
A BDI Agent Architecture for a POMDP Planner

Gavin Rens1,2

Alexander Ferrein3

Etienne van der Poel1
1 School of Computing, Unisa, Pretoria, South Africa

2 Knowledge Systems Group, Meraka Institute, CSIR, Pretoria, South Africa
3 Robotics and Agents Research Laboratory, University of Cape Town, South Africa

grens@csir.co.za, alexander.ferrein@uct.ac.za, evdpoel@unisa.ac.za

Abstract

Traditionally, agent architectures based on the Belief-
Desire-Intention (BDI) model make use of pre-
compiled plans, or if they do generate plans, the plans
do not involve stochastic actions nor probabilistic ob-
servations. Plans that do involve these kinds of actions
and observations are generated by partially observable
Markov decision process (POMDP) planners. In partic-
ular for POMDP planning, we make use of a POMDP
planner which is implemented in the robot program-
ming and plan language Golog. Golog is very suit-
able for integrating beliefs, as it is based on the situa-
tion calculus and we can draw upon previous research
on this. However, a POMDP planner on its own cannot
cope well with dynamically changing environments and
complicated goals. This is exactly a strength of the BDI
model; the model is for reasoning over goals dynami-
cally. Therefore, in this paper, we propose an architec-
ture that will lay the groundwork for architectures that
combine the advantages of a POMDP planner written in
the situation calculus, and the BDI model of agency. We
show preliminary results which can be seen as a proof
of concept for integrating a POMDP into a BDI archi-
tecture.

Introduction
Traditionally, plan-based agents that include generative
planning (as opposed to utilizing pre-compiled plans) would
generate a complete plan to reach a specific fixed goal, then
execute the plan. If plan execution monitoring is available,
the agent would replan from scratch when the plan becomes
invalid. Due to the time requirements for generating com-
plete plans, the plan may be invalid by the time it is exe-
cuted. This is because the world may change substantially
during plan generation.

Therefore, Belief-Desire-Intention (BDI) architectures
take a different approach. BDI theory is based on the philos-
ophy of practical reasoning (Bratman 1987). It offers flexi-
bility in planning beyond traditional planning for agents, by
reasoning over different goals. That is, an agent based on
BDI theory can adapt to changing situations by focusing on
the pursuit of the most appropriate goal at the time. Typi-
cally, an appropriate plan to achieve an adopted goal is then
selected from a data base of plans. Although a plan that sat-
isfies certain constraints (e.g., does not conflict with other

adopted plans, is executable, etc.) will be adopted, it may
not be the most appropriate plan in existence. A plan that is
generated with the agent’s current knowledge for guidance,
may be more appropriate. BDI agents can also make rational
decisions as to when to replan if a plan becomes invalid, re-
ducing the amount of replanning, thus increasing the agent’s
reactivity. Note that the BDI model is, however, not the only
approach to replanning (cf. (Likhachev et al. 2005)).

In general, BDI architectures do not make use of plan gen-
eration, they rather draw on plan libraries. While with BDI
approaches, an agent can reason over several goals, the agent
lacks some flexibility by not being able to generate suitable
plans on demand. Therefore, in this paper, we aim at inte-
grating a POMDP planner into a BDI architecture to com-
bine its benefits with the ability to generate plans. More-
over, we want to supply models that are as realistic as possi-
ble. We therefore decided on employing partially observable
Markov Decision Processes (POMDPs).

In this paper we describe our approach for combining
BDI theory with a POMDP planner. Combining the two
formalisms can be viewed from two perspectives. One,
to enhance an existing planner for use in real-time dy-
namic domains by incorporating the planner into a BDI
agent architecture so that the management of goal selec-
tion, planning and replanning is handled in a principled
way. Two, to enhance the classical BDI agent architec-
ture by incorporating a POMDP planner into the BDI ar-
chitecture so that the agent can reason (plan) with knowl-
edge about the uncertainty of the results of its actions, and
about the uncertainty of the accuracy of its perceptions.
We employ the POMDP planner described in our previous
work (Rens, Ferrein, and Van der Poel 2008). This plan-
ner is implemented in Golog (Levesque et al. 1997), which
in turn is based on the situation calculus (McCarthy 1963;
Reiter 2001). An advantage of using a Golog implementa-
tion for the planner is that the integration of beliefs into the
situation calculus has previously been done (e.g., (Bacchus,
Halpern, and Levesque 1999)) and this work can be used for
formulating POMDPs. Further, given a background action
theory, an initial state and a goal state (or reward function in
POMDPs), Golog programs essentially constrain and spec-
ify the search space (the space of available actions).

