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Abstract

Intelligent agents require methods to revise their epistemic
state as they acquire new information. Jeffrey’s rule, which
extends conditioning to uncertain inputs, is used to revise
probabilistic epistemic states when new information is uncer-
tain. This paper analyses the expressive power of two possi-
bilistic counterparts of Jeffrey’s rule for modeling belief re-
vision in intelligent agents. We show that this rule can be
used to recover most of the existing approaches proposed in
knowledge base revision, such as adjustment, natural belief
revision, drastic belief revision, revision of an epistemic by
another epistemic state. In addition, we also show that that
some recent forms of revision, namely reinforcement opera-
tors, can also be recovered in our framework.

Introduction
An intelligent agent’s information is often uncertain, in-
consistent and incomplete. It is then crucially important
to define mechanisms to manage it in response to focus-
ing on a specific problem or in response to the acquisition
of new, possibly conflicting, information. The term infor-
mation covers a broad range of entities such as knowledge,
perceptions, beliefs, expectations, preferences, or causal re-
lations. It can describe agents’ view of the world, itself, its
actions and its understanding of changes.

During the past twenty years, many approaches have been
proposed to address the problem of belief change from the
axiomatic point of view (e.g., (Gärdenfors 1988), (Darwiche
& Pearl 1997)), from the semantics point of view (e.g.,
(Williams 1994), (Boutilier 1993), (Thielscher 2005)) and
from the the computational point of view ((Nebel 1994),
(Benferhat et al. 2002)).

Due to lack of space, this paper only focuses on the se-
mantics of belief revision in the framework of possibility
theory. The basic object in possibility theory is a possibil-
ity distribution, which is a mapping from the set of classi-
cal interpretations to an ordered structure, usually the inter-
val [0, 1]. A possibility distribution rank-orders the potential
states of the real world according to their level of plausibil-
ity, and represents the information available to an agent.

The revision of a possibility distribution can be viewed
as a so-called “transmutation” (Makinson 1994) that modi-
fies the ranking of interpretations so as to give priority to the
input information. In particular, two forms of possibilistic

revision, called possibilistic revision with partial epistemic
states, are investigated as the counterparts of Jeffrey’s rule
of revision in probability theory. These two forms of possi-
bilistic revision consist in modifying a possibility distribu-
tion π with a set of weighted, mutually exclusive formulas
µ = {φi, ai}, called partial epistemic states, which express
that the possibility of φ is equal to ai. These two forms
of revision come down to modifying the possibility π such
that each formula φi is accepted with the prescribed degree
ai. The new degrees ai’s may be either a constant deter-
mined for example by an expert, or a function defined for
instance with respect to the original possibility degree asso-
ciated with φi.

This paper first extends the natural properties described in
(Benferhat et al. 2002) in order to take into account the new
form of the input, namely a partial epistemic state. Then
we present two definitions of possibilistic revision opera-
tors that naturally extend the two forms of conditioning that
have been defined in the possibility theory framework. We
also compare possibilistic revision with the counterpart of
Jeffrey’s rule of conditioning. In its second half, the paper
shows that most of existing belief revision operators can be
recovered by one of the two forms of possibilistic revision
with respect to partial epistemic states.

But first in order to establish the new results, we need to
restate the necessary background on possibility theory.

Possibilistic representations of epistemic states
Let L be a finite propositional language with formulas φ or
ψ. � denotes the (semantical) classical consequence rela-
tion. Ω is the set of classical interpretations, and [φ] is the
set of classical models of φ.

An epistemic agent is a special kind of intelligent agent,
one that at any given moment in time is in a specific epis-
temic state, e.g. it will have a set of current beliefs which
are crafted from its background knowledge, conceptual un-
derstanding and its (internal and external) perceptions.

We take the traditional interpretation of beliefs and epis-
temic states and view an epistemic state as a set of beliefs
where a belief is a relation between an epistemic agent and
an object of belief represented as a logical sentence or a
proposition.

There are several common representations of epistemic
states such as : well ordered partitions of Ω, probabilistic



epistemic states, Grove’s systems of spheres, Spohn’s Or-
dinal Conditional Functions (OCF), etc. Throughout this
paper we use a general representation of a total preorder,
namely a possibility distribution π, which is a mapping from
Ω to the interval [0,1].

Indeed a possibility distribution can be used for represent-
ing any total preorder, and any operator on a total preorder
on Ω can be translated into an operator on a possibility dis-
tribution to obtain the same outcome. We will identify oper-
ators that require the full power of the [0, 1] scale.

