
Solving the Wise Mountain Man Riddle with Answer Set Programming

Marcello Balduccini
Intelligent Systems, OCTO
Eastman Kodak Company

Rochester, NY 14650-2102 USA
marcello.balduccini@gmail.com

Abstract

This paper describes an exercise in the formalization of
common-sense with Answer Set Programming aimed
at solving an interesting riddle, whose solution is not
obvious to many people. Solving the riddle requires a
considerable amount of common-sense knowledge and
sophisticated knowledge representation and reasoning
techniques, including planning and adversarial reason-
ing. Most importantly, the riddle is difficult enough to
make it unclear, at a first analysis, whether and how An-
swer Set Programming or other formalisms can be used
to solve it.

Introduction

This paper describes an exercise in the formalization
of common-sense with Answer Set Programming (ASP),
aimed at solving the riddle:

“A long, long time ago, two cowboys where fighting to
marry the daughter of the OK Corral rancher. The rancher,
who liked neither of these two men to become his future son-
in-law, came up with a clever plan. A horse race would
determine who would be allowed his daughter’s hand. Both
cowboys had to travel from Kansas City to the OK Corral,
and the one whose horse arrived LAST would be proclaimed
the winner.

The two cowboys, realizing that this could become a very
lengthy expedition, finally decided to consult the Wise Moun-
tain Man. They explained to him the situation, upon which
the Wise Mountain Man raised his cane and spoke four wise
words. Relieved, the two cowboys left his cabin: They were
ready for the contest!

Which four wise words did the Wise Mountain Man
speak?”

This riddle is interesting because it is easy to understand,
but not trivial, and the solution is not obvious to many peo-
ple. The story can be simplified in various ways without
losing the key points. The story is also entirely based on
common-sense knowledge. The amount of knowledge that
needs to be encoded is not large, which simplifies the encod-
ing; on the other hand, as we will see in the rest of the paper,
properly dealing with the riddle requires various sophisti-
cated capabilities, including modeling direct and indirect ef-
fects of actions, encoding triggers, planning, dealing with
defaults and their exceptions, and concepts from multi-agent

systems such as adversarial reasoning. The riddle is difficult
enough to make it unclear, at a first analysis, whether and
how ASP or other formalisms can be used to formalize the
story and underlying reasoning.

In the course of this paper we will discuss how the ef-
fects of the actions involved in the story can be formalized,
and how to address the main issues of determining that “this
could be a lengthy expedition” and of answering the final
question.

We begin with a brief introduction on ASP. Next, we show
how the knowledge about the riddle is encoded and how rea-
soning techniques can be used to solve the riddle. Finally,
we draw conclusions.

Background
ASP (Marek and Truszczynski 1999) is a programming
paradigm based on language A-Prolog (Gelfond and Lif-
schitz 1991) and its extensions (Balduccini and Gelfond
2003; Brewka, Niemela, and Syrjanen 2004; Mellarkod,
Gelfond, and Zhang 2008). In this paper we use the exten-
sion of A-Prolog called CR-Prolog (Balduccini and Gelfond
2003), which allows, among other things, simplified han-
dling of exceptions, rare events. To save space, we describe
only the fragment of CR-Prolog that will be used in this pa-
per.

Let Σ be a signature containing constant, function and
predicate symbols. Terms and atoms are formed as usual.
A literal is either an atom a or its strong (also called classi-
cal or epistemic) negation ¬a.

A regular rule (rule, for short) is a statement of the form:

h1 ∨ . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are literals and not is the so-called de-
fault negation.1 The intuitive meaning of a rule is that a
reasoner, who believes {l1, . . . , lm} and has no reason to
believe {lm+1, . . . , ln}, has to believe one of hi’s.

A consistency restoring rule (cr-rule) is a statement of the
form:

h1 ∨ . . . ∨ hk

+
← l1, . . . , lm, not lm+1, . . . , not ln

where hi’s and li’s are as before. The informal meaning of
a cr-rule is that a reasoner, who believes {l1, . . . , lm} and

1We also allow the use of SMODELS style choice rules, but omit
their formal definition to save space.



has no reason to believe {lm+1, . . . , ln}, may believe one of
hi’s, but only if strictly necessary, that is only if no consis-
tent set of beliefs can be formed otherwise.

A program is a pair 〈Σ,Π〉, where Σ is a signature and
Π is a set of rules and cr-rules over Σ. Often we denote
programs by just the second element of the pair, and let the
signature be defined implicitly.

Given a CR-Prolog program Π, we denote the set of its
regular rules by Πr and the set of its cr-rules by Πcr. By
α(r) we denote the regular rule obtained from cr-rule r by

replacing the symbol
+
← with←. Given a set of cr-rules R,

α(R) denotes the set obtained by applying α to each cr-rule
in R. The semantics of a CR-Prolog program is defined in
two steps.