The resulting plan (or policy in POMDPs) is a Golog pro-
gram which can be executed directly by the agent. To the

best of our knowledge, till present, no BDI-based agent ar-
chitecture has implemented its planning function so as to
generate plans that take stochastic action and partial obser-
vation into account. Therefore, this work can be seen as a
first proof of this concept.

The rest of the paper is organized as follows. In the next
section we introduce the plan generator used in this study.
Then, we briefly introduce the BDI theory, after which we
explain our hybrid BDI/POMDP-planner architecture in de-
tail. Before we conclude, we show some preliminary results
from an implementation of our architecture, which gives a
first proof of our approach.

The Planning Module
The POMDP Model
In partially observable Markov decision processes
(POMDPs) actions have nondeterministic results, yet
may be predicted with a probability of occurrence. And
observations are uncertain: the world is not directly ob-
servable, therefore the agent infers how likely it is that the
world is in some specific state. The agent thus believes
to some degree—for each possible state—that it is in that
state. Furthermore, a POMDP is a decision process and
thus facilitates making decisions as to which actions to
take, given its previous observations and actions. Formally,
a POMDP is a tuple 〈S,A, T ,R,Ω,O, b0〉 with: S, a
finite set of states of the world; A, a finite set of actions;
T : S × A → Π(S) is the state-transition function, where
Π is a probability distribution; R : S × A → R, the
reward function; Ω, a finite set of observations the agent
can experience; O : S × A → Π(Ω), the observation
function; and b0, the initial probability distribution over
all world states in S (see e.g., (Kaelbling, Littman, and
Cassandra 1998)). In the model, b is a belief state, i.e. a
set of pairs (s, p) where each state s ∈ S is associated with
a probability p. The state estimation function SE (b, a, o)
updates the agent’s beliefs. Now the aim of the agent
deploying a POMDP model is to determine a policy, that
is, the actions or decisions that will maximize its rewards.
Formally, a policy π is a function from a set of belief states
B to the set of actions: π : B → A. That is, actions are
conditioned on beliefs. This means that the agent takes its
next decision not only based on a stochastic action model,
but also on a stochastic observation model. In this sense, a
policy can be represented as a policy tree, with nodes being
actions and branches being observations.

Planning over Degrees of Belief
In this section we describe our POMDP planner, an exten-
sion to the decision-theoretic language, DTGolog (Boutilier
et al. 2000).

DTGolog is based on Reiter’s variant of the situation cal-
culus (McCarthy 1963; Reiter 2001), a second-order lan-
guage for reasoning about actions and their effects. Accord-
ing to this calculus, changes in the world are due only to
actions, so that a situation is completely described by the
history of actions starting in some initial situation—do(a, s)

is the term denoting the situation resulting from doing ac-
tion a in situation s. Properties of the world are described by
fluents, which are situation-dependent predicates and func-
tions. For each fluent the user defines a successor state ax-
iom specifying precisely which value the fluent takes on af-
ter performing an action. These, together with precondition
axioms for each action, axioms for the initial situation, and
foundational and unique names axioms, form a so-called ba-
sic action theory (Reiter 2001).

Decision-theoretic planning in DTGolog works roughly
as follows. Given an input program that leaves open sev-
eral action alternatives for the agent, the DTGolog inter-
preter generates an optimal policy. Formally, the interpreter
solves a Markov Decision Process (MDP, cf. e.g., (Puterman
1994)) using the forward search value iteration method—
searching (to a specified horizon) for the actions that will
maximize the total expected reward. Programs are inter-
preted as follows: All possible outcomes of the intended
nondeterministic, stochastic action are expanded. For each
choice point, the action resulting in the optimal value at the
particular point in the MDP, is determined. These values
are calculated relative to the world situation associated with
the point in the MDP. The policy is calculated with an opti-
mization theory consisting of a reward and a transition func-
tion (cf. also (Boutilier et al. 2000)). The transition func-
tion describing transition probabilities between states of the
Markov chain is given by Reiter’s variant of the basic action
theory formalized in the underlying situation calculus (Mc-
Carthy 1963; Reiter 2001). Formally, the BestDo macro
defines the process described above: it evaluates an input
program and recursively builds an optimal policy.