Given an interpretation ω ∈ Ω, π(ω) represents the de-
gree of compatibility of ω with the available information (or
beliefs) about the real world. π(ω) = 0 means that the in-
terpretation ω is impossible, and π(ω) = 1 means that noth-
ing prevents ω from being the real world. Interpretations ω
where π(ω) = 1 are considered to be expected (they are not
at all surprising). When π(ω) > π(ω′), ω is a preferred can-
didate to ω′ for being the real state of the world. The less
π(ω) the less plausible ω or the more different it is to the
current world. A possibility distribution π is said to be nor-
mal if ∃ω ∈ Ω, such that π(ω) = 1, in other words if at least
one interpretation is a fully plausible candidate for being the
actual world.

Given a possibility distribution π, the possibility degree
of formula φ is defined as:

Ππ(φ) = max{π(ω) : ω ∈ [φ]}.
It evaluates the extent to which φ is consistent with the

available information expressed by π. When there is no am-
biguity, we simply write Π(φ) instead of Ππ(φ). Note that
Π(φ) is evaluated under the assumption that the situation
where φ is true is as normal as can be (since Π(φ) reflects
the maximal plausibility of a model of φ).

Given a possibility distribution π, the semantic deter-
mination of the content of an epistemic state denoted by
content(π), is obtained by considering all sentences which
are more plausible than their negation, namely:

content(π) = {φ : Π(φ) > Π(¬φ)}.
Namely, content(π) is a classical theory whose models

are the interpretations having the highest degrees in π. When
π is normalized, models of content(π) are interpretations
which are completely possible, namely [content(π)] = {ω :
π(ω) = 1}. The sentence φ belongs to content(π) when φ
holds in all the most normal or plausible situations (hence φ
is expected, or accepted as being true).

Lastly, given a formula φ, two different types of condi-
tioning (Dubois & Prade 1998) have been defined in possi-
bility theory (when Π(φ) > 0):
• In an ordinal setting, we have:

π(ω |m φ) = 1 if π(ω) = Π(φ) and ω � p
= π(ω) if π(ω) < Π(φ) and ω ` p
= 0 if ω 6∈ [p].

(1)

This is the definition of minimum-based conditioning.
• In a numerical setting, we get:

π(ω |· φ) = π(ω)
Π(φ) if ω � p

= 0 otherwise
(2)

This is the definition of product-based conditioning.
These two definitions of conditioning satisfy an equation of
the form

∀ω, π(ω) = π(ω | φ)⊕Π(φ)
which is similar to Bayesian conditioning, where ⊕ is min
and the product respectively. The rule based on the product
is much closer to genuine Bayesian conditioning than the
qualitative conditioning defined from the minimum which
is purely based on the comparison of levels; product-based
conditioning requires more of the structure of the unit inter-
val. Besides, when Π(φ) = 0, π(ω |m φ) = π(ω |· φ) =
1,∀ω, by convention.

Iterated semantic revision in possibilistic logic
Belief revision results from the effect of accepting a new
piece of information called the input information. In this
paper, it is assumed that the current epistemic state (repre-
sented by a possibility distribution), and the input informa-
tion, do not play the same role. The input must be incorpo-
rated in the epistemic state. In other words, it takes priority
over information in the epistemic state. This asymmetry is
expressed by the way the belief change problem is stated,
namely the new information alters the epistemic state and
not conversely. This asymmetry will appear clearly at the
level of belief change operations. This situation is differ-
ent from the one of information fusion from several sources,
where no epistemic state dominates a priori. In this context,
the use of symmetrical rules is natural especially when the
sources are equally reliable.

Jeffrey’s rule for revising probability distributions
Reasoning in the presence of new observations is a funda-
mental issue in reasoning with uncertainty and imprecision.
In probability theory, there is a natural method for achieving
this task using Jeffrey’s rule (Jeffrey 1965). This rule is
proposed for revising probability distributions based on
the probability kinematics principle whose objective is
minimizing change. In this method, beliefs are represented
as a probability distribution.