Definition 1 Given a CR-Prolog program Π, a minimal
(with respect to set-theoretic inclusion) set R of cr-rules of
Π, such that Πr ∪ α(R) is consistent is called an abductive
support of Π.

Definition 2 Given a CR-Prolog program Π, a set of literals
A is an answer set of Π if it is an answer set of the program
Πr ∪ α(R) for some abductive support R of Π.

To represent knowledge and reason about dynamic do-
mains, we use ASP to encode dynamic laws, state con-
straints and executability conditions (Gelfond and Lifschitz
1998). The laws are written directly in ASP, rather than rep-
resented using an action language (Gelfond 2002), to save
space and have a more uniform representation.

The key elements of the representation are as follows; we
refer the readers to e.g. (Gelfond 2002) for more details.
The evolution of a dynamic domain is viewed as a transition
diagram, which is encoded in a compact way by means of
an action description consisting of dynamic laws (describ-
ing the direct effects of actions), state constraints (describ-
ing the indirect effects), and executability conditions (stat-
ing when the actions can be executed). Properties of inter-
est, whose truth value changes over time, are represented by
fluents (e.g. on(block1, block2)). A state of the transition di-
agram is encoded as a consistent and complete set of fluent
literals (i.e. fluents and their negations). The truth value of a
fluent f is encoded by a statement of the form h(f, s), where
s is an integer denoting the step in the evolution of the do-
main, intuitively saying that f holds at step s. The fact that
f is false is denoted by ¬h(f, s). Occurrences of actions are
traditionally represented by expressions of the form o(a, s),
saying that a occurs at step s.

Formalizing the Riddle

The next step is to encode the knowledge about the domain
of the story. To focus on the main issues, we abstract from
several details and concentrate on the horse ride. The ob-
jects of interest are the two competitors (a, b), the two horses
(h(a), h(b)), and locations start, finish, and en route.
Horse ownership is described by relation owns, defined by
the rule owns(C, h(C))← competitor(C).

The fluents of interest and their informal meanings
are: at(X,L), “competitor or horse X is at location
L”; riding(C,H), “competitor C is riding horse H”;

crossed(X), “competitor or horse X has crossed the finish
line.”

The actions of interest are wait, move (the actor moves
to the next location along the race track), and cross (the
actor crosses the finish line). Because this domain involves
multiple actors, we represent the occurrence of actions by
a relation o(A,C, S), which intuitively says that action A
occurred, performed by competitor C, at step S.2

The formalization of action move deserves some discus-
sion. Typically, it is difficult to predict who will complete
a race first, as many variables influence the result of a race.
To keep our formalization simple, we have chosen a rather
coarse-grained model of the movements from one location
to the other. Because often one horse will be faster than
the other, we introduce a relation faster(H), which infor-
mally says that H is the faster horse. This allows us to
deal with both simple and more complex situations: when
it is known which horse is faster, we encode the informa-
tion as a fact. When the information is not available, we
use the disjunction faster(h(a)) ∨ faster(h(b)). Action
move is formalized so that, when executed, the slower horse
moves from location start to en route and from en route
to finish. The faster horse, instead, moves from start di-
rectly to finish.3 The direct effects of the actions can be
formalized in ASP as follows:4

• Action move:

% If competitor C is at start and riding the faster horse,
% action move takes him to the finish line.
h(at(C, finish), S + 1)←

h(at(C, start), S),
h(riding(C,H), S),
faster(H),
o(move,C, S).

% If competitor C is at start and riding the slower horse,
% action move takes him to location “en route.”
h(at(C, en route), S + 1)←

h(at(C, start), S),
h(riding(C,H), S),
not faster(H),
o(move,C, S).

2This simple representation is justified because the domain does
not include exogenous actions. Otherwise, we would have to use a
more sophisticated representation, such as specifying the actor as
an argument of the terms representing the actions.

3More refined modeling is possible, but is out of the scope of
the present discussion. However, we would like to mention the
possibility of using the recent advances in integrating ASP and
constraint satisfaction (Mellarkod, Gelfond, and Zhang 2008) to
introduce numerical distances, speed, and to take into account pa-
rameters such as stamina in their computation.

4Depending on the context, executability conditions might be
needed stating that each competitor must be riding in order to per-
form the move or cross actions. Because the story assumes that
the competitors are riding at all times, we omit such executability
conditions to save space.



% Performing move while “en route” takes the actor
% to the finish line.
h(at(C, finish), S + 1)←

h(at(C, enroute), S),
o(move,C, S).

% move cannot be executed while at the finish line.
← o(move,C, S), h(at(C, finish), S).

• Action cross:

% Action cross, at the finish line, causes the actor to
% cross the finish line.
h(crossed(C), S + 1)←

o(cross, C, S),
h(at(C, finish), S).