The POMDP planner we use here is BestDoPO (Rens,
Ferrein, and Van der Poel 2008); an extension of BestDo
(BestDo P artially Observable), which calculates an op-
timal policy for the partially observable case (Rens, Fer-
rein, and Van der Poel 2008). The main difference is that
BestDoPO operates on a belief state rather than on a world
state. BestDoPO(p, b, h, π, v, pr) takes as arguments a
Golog program p, a belief state b and a horizon h, which
determines the solution depth sought by the interpreter. The
policy π as well as its value v and the success probability pr
are returned. After a certain action a is performed and the
associated observation o is perceived, the next belief state is
determined via a belief state transition function (similar in
vein to the state estimation function of the previous subsec-
tion, and the successor-state axiom for likelihood weights as
given in (Bacchus, Halpern, and Levesque 1999)):

bnew = BU(o, a, b) .=

btemp = {(s+, p+) | (∃n, s+, p+).(s+, p+) ∈ btemp :

s+ = do(n, s) ∧ choiceNat(n, a, s) ∧ PossAct(n, s)∧
p+ = p · probObs(o, a, s+) · probNat(n, a, s)}

bnew = normalize(btemp).

choiceNat(n, a, s) specifies the possible outcomes n of the
agent’s intention to perform action a. PossAct(n, s) de-
notes the possibility of performing action n in situation s.
probObs(o, a, s+) and probNat(n, a, s) are functions that

return the probability of observing o in the situation s+—
the situation resulting from doing action a, and respectively,
the probability of action n being the outcome of the intention
to execute action a in situation s.

For BestDoPO to be integrated as required for the
present work, two arguments are added to the list:
BestDoPO as defined in (Rens, Ferrein, and Van der Poel
2008) is modified to return δ and to take nom. The input
program may provide information for a sequence of actions
of length greater than the policy horizon. Call the remaining
program δ—the portion of the program that was not used for
policy generation. δ becomes the new program from which
future policies will be generated. nom—the name of the
input program—is used to select the reward function associ-
ated with the input program. Two clauses that are part of the
definition of the modified BestDoPO appear below.

BestDoPO(p, δ, nom, b, h, π, v, pr)
def
=

h = 0 ∧ δ = p ∧
π = stop ∧ ∃v.believedReward(nom, v, b) ∧ pr = 1.

BestDoPO(a : p, δ, nom, b, h, π, v, pr)
def
=

¬actionBelievedPossible(a, b) ∧
δ = p ∧ π = stop ∧ v = 0 ∧ pr = 0 ∨

actionBelievedPossible(a, b) ∧
∃ obs.setofAssocObservations(a, obs) ∧
∃π′, v′, pr.Aux (obs, a, p, δ, nom, b, h, π′, v′, pr) ∧
believedReward(nom, r, b) ∧ π = a;π′ ∧ v = r + v′.

Please refer to (Rens, Ferrein, and Van der Poel 2008) for
more detail.

BDI Theory
A desire is understood as what an agent ideally wants to
achieve, that is, what motivates it. In reality, agents are
resource-bounded, and hence should rationally choose the
desires to pursue whose achievement are most valuable to
the agent and that are achievable according to the agent’s
current situation and capabilities. The desires that have been
committed to pursuing through a rational process of reason-
ing may be called intentions. The Belief-Desire-Intention
(BDI) model of agency takes intentions—in addition to be-
liefs and desires—as first-class mental states. Traditional
agent architectures either simply do not consider intentions,
or do not consider them as explicit operands within the pro-
cesses of an agent’s reasoning system.

The value of taking intentions seriously is that they man-
age the agent’s resources in a rational way. Intentions induce
the agent to act and intentions persist. As such, they fo-
cus the agent’s activity to commit resources and thus pursue
a desire more effectively. Also, because intentions persist,
new intentions are not constantly being adopted: new inten-
tions are constrained by current intentions, and hence, future
deliberation is constrained (Wooldridge 2000).

It is useful to distinguish between deliberation: to decide
on what ends (e.g., reward functions; goal states) to pursue
and means-ends reasoning: how to achieve the ends. Delib-
eration may be further divided into (i) reasoning to generate

options from beliefs, i.e., ‘wishing’ to decide on current de-
sires; (ii) reasoning to select intentions, i.e., ‘focusing’ on
a subset of those desires and committing to achieve them.
Committed-to goals, or plans for achieving them, are inten-
tions.