Jeffrey’s rule (Jeffrey 1965) provides an effective means
to revise a probability distribution p to p′ given uncertainty
bearing on a set of mutually exclusive and exhaustive events
φi. Note that when speaking of events, φ is short for [φ].
The uncertainty is given in the form of pairs (φi, ai) with:

P ′(φi) = ai. (3)

Jeffrey’s method relies on the fact that although there is
uncertainty about events φi, conditional probability of any
event ψ ⊆ Ω given any uncertain event φi remains the same
in the original and the revised distributions. Namely,

∀φi,∀ψ, P (ψ|φi) = P ′(ψ|φi). (4)

The underlying interpretation of revision implied by the
constraint of Equation 4 is that the revised probability dis-
tribution p′ must not change conditional probability degrees



of any event φ given uncertain events φi. In the probabilistic
framework, applying Bayes rule then marginalization allows
revision of the possibility degree of any event ψ in the fol-
lowing way:

P ′(ψ) =
∑
φi

P ′(φi) ∗
P (ψ, φi)
P (φi)

. (5)

The revised probability distribution p′ (known as Jeffrey’s
rule of conditioning) is the unique distribution that satisfies
(3) and (4) (see(Chan & Darwiche 2005)).

Two forms of possibilistic revision based on
Jeffrey’s rule
The possibilistic counterpart of Jeffrey’s rule was introduced
in (Dubois & Prade 1991) (see also (Dubois & Prade 1997)),
without emphasizing the probability kinematics condition
(4) however. There are two natural ways to define a possi-
bilistic revision based on Jeffrey’s rule, which naturally ex-
tend the two forms of conditioning that exist in possibility
theory.

Note that most existing works on belief revision (both
from semantics and axiomatics perspectives) assume that
the input information is either a propositional formula, or
an epistemic state (namely a possibility distribution).

Defining a possibilistic revision based on Jeffrey’s rule
allows us to define a general framework where the input is
a compact partition of the set of interpretations. Namely,
the input is of the form µ = {(φi, ai) i = 1,m} where
the φi’s are pairwise mutually exclusive formulas. The only
requirement is that there exists at least one aj such that aj =
1. In the following, µ will be called a partial epistemic state.
It is partial in the sense that letting Π′(π′)(φi) = ai does not
amount to the full specification of π′ over the models of φi.

Let us first discuss some natural properties of the revision
of a possibility distribution π and a new input information
µ = {(φi, ai) i = 1,m} to a new possibility distribution
denoted by π′ = π(.|µ). Natural properties for π′ are:

A1 : π′ should be normalized,

A2 : ∀(φi, ai) ∈ µ,Π′(φi) = ai.

A3 : ∀ω, ω′ ∈ [φi] then: π(ω) ≥ π(ω′) then π′(ω) ≥
π′(ω′),

A4 : If for all φi,Π(φi) = ai then ∀ω ∈ [φi] : π(ω) =
π′(ω),

A5 : If π(ω) = 0 then π′(ω) = 0.

A1 means that the new epistemic state is consistent. A2

confirms that the input (φ, a) is interpreted as a constraint
which forces π′ to satisfy:

Π′(φi) = ai.

A3 means that the new possibility distribution should pre-
serve the previous relative order (in the wide sense) between
models of each φi. A stronger version of A3 can be defined:

A′3 : ∀ω, ω′ ∈ [φi] then: π(ω) > π(ω′) iff π′(ω) > π′(ω′),

A′3 clearly extends CR1, CR2 proposed in (Darwiche &
Pearl 1997). A4 means that when all new beliefs φi are ac-
cepted at their prescribed levels ai then revision does not
affect π. A5 stipulates that impossible worlds remain im-
possible after revision. Note that there are no further con-
straints which relate models of different φi in the new epis-
temic state.

The previous properties A1–A5 do not guarantee a unique
definition of conditioning.

A3 suggests that the possibilistic revision process can be
achieved using several parallel changes with a sure input:
First, apply a conditioning (using equations 1 and 2) on each
φi and in order to satisfy A2, the distribution π(· | ¬φ) is de-
normalized so as to satisfy Π′(φi) = ai. Therefore, revising
with µ can be achieved using the following definition:

∀φi ∈ µ,∀ω |= φi, π(ω | µ) = ai ⊕ π(ω |⊕ φi) (6)

where ⊕ is either min or the product, depending on
whether conditioning is based on the product or the mini-
mum operator. When ⊕ = product (resp. min) the possi-
bilistic revision will be simply called product-based (resp.
minimum-based) conditioning with partial epistemic states.

The new degree of models of φi depends on the relative
position of the a priori possibility degree of φi, and the pre-
scribed posterior possibility degree of φi:

• If Π(φi) ≥ ai and when ⊕ =min, all interpretations that
were originally more plausible than ai, are forced to level
ai, which means that some strict ordering between mod-
els of φi may be lost. Hence A′3 is clearly not satisfied.
When ⊕ =product, all plausibility levels are proportion-
ally shifted down (to the level ai).

• If Π(φi) < ai the best models of φi are raised to level
ai. Moreover, when ⊕ =product, the plausibility levels
of other models are proportionally shifted up (to level ai).

