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Abstract
Although there is consensus that a formal ontology consists
of a set of axioms within some logical language, there is little
consensus on how a formal ontology differs from an arbitrary
theory. There is an intuitive distinction between the formal on-
tology and the set of domain theories that use the ontology,
but there has been no characterization of this distinction in the
context of first-order ontologies. In this paper we utilize the
notions of definable sets and types from model theory mathe-
matical logic to provide a semantic characterization of the do-
main theories for an ontology. We illustrate this approach with
respect to several formal ontologies from mathematical logic
and knowledge representation.

1 Motivation
Ontological engineering was born with the promise of
reusability, integration, and interoperability. Of increasing
importance are the problems merging ontologies from dif-
ferent domains and translating among multiple ontologies
from the same domain. An obstacle to achieving this vi-
sion has been a lack of consensus over the nature of the ax-
ioms within a formal ontology. On the one hand, formal on-
tologies are specific theories – we are not defining new lan-
guages or logics. On the other hand, formal ontologies are
different from arbitrary theories in that we intuitively think
of ontologies as being the reusable portion of domain the-
ories. This begs the question of defining domain theories,
and it raises the perennial debate of the difference between
ontologies and knowledge bases.

In the course of providing a formal characterization of do-
main theories for ontologies, we are guided by several intu-
itions.
•Domain theories and queries are constructed using ontolo-

gies – typical reasoning problems include sentences that
describe a particular scenario in addition to the axioms of
the ontologies.

•Ontologies are the reusable parts of domain theories, in
the sense that all domain theories for an ontology are ex-
tensions of a unique set of axioms in the ontology.

• In semantic interoperability scenarios, software applica-
tions exchange sentences that are written using ontologies,
rather than exchange axioms from the ontologies them-
selves.

The objective of this paper to is to provide a semantic
characterization of domain theories, that is, one that is based
on properties of the models of the formal ontology.

1.1 Some Motivating Examples
We consider several ontologies and the sentences that are
intuitively their domain theories. We begin with two math-
ematical theories which are well understood before mov-
ing on to two ontologies from the knowledge representation
community.

Algebraically Closed Fields Suppose that two software
applications share the ontology of algebraically closed fields
(Hodges 1993), for example, CAD software that is based
on algebraic geometry. Such software applications will ex-
change shapes that are specified by polynomials; they are
not exchanging axioms in the ontology. In this case, we can
see that the domain theories for algebraically closed fields
are polynomials.

Groups Domain theories for the ontology of groups
(Hodges 1993) are either explicitly specifying particular
groups or subgroups of other groups. A group presentation
defines a group by specifying a set of elements of a group
(known as generators) such that all other elements of the
group can be expressed as the product of the generators sub-
ject to a set of equations (known as relations among the gen-
erators). For example, the group presentation for the cyclic
group of order three is the equation a · a · a = 1, and it
is equivalent to the theory of the group with respect to the
element a in the domain.

Time Ontologies Consider an ontology of time Tdense

(Hayes 1996) in which the set of timepoints is linearly or-
dered and dense. Such an ontology is typically used to spec-
ify the underlying constraints in commonsense reasoning
problems about events (e.g. “Bob left home before arriv-
ing at work and Alice arrived at work after Bob”). This set
of constraints constitutes a domain theory for the ontology
Tdense; in general, the domain theories consist of boolean
combinations of sets of timepoints that form intervals on the
linear ordering.



Situation Calculus The axiomatization of situation calcu-
lus in (Reiter 2001) includes a set of foundational axioms
(the ontology Tsitcalc) together with a set of axioms which
plays the role of a domain theory.

A simple state formula is a formula which contains a
unique situation variable and which contains only holds lit-
erals. A precondition axiom for an activity A is a sentence
of the form

(∀s) poss(A, s) ⊃ Q(s)
where Q(s) is a simple state formula. An effect axiom for
an activity A is a sentence of the form

(∀s)Q1(s) ⊃ holds(F, do(A, s))

whereQ(s) is a simple state formula and F is a fluent. Basic
action theories, which consist of sets of precondition and
effect axioms, are domain theories for situation calculus.

