, computes the set pans(γ,D0). The algorithm
works by selecting a fluent atom for which a finite-range as-
sumption can be made (line 4 & 8), simplifying γ wrt this

Algorithm 1 pans(γ,D0)
1: if γ is the empty conjunction then
2: return {(∅,>)} // query reduced to >
3: end if
4: ∆={F (~c, t, S0) ∈ γ |F (~c, w, S0) is mentioned in D0}
5: if ∆ = ∅ then
6: return failure // no fluent to continue
7: else
8: Pick F (~c, t, S0) ∈ ∆ // arbitrary selection
9: X:= ∅ // init answer set

10: for all χF = F (~c, w, S0) ≡ w = d1 ∨ . . .∨ dn ∈ D0

do
11: if t is a variable then
12: Γ = {d1, . . . , dn}
13: else
14: Γ = {d1, . . . , dn} ∩ {t}
15: end if
16: for all constants e ∈ Γ do
17: θ′:= {t/e | t is variable}
18: Y := pans(γθ′ \ {F (~c, e, S0)},D0)
19: if Y = failure then
20: return failure // propagate failure
21: else
22: W := {(θθ′, χ∧χF) | (θ, χ)∈ Y, D0 ∪ {χ∧

χF } 6|= ⊥} // merge results
23: X:= X ∪W // update current set
24: end if
25: end for
26: end for
27: X:={(θ|~x, χ)|(θ, χ)∈X,~x are the free variables in γ}
28: return X
29: end if

atom, and recursively finding the possible answers for the
simplified formula (line 18) until all atoms in γ have been
selected (line 1). Instead of working with vectors of terms,
the algorithm computes bindings for all variables.

It turns out that the algorithm is a sound and complete way
for computing the possible answers of range-restricted and
JIT formulas, when these are conjunctive queries.
Theorem 3. Let D0 be a DBPC and γ a first-order con-
junctive query uniform in S0. Then, Algorithm 1 always ter-
minates with inputs γ and D0, and moreover, if γ is range-
restricted and JIT wrt D0, it returns the set pans(γ,D0).

The conjunctive queries are expressive enough to repre-
sent basic features of practical domains. For example, the
context formula of γ+

Status that we examined earlier, namely
Near(bomb, x1, s) ∧ x2 = broken, is a simple conjunctive
query. As another example consider an agent living in a
grid-world, typical of many video games. The agent may
reason about its next location Loc(z, do(a, s)) after doing
action a by using an SSA whose positive effect γ+

Loc(z, a, s)
contains the following disjunct:

a = moveFwd ∧
∃x∃y(Dir(y, s) ∧ Loc(x, s) ∧ Adj(x, y, z, s) ∧ Clear(z, s)).

That is, when moving forward, the agent is in location z if z
is the adjacent cell to its current location x towards its cur-
rent direction y (e.g., north, east), and z is not blocked with

an obstacle. Clearly, this positive effect relies on multiple in-
dexical information and action moveFwd is not local-effect.

Algorithm 1 can easily be extended to handle equalities
as well as negated atoms. The first case can be easily ad-
dressed via standard unification procedures. For negative lit-
erals the idea is to collect also the set ∆− of ground literals
of the form ¬F (~c, d, S0) such that F (~c, w, S0) is mentioned
in D0. When a negative literal is selected, the algorithm
works in the same way as for the ground positive literal ex-
cept that it iterates over the possible closures of F (~c, w, S0)
for which F (~c, d, S0) is not true. (Observe that this is similar
to the way logic-programming implementation techniques
for negation as failure (Apt & Pellegrini 1994).)

Finally, a comment about the complexity of Algorithm 1
and progression. Let ` be the size of the largest closure in
D0 and k the maximum number of possible closures in a
PCA in D0. Then, Algorithm 1 runs in time O(|γ|k`): there
are k` value-closure pairs to be tested for each atom in γ.
With respect to progression, this implies that, in the worst
case, the size of the new database Dα may be exponential
to the size of D0. Nevertheless, we expect the size of Dα
to be manageable in practical scenarios like the previous ex-
ample, where the expressiveness of γ and D0 is mostly used
to answer queries that require indexical reasoning.