A BDI agent has at least these seven components
(Wooldridge 1999):
• A knowledge base of beliefs.
• An option generation function (wish), generating the op-

tions the agent would ideally like to pursue (its desires).
• A set of desires Dess returned by the wish function.
• A function (focus) that filters out incompatible, impossi-

ble and less valuable desires, and that focuses on a subset
of the desire set.

• A structure of intentions Ints—the most desireable op-
tions/desires returned by the focus function.

• A belief change function (update): given the agent’s cur-
rent beliefs and the latest percept sensed, the belief change
function returns the updated beliefs of the agent.

• A function (execute) that selects some action(s) from the
plan the agent is currently executing, and executes the ac-
tion(s).
In most of the well known implementations of agents

based on the BDI model (e.g., PRS (Georgeff and In-
grand 1989), IRMA (Bratman, Israel, and Pollack 1988)
and dMARS (Rao and Georgeff 1995)), the plan function
returns plans from a plan library; a set of pre-compiled
plans. An intention structure then structures various plans
into larger hierarchies of plans. An intention in the inten-
tion structure in the classical BDI theory is a partial plan
structured as a hierarchy of subplans. Furthermore, sub-
plans may at some point be abstract, waiting to be ‘filled
in’ (Bratman, Israel, and Pollack 1988). Some BDI archi-
tectures are designed to let the plan function generate plans
from atomic actions (Sardina, De Silva, and Padgham 2006;
Walczak et al. 2007) (or it may possibly use a combination
of pre-compiled and generated plans). However, none of
the architectures that have a generative component employ a
planner that produces plans for a POMDP model.

Combining POMDP Planning with the BDI
Model

In this section we see how an agent controller in the BDI
model can incorporate the BestDoPO POMDP planner into
its practical reasoning processes. We took the prototypical
control loop of the BDI model as a reference and modi-
fied it to accommodate planning with POMDP policies. The
proposed architecture is called BDI-POP (BDI with POmdp
Planner).

First we introduce some terms and their relationships with
the aid of Figure 1 (next page). Implicitly included in the
”BELIEF” data store, is a fixed set of behaviors behs and
a fixed set of reward functions rwds (rwds is considered
globally accessible). behs is the agent’s primitive goals;
its innate drive. The idea is that each behavior refers to a
unique goal that the agent is designed to achieve. Each be-
havior is defined by the set of programs and reward func-
tions that can achieve the behavior. The wish function is

omitted from our architecture (for now) because the op-
tions the agent would pursue at any time are its behaviors
behs. The agent also has a fixed set of desires d. Each
des ∈ d is a triple (nom, prog, ach): nom is a reference
to the Golog program prog, and ach is a reference to the
behavior beh ∈ behs that prog can potentially achieve, thus
ach ∈ behs. The reward functions rf ∈ rwds take as ar-
gument a nom that refers to the program that rf is asso-
ciated with. The following holds: ∀beh.[beh ∈ behs →
(∃des).des = (nom, prog, ach) ∧ ach = beh]: for each
behavior, there exists at least one program to achieve it.

To understand the controller, we also need to consider the
agent’s deliberation process. deliberate is the procedure
that calls and controls the focus predicate and that operates
on the intention stack. We write focus(b, d, i, behs, h−) to
be the predicate that selects one des ∈ d for each beh ∈
behs, placing these desires in a stack, in ascending order,
ordered by the desires’ values. The desire selected for a be-
havior is the one that can achieve the behavior (ach = beh)
and that has the highest value. A desire’s value is estimated
as the value v of the policy found, generated to a depth h−:
BestDoPO is called with b, h− and the applicable prog as
arguments; v is used and the policy is discarded. We keep
h− < h to save on time spent deliberating. focus ’returns’
the stack i of selected desires.

deliberate(b, d, i, behs, ai , i′, h−)
def
=

(isEmpty(i) ∧ ∃i′.focus(b, d, i, behs, h−) ∨
¬isEmpty(i) ∧ ∃i′.i′ = i) ∧
∃ai , i′′.popIntentionStack(i′, ai , i′′).