% cross can only be executed at the finish line.
← o(cross, C, S), h(at(C,L), S), L 6= finish.
% cross can be executed only once by each competitor.
← o(cross, C, S), h(crossed(C), S).

No rules are needed for action wait, as it has no direct ef-
fects. The state constraints are:

• “Each competitor or horse can only be at one location at
a time.”

¬h(at(X,L2), S)←
h(at(X,L1), S),
L1 6= L2.

• “The competitor and the horse he is riding on are always
at the same location.”

h(at(H,L), S)←
h(at(C,L), S),
h(riding(C,H), S).

h(at(C,L), S)←
h(at(H,L), S),
h(riding(C,H), S).

It is worth noting that, in this formalization, horses do not
perform actions on their own (that is, they are viewed as
“vehicles”). Because of that, only the first of the two rules
above is really needed. However, the second rule makes
the formalization more general, as it allows one to apply
it to cases when the horses can autonomously decide to
perform actions (e.g. the horse suddenly moves to the next
location and the rider is carried there as a side-effect).

• “Each competitor can only ride one horse at a time; each
horse can only have one rider at a time.”

¬h(riding(X,H2), S)←
h(riding(X,H1), S),
H1 6= H2.

¬h(riding(C2,H), S)←
h(riding(C1,H), S),
C1 6= C2.

• “The competitor and the horse he is riding on always cross
the finish line together.”

h(crossed(H), S)←
h(crossed(C), S),
h(riding(C,H), S).

h(crossed(C), S)←
h(crossed(H), S),
h(riding(C,H), S).

As noted for the previous group of state constraints, only
the first of these two rules is strictly necessary, although
the seconds increases the generality of the formalization.

The action description is completed by the law of inertia
(Hayes and McCarthy 1969), in its usual ASP representa-
tion (e.g. (Gelfond 2002)):

h(F, S + 1)← h(F, S), not ¬h(F, S + 1).

¬h(F, S + 1)← ¬h(F, S), not h(F, S + 1).

Reasoning About the Riddle
Let us now see how action description AD, consisting of
all of the rules from the previous section, is used to reason
about the riddle.

The first task that we want to be able to perform is deter-
mining the winner of the race, based on the statement from
the riddle “the one whose horse arrived LAST would be pro-
claimed the winner.” In terms of the formalization devel-
oped so far, arriving last means being the last to cross the
finish line. Encoding the basic idea behind this notion is not
difficult, but attention must be paid to the special case of
the two horses crossing the finish line together. Common-
sense seems to entail that, if the two horses cross the line
together, then they are both first. (One way to convince one-
self about this is to observe that the other option is to say
that both horses arrived last. But talking about “last” ap-
pears to imply that they have been preceded by some horse
that arrived “first.”) The corresponding definition of rela-
tions first to cross and last to cross is:5

% first to cross(H): horse H crossed the line first.
first to cross(H1)←

h(crossed(H1), S2),
¬h(crossed(H2), S1),
S2 = S1 + 1,
horse(H2),H1 6= H2.

% last to cross(H): horse H crossed the line last.
last to cross(H1)←

h(crossed(H1), S2),
¬h(crossed(H1), S1),
S2 = S1 + 1,
h(crossed(H2), S1), horse(H2),H1 6= H2.

Winners and losers can be determined from the previous re-
lations, and from horse ownership:

% C wins if his horse crosses the finish line last.
wins(C)← owns(C,H), last to cross(H).

5To save space, the definitions of these relations are given for
the special case of a 2-competitor race. Extending the definitions
to the general case is not difficult, but requires some extra rules.



% C loses if his horse crosses the finish line first.
loses(C)← owns(C,H), first to cross(H).

Let W be the set consisting of the definitions of
last to cross, first to cross, wins, and loses. It is not
difficult to check that, given suitable input about the initial
state, AD ∪ W entails intuitively correct conclusions. For
example, let σ0 denote the intended initial state of the rid-
dle, where each competitor is at the start location, riding his
horse:

h(at(a, start), 0). h(at(b, start), 0).

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

¬h(F, 0)← not h(F, 0).

The rule about fluent riding captures the intuition that nor-
mally one competitor rides his own horse, but there may
be exceptions. Also notice that the last rule in σ encodes
the Closed World Assumption, and provides a compact way
to specify the fluents that are false in σ. Also, notice that
it is not necessary to specify explicitly the location of the
horses, as that will be derived from the locations of their rid-
ers by state constraints of AD. Assuming that a’s horse is
the faster, let F a = {faster(h(a))}. Let also O0 denote the
set {o(a,move, 0), o(b,move, 0)}. It is not difficult to see
that σ ∪ F a ∪O0 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, en route), 1)},

meaning that a is expected to arrive at the finish, and b at
location “en route.” Similarly, given

O1 =











o(a,move, 0). o(b,move, 0).
o(a,wait, 1). o(b,move, 1).
o(a,wait, 2). o(b, cross, 2).
o(a, cross, 3).

the theory σ ∪ F a ∪O1 ∪ AD ∪W entails:

{h(at(a, finish), 1), h(at(b, finish), 2),
h(crossed(a), 4), h(crossed(b), 3),
last(h(a)), first(h(b)),
wins(a), loses(b)},

meaning that both competitors crossed the finish line, but b’s
horse crossed it first, and therefore b lost the race.