2 Domain Theories and Definable Sets
The characterization of ontologies and domain theories rests
on the model-theoretic notion of definability. After intro-
ducing this notion, we will use it to distinguish between the
different classes of theories within an ontology.

2.1 Definable Sets
We will adopt the following definition from (Marker 2002):
Definition 1 Let M be a structure in a language L.

A set X ⊆ Mn is definable in M iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}

X isA-definable if there is a formula ϕ(v, w1, ..., wl) and
b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}

We say that X is ∅-definable if A = ∅. If A is nonempty,
we say that X is definable with parameters.
Example 1 Suppose M is a discretely ordered ring.

The set of even numbers is ∅-definable in M:

{x : (∃y) x = y + y}

The set of prime numbers is ∅-definable in M:

{x : (∀y, z) (y · z = x) ⊃ (y = x) ∨ (z = x)}

The set

{x : a0 + a1x+ a2x
2 + ...+ anx

n = 0}

is definable with parameters a0, ..., an.

2.2 Definitional Extensions and Core Theories
An ontology is specified by a set of axioms in some formal
language. Nevertheless, this is not an amorphous set, and
the notion of definability allows us to distinguish between
different kinds of sentences within an ontology.
Definition 2 A theory T1 is a definitional extension of a the-
ory T iff every constant, function, and relation in models of
T1 is ∅-definable in models of T .

It is easy to see that a definitional extension of a theory
T is also a conservative extension of T , although the con-
verse is not true; that is, there are conservative extensions of
theories which are not definitional extensions.
Definition 3 A theory Tcore is a core theory iff no constant,
function, or relation in models of Tcore is definable in the
models of any other theory.

Combining these two classes of sentences gives us the fol-
lowing definition of an ontology.
Definition 4 An ontology Tonto is a theory consisting of a
set of core theories and a set of definitional extensions.

Intuitively, the core theories axiomatize the primitive
functions and relations in the ontology. If a core theory in an
ontology is an extension of some other core theories in the
ontology, then it is a nonconservative extension.

In the case of the PSL Ontology ((Gruninger 2004),
(Gruninger & Kopena 2004)), the definitional extensions
within the ontology are axiomatizations of the classes of ac-
tivities and activity occurrences that correspond to values of
the invariants that are used to classify the models of the core
theories within the ontology.

If we consider the examples from Section 1.1, we can
see that an ontology is not an arbitrary set of sentences. In
the case of algebraically closed fields, polynomials are sen-
tences that are not in a core theory or definitional extension.
Similarly, precondition and effect axioms are not part of a
core theory or definitional extension. We therefore require
a precise definition of the class of sentences that correspond
to domain theories.

2.3 Domain Theories
We are still faced with the question of how domain theories
are different from the other two classes of theories within an
ontology. Whereas a definitional extension is an axiomatiza-
tion of the ∅-definable sets in a model of an ontology Tonto,
we will say that a domain theory for an ontology Tonto is an
axiomatization of sets that are definable with parameters in
some model of Tonto.
Definition 5 A theory Tdt is a domain theory for an ontology
Tonto iff every formula in Tdt defines a set X ⊆ Mn with
parameters in some model M of Tonto.

In general, domain theories are not conservative exten-
sions of the ontology. For example, the domain theory con-
sisting of the equations

(a · (a · a)) = 1

in the theory of groups entails the sentence

(∃x, y) ((x · y) = (y · x)) ∧ (x 6= 1) ∧ (y 6= 1)

which is not entailed by the axioms in the theory of groups
alone.

On the other hand, domain theories are distinct from arbi-
trary nonconservative extensions of the ontology. For exam-
ple, the sentence

(∀x, y) (x · y) = (y · x)
axiomatizes abelian groups; it forms a nonconservative ex-
tension of the theory of groups, yet we would not consider it



to be a domain theory, since it does not define any sets with
parameters in some model of group theory.

This approach to characterizing the sentences in an ontol-
ogy generalizes a distinction long made within the descrip-
tion logic community – sentences in the ABox are domain
theories, subsumption axioms in the TBox are contained in
core theories, and equivalence axioms are part of the defini-
tional extensions of the ontology.