Relationships with Jeffrey’s kinematics properties
Another way to define possibilistic revision is to simply ap-
ply the counterpart of Jeffrey’s rule of conditioning (Jeffrey
1965). Namely, given an initial possibility distribution π and
a partial epistemic state µ = {(φi, ai) i = 1,m} we need to
find possibility distributions π′ that satisfy:

Π′(φi) = ai. (7)

and:

∀φi,∀ψ,Π(ψ|⊕φi) = Π′(ψ|⊕φi), (8)

where ⊕ is either a minimum or a product. When ⊕ is
the product then we can show that the possibilistic revision
given by (6) is the unique possibility distribution that satis-
fies (7) and (8). However, it is not the case when ⊕ is the
minimum.



Recovering existing belief revision frameworks
Standard possibilistic conditioning and adjustment
Clearly, possibilistic revision with partial epistemic states
generalizes possibilistic conditioning with a propositional
formula φ. Indeed, applying possibilistic revision given by
(6) with a partial epistemic states µ = {(φ, 1), (¬φ, 0)}
gives exactly the same results if one applies equation (1) on
φ when ⊕ = min (resp. (2) for ⊕ = product).

Similarly, possibilistic revision with uncertain input,
which corresponds to adjustment (see (Benferhat et al.
2002)), is a particular case of possibilistic revision with
a partial epistemic state, where the input is of the form
µ = {(φ, 1), (¬φ, a)}.

Natural belief revision
Let <initial be a total pre-order on the set of epistemic
states. Let φ be a new piece of information. We denote by
<N the result of applying natural belief revision of <initial
by φ. Natural belief revision of <initial by φ proposed in
(Boutilier 1993), also hinted by Spohn (Spohn 1988), pro-
ceeds to minimal change of<initial by considering the most
plausible models of φ in <initial to be the most plausible
interpretation in <N . More precisely, <N is defined as fol-
lows:

• ∀ω ∈ min(Ω, <initial),∀ω′ ∈ min(Ω, <initial), ω =N

ω′

• ∀ω ∈ min(Ω, <initial),∀ω′ 6∈ min(Ω, <initial), ω <N
ω′

• ∀ω 6∈ min(Ω, <initial),∀ω′ 6∈ min(Ω, <initial), ω <N
ω′ iff ω <initial ω′.

To recover natural belief revision, first associate with
<initial a compatible positive possibility distribution 1

πinitial, defined by :
∀ω, ω′ ∈ Ω, πinitial(ω) > πinitial(ω′) iff ω <initial ω′.
Such πinitial always exists. Then let a be such that 1>
a > max{π(ω) : π(ω) 6= 1}. Then define π<N

(.) =
πinput(.|mµ) where µ = {(φ, 1), (¬φ, a)}, πinput(.|mµ) is
the result applying possibilistic revision given by equation
(6) with ⊕ =min. Then we can show that π<N

indeed en-
codes natural belief revision, namely:

∀ω, ω′ ∈ Ω, π<N
(ω) > π<N

(ω′) iff ω <N ω′.

Drastic belief revision
Papini (Papini 2000), has considered a stronger constraint
(also hinted by Spohn (Spohn 1988)) by imposing that each
model of φ should be strictly preferred to each countermodel
of ¬φ, and moreover the relative ordering between models
(resp. countermodels) of p should be preserved. More for-
mally, let us denote by <D be result of applying drastic be-
lief revision of <initial by φ. <D is defined as follows:

• ∀ω, ω′ ∈ [φ], ω <D ω′ iff ω <initial ω′.

1a possibility distribution π is said to be positive if ∀ω, π(ω) >
0.

• ∀ω, ω′ 6∈ [φ], ω <D ω′ iff ω <initial ω′.
• ∀ω ∈ [φ],∀ω′ 6∈ [φ], ω <D ω′.

To recover drastic belief revision, first associate with
<initial a compatible positive possibility distribution πinput,
as defined above. Let ∆(φ) = min{π(ω) : ω |= p}, and a
such that a < ∆(φ).

Then define π<D
(.) = πinput(.|.µ) where µ =

{(φ, 1), (¬φ, a)}, πinput(.|mµ) is the result applying pos-
sibilistic revision given by equation (6) with ⊕ =product.
Then we can show that π<D

indeed encodes drastic belief
revision, namely:

∀ω, ω′ ∈ Ω, π<D
(ω) > π<D

(ω′) iff ω <D ω′.