Related and future work
The notion of progression for BATs was first introduced by
Lin and Reiter (1997). The version we use here is due to
Vassos et al (2008) which we extended slightly to account
for sensing. Lin and Reiter (1997) suggested some strong
syntactic restrictions on the BATs that allow for a first-order
progression, while Vassos and Levesque (2008) suggested
a restriction on the queries. Liu and Levesque (2005) in-
troduced the local-effect assumption for actions when they
proposed a weaker version of progression that is logically
incomplete, but remains practical. Vassos et al. (2008) later
showed that under this assumption a correct first-order pro-
gression can be computed by updating a finite D0. Our re-
striction of Definition 7 is similar. The main difference is
that we do not require that the arguments ~x of the fluent F
are included in the arguments ~y of the action, thus handling
cases like the moveFwd example. To stay practical though
we had to restrict the structure of D0. Finally, similar to
the notion of progression, Shirazi and Amir (2005) proposed
logical filtering as a way to progressD0 and proved that their
method is correct for answering uniform queries.

The notion of possible closures is a generalization of the
possible values of Vassos and Levesque (2007). The notions
of the safe-range and range-restricted queries come from the
database theory where this form of “safe” queries has been
extensively studied (Abiteboul, Hull, & Vianu 1994). The
notion of just-in-time formulas was introduced for a differ-
ent setting in (De Giacomo, Levesque, & Sardina 2001) and,
in our case, is also related to the active domain of a database
(Abiteboul, Hull, & Vianu 1994). Outside of the situation
calculus, Thielscher (1999) defined a dual representation for
BATs based on state update axioms that explicitly define the
direct effects of each action, and investigated progression in
this setting. Unlike our work where the sentences in D0 are
replaced with an updated version, there, the update relies on

expressing the changes using constraints.

Conclusions
In this paper, we proposed a new type of basic action the-
ories, where the initial description is a set of possible clo-
sures and the effects of actions have a restricted range.
For these theories, called range-restricted, we presented a
method that computes a finite first-order progression by di-
rectly updating the initial database, and proved its correct-
ness. To the best of our knowledge, it is the first result on
the progression of basic action theories with an infinite do-
main, incomplete information, and sensing that goes beyond
the local-effect assumption. We argue that the type of in-
dexical information that our theories can handle arises nat-
urally in real domains, e.g., when an agent needs to reason
about the effects of moving a container. We considered also
a practical restriction that is typical in logic-programming,
and presented an algorithm for the task that our progres-
sion method relies on, namely computing possible answers.
Our next step is to evaluate the approach by relying on
logic-programming frameworks and recent work on incon-
sistent/incomplete databases (e.g., Fuxman et al (2005)).

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1994. Foundations of
Databases : The Logical Level. Addison Wesley.
Apt, K., and Pellegrini, A. 1994. On the occur-check free Prolog
program. ACM Toplas 16(3):687–726.
De Giacomo, G.; Levesque, H. J.; and Sardina, S. 2001. In-
cremental execution of guarded theories. Computational Logic
2(4):495–525.
Fuxman, A.; Fazli, E.; and Miller, R. J. 2005. Conquer: efficient
management of inconsistent databases. In Proc. of SIGMOD-05,
155–166. ACM Press.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92(1-2):131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with in-
complete first-order knowledge in dynamic systems with context-
dependent actions. In Proc. of IJCAI.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical prob-
lems from the standpoint of artificial intelligence. Machine Intel-
ligence 4:463–502.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dyn. Sys. MIT Press.
Scherl, R., and Levesque, H. J. 2003. Knowledge, action, and the
frame problem. Artificial Intelligence 144(1–2):1–39.
Shirazi, A., and Amir, E. 2005. First-order logical filtering. In
Proc. of IJCAI-05, 589–595.
Thielscher, M. 1999. From situation calculus to fluent calculus:
State update axioms as a solution to the inferential frame problem.
Artificial Intelligence 111(1-2):277–299.
Vassos, S., and Levesque, H. 2007. Progression of situation calcu-
lus action theories with incomplete information. In Proc. IJCAI,
2024–2029.
Vassos, S., and Levesque, H. J. 2008. On the progression of
situation calculus basic action theories: Resolving a 10-year-old
conjecture. In Proc. of AAAI.
Vassos, S.; Gerhard, L.; and Levesque, H. J. 2008. First-order
strong progression for local-effect basic action theories. In Proc.
of KR, 662–272.