3 Domain Theories and Types
The next step is to show how the set of domain theories for
an ontology can be characterized with respect to properties
of the models of the ontology. This will allow us to formal-
ize the intuitions presented earlier in Section 1.

3.1 Types
Types describe a model of a theory from the point of view of
a single element or a finite set of elements ((Marker 2002),
(Rothmaler 2000)).
Definition 6 Let M be a model for a language L.

The type of an element a ∈M is defined as
typeM(a) := {φ : φ is a formula of L,M |= φ(a) }

An n-type for a theory T is a set Φ(x1, ..., xn) of formulae,
such that for some model M of T , and some n-tuple a of
elements of M, we have M |= φ(a) for all φ in Φ.

If t is an n-type, then a model M realizes t iff there are
a1, ..., an ∈M such that

M |= t(a1, ..., an)

A type p is a complete n-type iff φ ∈ p or ¬φ ∈ p for any
formula φ with n free variables; a partial type is a type that
is not complete.

Informally, the type for an element in a model is a set of
formulae which are satisfied by the element in the model.
An n-type for a theory is a consistent set of formulae (each
of which has n free variables) which is satisfied by a model
of the theory.

3.2 Characterization Theorems for Domain
Theories

The model-theoretic notion of type allows us to formalize
the intuition that domain theories are theories about ele-
ments in the domain of a model of the ontology.
Theorem 1 A set of sentences Tdt is a domain theory for
an ontology Tonto iff it is logically equivalent to a boolean
combination of finite partial n-types for Tonto.
Proof:⇒:) Let ϕ(x1, ..., xn) be a sentence in a domain the-

ory for Tonto and let

{a : M |= ϕ(a)}

be the set defined by this sentence in a model M of Tonto.
It is easy to see that this set realizes the finite n-type
ϕ(x1, ..., xn) in M.
⇐:) The set of elements that realize a finite type in M
constitute a definable set. The boolean combination of fi-
nite partial n-types is equivalent to the union, intersection,
complement, and projection of definable sets, and these

operations preserve definable sets. Therefore, the boolean
combination of n-types is logically equivalent to a domain
theory. 2

This result shows that we can specify all possible domain
theories for an ontology by identifying the finite partial types
for elements in the models of the ontology.

Not all types correspond to domain theories, since a type
that consists of an infinite set of formulae may not be first-
order definable. For example,

{0 < c, S(0) < c, S(S(0)) < c, ...}

is an infinite type that is realized by a nonstandard number
c in a model of Th(N, 0, S,<), yet the set is not first-order
definable in the theory.

The next two theorems characterize domain theories with
respect to the models of the ontology, and formalize the in-
tuition that ontologies are the reusable parts of domain theo-
ries, in the sense that all domain theories for an ontology are
extensions of a unique set of axioms in the ontology.
Theorem 2 If Tdt is a domain theory for an ontology Tonto

then there exists a model M of Tonto such that

Tonto ∪ Tdt ⊆ Th(M)

Proof: By Definition 5, the sentences in Tdt define sets with
parameters in some modelM of Tonto. We therefore have

Tonto ⊆ Th(M)

Suppose that there is a sentence Σ ∈ Tdt such that Σ 6∈
Th(M). In this case, we must have M |= ¬Σ, which
would mean that Σ does not define a set in M, and hence
would not be a sentence in a domain theory. We therefore
also have

Tdt ⊆ Th(M)
2

From this result we can see that models of a domain the-
ory are models of the ontology.
Theorem 3 For any model M of Tonto, there exists a do-
main theory Tdt for Tonto such that

Tonto ∪ Tdt ⊆ Th(M)

Proof: Since M is a model of Tonto, we have

Tonto ⊆ Th(M)

If Tdt is the set of sentences that define sets in M, then
Tdt 6= ∅ (since any finite set is definable). Tdt is therefore
a domain theory such that

M |= Tdt

As a result, we know that Tonto ∪ Tdt is consistent.
Since M |= Tonto ∪ Tdt, we have

Tonto ∪ Tdt ⊆ Th(M)

2



Note that any definable set must have some axiomatiza-
tion, whereas nondefinable sets cannot be axiomatized by
any theory. Furthermore, every model contains definable
sets (since finite sets are always definable). Consequently,
domain theories will always exist for any ontology.