BDI-POP tests whether a usable policy could be gener-
ated, that is, whether the planner returns the stop policy:
When every outcome of an intended action (according to the
input program) is illegal (according to the background action
theory), BestDoPO returns stop, and we say that the input
program is impossible. An intention i = (nom, prog, ach)
with prog being impossible is thus defined as an impossible
intention.

The strategy used in deliberate to deal with an impossi-
ble intention is extremely simple: it is dropped and the next
intention on the stack is popped. This is a reasonable strat-
egy because the next intention on the stack has the highest
value, and should thus be pursued next. Calling focus to re-
fill the intention stack at this time would defeat the principle
of commitment to intentions. Other strategies are possible,
for example, replacing the impossible intention with another
intention that achieves the same behavior, if one exists.

A logical high-level specification of BDI-POP follows, af-
ter which, it is explained in words.

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π 6= stop ∧ p 6= nil ∧
∃π′′.π = a;π′′ ∧ execute(a) ∧
∃sv.getPercep(a, sv) ∧ ∃o.recognize(a, o) ∧
∃π′′′.getSubPolicy(π′′, o, π′′′) ∧
∃b′.b′ = BU(o, a, b)) ∧
Agent(b′, d, i, behs, ai , π′′′, h, h−).

Figure 1: Schematic diagram of a sketch of the BDI archi-
tecture with the POMDP planner.

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π = stop ∧ p = nil ∧
deliberate(b, d, i, behs, ai ′, i′, h−) ∧
Agent(b, d, i′, behs, ai ′, π, h, h−).

Agent(b, d, i, behs, ai , π, h, h−)
def
=

(nom, p, ach) = ai ∧
π = stop ∧ p 6= nil ∧
∃δ, π′, v, pr.BestDoPO(p, δ, nom, b, h, π′, v, pr) ∧
ai ′ = (nom, δ, ach) ∧
(π′ = stop ∧
∃ai ′′, i′.deliberate(b, d, i, behs, ai ′′, i′, h−) ∧
Agent(b, d, i′, behs, ai ′′, π′, h, h−) ∨

π′ 6= stop ∧
∃π′′.π′ = a;π′′ ∧ execute(a) ∧
∃sv.getPercep(a, sv) ∧ ∃o.recognize(a, o) ∧
∃π′′′.getSubPolicy(π′′, o, π′′′) ∧
∃b′.b′ = BU(o, a, b)) ∧
Agent(b′, d, i, behs, ai ′, π′′′, h, h−)).

The agent follows the intention with the highest value—
the intention popped from the stack. Call this the active in-
tention. Initially, the intention stack is empty, so deliberate
is called and the active intention is instantiated. Whenever
the controller needs a new plan to execute, BestDoPO is

called to generate a policy with horizon h using the program
specified by the active intention. The agent executes the pol-
icy until the end of the policy is reached, then BestDoPO is
called again for the rest of the program. If there is no rest of
program (the program is empty), deliberate is called. If the
program has become impossible, deliberate is called.
getPercept returns a sensor value, given the action exe-

cuted / sensor activated. The agent processes the sensor data
and decides what it observed—the agent recognizes the sen-
sor reading via the recognize predicate, which outputs an
observation. With this observation, the correct subpolicy is
extracted from the current policy, and this (possibly empty)
subpolicy becomes the new current policy.

After the action recommended by the policy is executed,
the agent’s beliefs must be updated according to what it
‘knows’ about the effects of its actions. The same belief
update function used during planning by BestDoPO is used
to update the agent’s beliefs. The current belief state of the
agent will be the ‘initial’ belief state required as argument to
BestDoPO the next time the planner is called.

Given our present definition of deliberate and given that
we shall allow only finite programs for achieving intentions,
the agent is guaranteed to deliberate at regular intervals.
However, this interval period is fixed (to the degree that in-
tentions become impossible). Adding a reconsider predi-
cate that tells the agent once every control cycle whether to
deliberate, is a more sophisticated method. reconsider is
described by, for example, Wooldridge (2000) and “was ex-
amined by David Kinny and Michael Georgeff, in a number
of experiments,” (Wooldridge 1999, p. 57). Because we are
investigating the feasibility of the basic idea of the hybrid
architecture in this paper, we have left out the reconsider
predicate from the present investigation.