A revision of epistemic state by epistemic state
In (Benferhat et al. 2000) (see also (Nayak 1994)) a revision
of an epistemic state, denoted here by <initial, by an input
in the form of an epistemic state, denoted here by <input,
is defined. The obtained result is a new epistemic state, de-
noted by <L (L for lexicographic ordering), and defined as
follows:

• ∀ω, ω′ ∈ Ω, if ω <input ω′ then ω <L ω′.
• ∀ω, ω′ ∈ Ω, if ω =input ω

′ then ω <L ω′ iff ω <initial
ω′.

Namely, <L is obtained by refining <input by <initial.
For our purpose, we denote {E0, ..., En} the partition of Ω
induced by <input. Namely:

• ∀i, j ∈ {0, ..., n}, Ei ∩ Ej = ∅, and
⋃
i=1,...,nEi = Ω

(namely, Ei’s represent a partition of Ω)
• ∀i ∈ {0, ..., n},∀ω, ω′ ∈ Ei, ω =input ω

′,
• ∀ω, ω′ ∈ Ω, ω <input ω′ iff ω ∈ Ei, ω′ ∈ Ej and i < j.

Let πinitial and πinput be two positive possibility distri-
butions associated respectively with <initial and <input.

To recover this revision of an epistemic state by an epis-
temic state, first define π<L

(.) = πinput(.|.µ) where µ =
{(φEi

, εi) : i = 0, ..., n} is the result applying possibilis-
tic revision given by equation (6) with⊕ =product. φEi

is a
propositional formulas that exactly admits Ei as the set of its
models. εi’s are infinitesimal (and by convention ε0 = 1).

Then we can show that π<L
indeed encodes <L, namely:

∀ω, ω′ ∈ Ω, π<L
(ω) > π<L

(ω′) iff ω <L ω′.

Reinforcement operator
The last approach that we propose to recover is called a re-
inforcement operator, recently proposed in (Konieczny &
Perez 2008). The idea is that a revision of <initial by
a propositional formula φ only allows the improvement in
plausibility of φ, namely the result makes φ “one unit” more
plausible.

Let new epistemic state , denoted by <R, obtained after
reinforcing φ is defined as follows:

• The relative orderings between models (resp. counter-
models) of φ is preserved.



• Let ω be a model of φ and ω’ be a counter-model of φ. :

– if ω′ = ω then ω <R ω′

– if ω′ <initial ω then if ∀ω” ∈ [φ] where ω′ <initial ω”
we have ω ≤ ω” then ω =R ω

′ otherwise ω′ <R ω
– if ω <initial ω′ then ω <R ω′

To recover the reinforcement operator, we first define
πinput to be a positive possibility distribution associated
with <initial, as defined above. Let S = {a0 =
1, a1, ..., an} be a finite scale 1 > a1 > ... > an > 0 (n
is at least equal to twice the number of different degrees
in πinput. Define pred(ai) = ai−1 with by convention
pred(a0) = 1, and succ(ai) = ai+1 with by convention
Succ(an) = an.

Let ai ∈ S be such that ai = πinput(φ).
Define π<R

(.) = πinitial(.|.µ)(.) where
µ = {(φ,min(1, pred(Π(φ))), (¬φ, succ(Π(¬φ))	Π(φ)}
is the result of applying possibilistic revision given by equa-
tion (6) with⊕ =product, and where “succ(Π(¬φ))	Π(φ)”
is defined as equal to 1 if Π(¬φ) > Π(φ) and equal to
succ(Π(¬φ)) otherwise.

Then we can show that π<R
indeed encodes <R, namely:

∀ω, ω′ ∈ Ω, π<R
(ω) > π<R

(ω′) iff ω <R ω′.

Conclusion
The information held by an intelligent agent is typically un-
certain, inconsistent and incomplete, consequently agents
need sophisticated mechanisms to revise their epistemic
states as they acquire new information over time because
this new information may be in conflict with information in
it epistemic state.

Due to the fundamental nature of the need to maintain an
epistemic state that faithfully reflects an agents understand-
ing there as been considerable scientific effort invested in
developing effective belief revision mechanisms and strate-
gies such as (Gärdenfors 1988), (Darwiche & Pearl 1997),
(Williams 1994), (Nebel 1994), and (Benferhat et al. 2002).

In this paper we show how Jeffrey’s rule can be used to
justify several key existing approaches to belief revision,
then having established this sound relationship we show that
reinforcement operators can be specified using our frame-
work. Lastly, we propose a new form of belief revision
where the input is only a partial representation of epistemic
states using Jeffrey’s rule. All these methods can be used
to enhance the belief management capabilities of intelligent
agents.
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