We can define a complete domain theory as one that sat-
isfies

Tonto ∪ Tdt = Th(M)
for some model M of Tonto. In other words, a complete
domain theory is an axiomatization of a particular model
of the ontology. Not all ontologies will have complete do-
main theories. For example, there exist infinite groups that
do not have a finite presentation. The standard models of
more powerful ontologies, such as Peano Arithmetic and the
theory of the free semigroups, are not axiomatizable, so that
any domain theory in such cases would be incomplete.

3.3 Techniques for Specifying Domain Theories
Model theory provides several techniques for specifying the
types for first-order theories. The most widely use technique
is known as the elimination of quantifiers, in which one fo-
cusses on the sets that are definable by formulae that are
quantifier-free.

A theory T admits the elimination of quantifiers if for ev-
ery formula φ there is a formula ψ such that

T |= φ ≡ ψ

One typically determines this by specifying a set of
quantifier-free formulae ∆ (known as the elimination set)
such that for every formula φ in the language of T there is
a formula ψ which is a boolean combination of formulae in
∆, and φ is equivalent to ψ in every model of T . It is easy to
see that in ontologies that admit elimination of quantifiers,
the elimination set characterizes the set of types.

Unfortunately, not all ontologies admit the elimination of
quantifiers, and the characterization of the definable sets and
types realized in models of these ontologies can become
quite complicated.

3.4 Revisiting the Examples
The set of types for many ontologies within mathematical
logic have been specified within the literature. We can see
that the types for the ontologies that we considered in Sec-
tion 1 do indeed correspond to the intuitions that we have
about their domain theories.

Algebraically Closed Fields and Polynomials Since al-
gebraically closed fields admit the elimination of quantifiers,
it can be shown ((Marcja & Toffalori 2003)) that any irre-
ducible polynomial corresponds to a complete 1-type and
that 2-types correspond to algebraic curves. In other words,
there is a one-to-one correspondence between the set of roots
of polynomials (algebraic numbers) and definable elements
in the models of Tfield. There is also the complete 1-type
that is realized by all numbers that are transcendental over
models of the ontology; this type is not generated by a finite
set of formulae ,and hence does not correspond to a domain
theory.

Presentations and Groups Although the theory of groups
does not admit elimination of quantifiers, it can be shown
that all 1-types for Tgroup are of the form

(∃y, z) x = y · z

We can see that both presentations and group equations are
domain theories for groups, since they are boolean combi-
nations of 1-types. In a sense, the presentation is equivalent
to the types realized by all elements of the group G; when
a presentation exists, it is a complete axiomatization of the
theory Th(G) for the group.

Time Ontologies Models of Tdense are isomorphic to
dense linear orderings, whose n-types have been fully char-
acterized in (Rosenstein 1982). The n-types for Tdense

are therefore boolean combinations of literals of the form
before(vi, vj) and vi = vj . Thus the types for dense lin-
ear orderings correspond to the domain theories discussed
in Section 1.1.

Action Theories in Situation Calculus Although there
has been no work on the characterization of the types for
Tsitcalc we can still show that action theories define sets in
models of Tsitcalc, and so are domain theories for Tsitcalc.

The precondition axiom for each action a is realized by
the definable set of situations

{s1 : s1 = do(a, s), 〈s1〉 ∈ executable}

that is, the set of executable situations that correspond to oc-
currences of a. The effect axiom for each action a is realized
by the definable set of situations

{s1 : s1 = do(a, s), 〈f , s1〉 ∈ holds ⇔ 〈f , s〉 6∈ holds}

that is, the set of situations that achieve or falsify specific
fluents. A complete characterization of all types and domain
theories for Tsitcalc is an open research problem.