A somewhat significant difference of our hybrid archi-
tecture from the perspective of control via POMDP policy
generation, is that—as stand-alone controller—the POMDP
planner takes a single plan with a single associated reward
function, to generate a policy. The new hybrid architec-
ture takes several programs, each with an associated reward
function. This aspect of the agent being able to reason
over multiple behaviors has the advantage that the agent de-
signer can separately specify behaviors that should—at least
intuitively—be considered separately.

BestDoPO expands Golog programs into hierarchically
structured plans (policies), and only programs that have been
selected as intentions are expanded into policies. Each pro-
gram can generate a policy—or several policies if the pro-
gram is expanded piece-wise. Viewing a policy tree as an
intention structure in the sense of traditional BDI architec-
tures, each program in the intention stack represents (at least
one) intention structure. BDI-POP, therefore, maintains sev-
eral unexpanded intention structures, only expanded when
popped from the intention stack.

Implementation and First Experiments
To validate the BDI-POP architecture and to gain a sense
for its performance potential, we observe one agent based
on the architecture, in a simulation. The simulation en-
vironment is inspired by Tileworld (Pollack and Ringuette

1990), a testbed for agents. We designed and implemented
the FireEater world, a dynamically changing grid world (a
5 × 5, two dimensional grid of cells) in which our agent is
situated. There are obstacles that change position and fires
that can be ‘eaten’. Space prohibits a detailed explanation of
FireEater world.

The agent gets one ‘fire-point’ for eating one fire. It can
only eat a fire if it is in the same cell as the fire. There are two
agent behaviors: findFood,eat ∈ behs. findFood
may be realized by two available programs, and eat is
forced to be achieved by one (other) program. The agent
can go left, right, up or down—locomotive actions which
are stochastically nondeterministic; it can sense its location
(probabilistically) and it can eat fire (deterministically).

In order to have a base-line against which the performance
of the new hybrid architecture can be compared, a simple or
‘naive’ architecture (called Naive-POP) was implemented.
It has no explicit intentions or desires as defined for the
BDI model. The agent is provided with a single Golog pro-
gram and associated reward function. In this implementa-
tion, the program loops continuously over a nondeterminis-
tic action—nondeterministic between all available actions.
If there is no rest of program, that is, the agent has executed
the whole program, the agent will stop its activity.

BDI-POP, in contrast, does not employ programs that loop
infinitely (in the experiments): programs were designed so
that they become empty as soon as a policy is generated
from the program. Hence an intention will be regarded as
‘achieved’ as soon as its policy becomes empty. Then the
next intention will be popped from the stack. Because the
size of the stack equals |behs| and because all programs are
finite, it is guaranteed that periodically all intentions will be
achieved, that is, the stack is empty, and the agent is forced
to deliberate to fill the intention stack with a fresh set of in-
tentions.

The two agents as implemented by the two architectures,
have identical knowledge bases, except for their programs
and reward functions. That is, they believe the same actions
are possible, with the same effects and associated probabili-
ties. They both employ the exact same planner: BestDoPO .
The graph in Figure 2 compares the performance of the two

Figure 2: Performance of the two architectures.

architectures. Given the restrictions inherent in their respec-
tive architectures, each agent was roughly optimized to give
them equal advantage.

Both architectures generate policies of horizon depth 3
(h = 3). In BDI-POP, we set h− = 1—the search hori-

zon that focus uses to determine program values. Through-
out the experiments, the strategy for the time allowed to the
agent was the same. There are 6 obstacles and initially 9 fires
in each trial. We allow the agent to perform 3 actions each
time before the obstacle positions change. The parameter for
the number of obstacle changes per simulation cycle is the
only parameter varied during experiments. Fourty trials per
setting of this parameter were performed. Effectiveness is
the total fire-points collected for the 40 trials. Dynamism is
defined as ‘number of obstacle changes per number of agent
actions.

Conclusion
Compared to Naive-POP, the performance of BDI-POP in
our experiments is not that impressive. This does not show
that a BDI agent architecture should not be imbued with a
POMDP planner; several enhancements to the simple BDI
architecture used here are still possible: In particular, to
build on this groundwork, we want to add the reconsider
predicate to deal with cases where intentions have become
inappropriate to some degree, and utilizing partial/abstract
plan structures.

Moreover, the relative sophistication of BDI-POP may not
be applicable in very simple worlds such as FireEater. We
would thus like to deploy our agents in a larger world, per-
haps with more complicated tasks for the agent to perform.
This will also give more scope for the variety of programs
that would be applicable, and the real power of the BDI
model could come into play.