4 Evaluating the Ontology
We can evaluate the correctness and completeness of the on-
tology and domain theories with respect to the characteriza-
tion of definable sets. For correctness, all domain theories
for an ontology must be consistent with the ontology. For
completeness, we need to determine whether or not there
exist models of the ontology that do not realize any types
corresponding to some class of domain theories.
Definition 7 Let Σ be a set of types for a theory T .
T is definably complete with respect to Σ iff every model

of T realizes some type in Σ.
In Tsitcalc, precondition axioms are domain theories, but

not all activities realize precondition axioms i.e. there are
other classes of domain theories
Theorem 4 The ontology Tsitcalc is not definably complete
with respect to the set of basic action theories.
Proof: We can construct a model of Tsitcalc that does not

satisfy any basic action theory (i.e. set of precondition
and effect axioms).



Let s1, s2 be situations in the situation tree that agree on
state, that is, for any fluent f ,

〈f , s1〉 ∈ holds ⇔ 〈f , s2〉 ∈ holds

Now specify the extension of the poss relation for an ac-
tivity a such that

〈a, s1〉 ∈ poss, 〈a, s2〉 6∈ poss

The activity a cannot realize any precondition axiom,
since the same simple state formula is realized by both
s1 and s2.
Now specify the extension of the holds relation for the
activity a such that

〈f ,do(a, s1)〉 ∈ holds, 〈f ,do(a, s2)〉 6∈ holds

The activity a cannot realize any effect axiom, since the
same simple state formula is realized by both s1 and s2.
2

On the other hand, the PSL Ontology explicitly axiom-
atizes the classes of activities that realize the types corre-
sponding to basic action theories1

Theorem 5 Let MAA (Markovian Activity Assumption) be
the sentence

(∀a)activity(a) ⊃ markov precond(a)∧markov effect(a)
The ontology Tdisc state ∪ Tocctree ∪ Tpslcore ∪MAA is

definably complete with respect to the set of basic action
theories.

It should be noted that Tdisc state ∪ Tocctree ∪ Tpslcore

alone is not definably complete, since there are models that
do not realize precondition and effect axioms; on the other
hand, all models of Tdisc state ∪Tocctree ∪Tpslcore ∪MAA
realize precondition and effect axioms.

It must be emphasized that one cannot specify domain
theories using axiom schemata – there will typically be mu-
tually inconsistent domain theories for the same ontology,
yet the union of sentences that are instantiations of an axiom
schema must be consistent. For example, both of the follow-
ing sentences satisfy the syntactic definition of precondition
axioms in situation calculus

(∀s) poss(A, s) ⊃ holds(F, s)

(∀s) poss(A, s) ⊃ ¬holds(F, s)
yet they are mutually inconsistent.

We can also use this approach to show that some ap-
proaches to process ontologies are in fact specifying classes
of domain theories rather than ontologies. For example, the
axiomatization of actions and events in (Allen & Ferguson
1994) does not include any core theories or definitional ex-
tensions; it only contains a specification of the classes of
sentences that constitute event definitions, action definitions,
and event generation axioms.

1The axiomatization of markov precond in CLIF
(Common Logic Interchange Format) can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part42/state precond.def.html
The axiomatization of markov effect in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part42/state effects.def.html

5 Classifying Domain Theories
We can use the notion of definable completeness of an on-
tology to classify the domain theories for the ontology. In
particular, we can classify domain theories with respect to
the sets that are ∅-definable by the sentence Φ such that
Tonto ∪ Φ is definably complete with respect to the domain
theories.

For example, by Theorem 5, Tdisc state ∪ Tocctree ∪
Tpslcore ∪MAA is definably complete; activities in the set
defined by the sentence MAA realize the types correspond-
ing to basic action theories. Activities that are not in the set
(that is, activities that do not satisfy the sentence MAA) do
not realize the types corresponding to basic action theories.
This gives a model-theoretic definition of basic action theo-
ries, rather than simply a syntactic definition.

Within the PSL Ontology, sentences such as MAA ax-
iomatize invariants that are used to classify the models of
the core theories (Gruninger & Kopena 2004). Invariants are
properties of models that are preserved by isomorphism. For
some classes of structures, invariants can be used to classify
the structures up to isomorphism; for example, vector spaces
can be classified up to isomorphism by their dimension. For
other classes of structures, such as graphs, it is not possible
to formulate a complete set of invariants. Nevertheless, even
without a complete set, invariants can still be used to provide
a classification of the models of a theory.

In general, the set of models for the core theories of an on-
tology are partitioned into equivalence classes defined with
respect to the set of invariants of the models. Each equiv-
alence class in the classification of the models of the on-
tology is axiomatized using a definitional extension of the
ontology. Each definitional extension in the ontology is as-
sociated with a unique invariant; the different classes of ob-
jects that are defined in an extension correspond to different
properties of the invariant. In this way, the terminology of
the ontology arises from the classification of the models of
the core theories with respect to sets of invariants.

Using this approach, the classification of domain theories
mirrors the classification of the models of the core theo-
ries, as well as the organization of the definitional extensions
within the ontology.

6 Reasoning Problems
Many reasoning problems with ontologies (such as deci-
sion problems for mathematical theories) incorporate do-
main theories as well as the set of axioms in the ontologies
themselves.

The Word Problem in group theory is specified for a par-
ticular group and it requires both the axioms for groups as
well as the presentation for the group:

Tgroup ∪ Σpresentation |= (w = 1)

The query in this case determines whether the product of
group elements w is equal to the identity element in the
group.

In a temporal reasoning problem, we consider a particular
scenario of temporal constraints in addition to the axioms for



the time ontology, and determine whether or not a particular
temporal constraint is entailed by the scenario:

Ttime ∪ Σscenario |= before(T1, T2)

For situation calculus, the antecedent of a reasoning prob-
lem such as planning includes basic action theories, while
the query sentence is an existentially quantified simple state
formula:

Tsitcalc ∪ Σaction |= (∃s)Q(s)

In general, an entailment problem for an ontology Tonto

has the form
Tonto ∪ Σdt |= Σquery

where Σdt is a domain theory for Tonto and Σquery is a sen-
tence in the language of the ontology. This leads to the next
question – what class of sentences in the language of the
ontology characterize the query?

Any sentence in such a query (that is, a sentence in
Σquery) can also be considered to be a domain theory. For
example, in the word problem for groups, the query sentence
is a group equation, which is a type for the theory of groups.
Similarly, simple state formulae are types for fluents in situ-
ation calculus.

We can provide a model-theoretic characterization of
queries using the following notion:
Definition 8 A type p is isolated iff there is a formula ϕ ∈ p
such that for any ψ ∈ p, we have

T |= (∀v) ϕ(v) ⊃ ψ(v)

Queries therefore correspond to nonisolated types for the
ontology. Using this definition, we can also consider queries
to be weak domain theories, in the sense that they are en-
tailed by other domain theories. We can therefore apply the
earlier techniques for arbitrary domain theories to provide a
characterization of the possible queries in reasoning prob-
lems that use a particular ontology.

The same techniques that were used to characterize all
possible domain theories for an ontology by specifying the
types for the ontology can be used to characterize the queries
by specifying the nonisolated types for the ontology. We can
also classify the queries for an ontology by characterizing
the additional sentences that are required in order for an on-
tology to be definably complete with respect to the class of
queries.

7 Summary
Although there is an intuitive distinction between the formal
ontology and the set of domain theories that use the ontol-
ogy, there has been no characterization of this distinction. In
this paper we have utilized the notions of definable sets and
types from model theory mathematical logic to provide a se-
mantic characterization of the domain theories for an ontol-
ogy that gives a clear logical distinction between ontologies
and domain theories.

Domain theories for an ontology are the axiomatization of
definable sets in models of the ontology. This is equivalent
to saying that a domain theory for an ontology is a boolean
combination of finite partial n-types for the ontology.

The model-theoretic characterization of domain theories
serves as an evaluation criterion for ontologies, which can in
turn be used to classify the domain theories for an ontology.

This approach lays the groundwork for a comprehen-
sive methodology for the evaluation of formal ontologies by
specifying the complete sets of n-types that are realized in
models of the ontologies.
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