What has been shown is that the proposed architecture is
implementable; there is no obvious fundamental conflict in
synthesizing our POMDP planner and the BDI model for
agent control. The groundwork has thus been laid for the
development of more sophisticated planning processes in the
BDI-POP framework.

What remains unclear is how practical this approach
might be in realistically complex domains. With probabilis-
tic outcomes and events in the world, the policy searches
blow up very quickly with depth. For complete and op-
timal policies, POMDP solvers can deal with just a mod-
est number of easily enumerated states. Policy trees of
a fixed depth (as generated by BestDoPO) are not com-
plete policies and thus less costly to generate. Realisti-
cally though, due to belief states being extremely numer-
ous and the equivalence problem for states in the situation
calculus, BestDoPO seems to be intractable if not unde-
cidable. Furthermore, the situation calculus, in principle,
provides a good deal of expressivity (including quantified
reasoning), which brings its own computational complexity
issues. For a hybrid BDI/POMDP architecture to scale up
to a domain more meaningful than a microdomain, the inte-
gration of more ‘common sense’ reasoning techniques into
the architecture may have benefits. And the latest advances
in POMDP solvers (e.g., (Toussaint, Charlin, and Poupart
2008)) should be investigated for ideas to improve the effi-
ciency of BestDoPO .

References
Bacchus, F.; Halpern, J.; and Levesque, H. 1999. Rea-
soning about noisy sensors and effectors in the situation

calculus. Artificial Intelligence 1-2(111):171–208.
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-theoretic, high-level agent programming
in the situation calculus. In Proc. AAAI-00. AAAI Press.
355–362.
Bratman, M.; Israel, D.; and Pollack, M. 1988. Plans and
resource-bounded practical reasoning. Computational In-
telligence 4:349–355.
Bratman, M. 1987. Intention, Plans, and Practical Reason.
Massachusetts/England: Harvard University Press.
Georgeff, M., and Ingrand, F. 1989. Decision-making in
an embedded reasoning systems. In Proc. IJCAI-89. San
Fransisco, CA: Morgan Kaufmann. 972–978.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence 1-2(101):99–134.
Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. J. of Log. Progr. 31(1-3).
Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and
Thrun, S. 2005. Anytime dynamic A*: An anytime, replan-
ning algorithm. In Proc. Intl. Conf. on Automated Planning
and Scheduling (ICAPS).
McCarthy, J. 1963. Situations, actions and causal laws.
Technical report, Stanford University.
Pollack, M., and Ringuette, M. 1990. Introducing the Tile-
world: Experimentally evaluating agent architectures. In
Proc. AAAI-90. AAAI Press. 183–189.
Puterman, M. 1994. Markov Decision Processes: Discrete
Dynamic Programming. New York, USA: Wiley.
Rao, A., and Georgeff, M. 1995. BDI agents: From theory
to practice. In Proc. ICMAS-95. AAAI Press. 312–319.
Reiter, R. 2001. Knowledge in Action. MIT Press.
Rens, G.; Ferrein, A.; and Van der Poel, E. 2008. Extend-
ing DTGolog to deal with POMDPs. In Proc. PRASA-08.
PRASA. 49–54.
Sardina, S.; De Silva, L.; and Padgham, L. 2006. Hierar-
chical planning in BDI agent programming languages: A
formal approach. In Proc. AAMAS-06. ACM Press. 1001–
1008.
Toussaint, M.; Charlin, L.; and Poupart, P. 2008. Hi-
erarchical POMDP controller optimization by likelihood
maximization. In Workshop on Advancements in POMDP
Solvers, Tech. Report WS-08-01, AAAI-08. AAAI Press.
url:http://www.aaai.org/Library/Workshops/ws08-01.php.
Walczak, A.; Braubach, L.; Pokahr, A.; and Lambersdorf.,
W. 2007. Augmenting BDI agents with deliberative plan-
ning techniques. In Proc. ProMAS-06. Springer. 113–127.
Wooldridge, M. 1999. Intelligent agents. In Weiss, G., ed.,
Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. Massachusetts/England: MIT Press.
chapter 1.
Wooldridge, M. 2000. Reasoning About Rational Agents.
Massachusetts/England: MIT Press.