The next task of interest is to use the theory developed so
far to determine that the race “could become a very lengthy
expedition.” Attention must be paid to the interpretation
of this sentence. Intuitively, the sentence refers to the fact
that none of the competitors might be able to end the race.
However, this makes sense only if interpreted with common-
sense. Of course sequences of actions exist that cause the
race to terminate. For example, one competitor could ride
his horse as fast as he can to the finish line and then cross,
but that is likely to cause him to lose the race.

We believe the correct interpretation of the sentence is that
we need to check if the two competitors acting rationally
(i.e. selecting actions in order to achieve their own goal) will

ever complete the race. In the remainder of the discussion,
we call this the completion problem. Notice that, under the
assumption of rational acting, no competitor will just run as
fast as he can to the finish line and cross it, without paying
attention to where the other competitor is.

In this paper, we will focus on addressing the completion
problem from the point of view of one of the competitors.
That is, we are interested in the reasoning that one competi-
tor needs to perform to solve the problem. So, we will define
a relation me, e.g. me(a). In the rest of the discussion, we
refer to the competitor whose reasoning we are examining
as “our competitor,” while the other competitor is referred
to as the “adversary.”

The action selection performed by our competitor can
be formalized using the well-known ASP planning tech-
nique (e.g. (Gelfond 2002)) based on a generate-and-test
approach, encoded by the set Pme of rules:

me(a).

1{ o(A,C, S) : relevant(A) }1← me(C).

← not wins(C),me(C), selected goal(win).

relevant(wait). relevant(move). relevant(cross).

where the first rule informally states that the agent should
consider performing any action relevant to the task (and
exactly one at a time), while the second rule says that se-
quences of actions that do not lead our competitor to a win
should be discarded (if our competitor’s goal is indeed to
win). Relation relevant allows one to specify which actions
are relevant to the task at hand, thus reducing the number of
combinations that the reasoner considers.

Our competitor also needs to reason about his adversary’s
actions. For that purpose, our competitor possesses a model
of the adversary’s behavior.6 The model is based on the fol-
lowing heuristics:

• Reach the finish line;

• At the finish line, if the opponent has already crossed,
cross (as the race is over anyway);

• At the finish line, if riding the opponent’s horse, cross
right away;

• Otherwise, wait.

This model of the adversary’s behavior could be more so-
phisticated – for example, it could include some level of
non-determinism – but the simple model shown above is suf-
ficient to solve the completion problem for this simple rid-
dle. The heuristics are encoded by the set Padv of triggers:7

my adversary(C2)← me(C1), C1 6= C2.

o(move,C, S)←
my adversary(C),
¬h(at(C, finish line), S).

6The model here is hard-coded, but could be learned, e.g.
(Sakama 2005; Balduccini 2007).

7A discussion on the use of triggers can be found in the Con-
clusions section.



o(cross, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
¬h(crossed(C1), S),
h(riding(C1,H), S),
owns(C2,H), C1 6= C2.

o(cross, C1, S)←
my adversary(C1),
h(at(C1, finish), S),
¬h(crossed(C1), S),
h(crossed(C2), S),
competitor(C2), C1 6= C2.

¬o(A2, C, S)←
my adversary(C),
o(A1, C, S),
A2 6= A1.

o(wait, C, S)←
my adversary(C),
not ¬o(wait, C, S).

Now let us see how the theory developed so far can be used
to reason about the completion problem. Let P denote the
set Pme ∪ Padv . It is not difficult to see that the theory

σ ∪ F a ∪ AD ∪W ∪ P

is inconsistent. That is, a has no way of winning if his horse
is faster. Let us now show that the result does not depend
upon the horse’s speed. Let F∨ denote the rule

faster(h(a)) ∨ faster(h(b)).

which informally says that it is not known which horse is
faster. The theory

σ ∪ F∨ ∪ AD ∪W ∪ P

is still inconsistent. That is, a cannot win no matter whose
horse is faster. Therefore, because our competitor is acting
rationally, he is not going to take part in the race. Because
the domain of the race is fully symmetrical, it is not difficult
to see that b cannot win either, and therefore we will refuse
to take part in the race as well.

However, that is not exactly what statement of the com-
pletion problem talks about. The statement in fact seems to
suggest that, were the competitors to take part in the race
(for example, because they hope for a mistake by the op-
ponent), they would not be able to complete the race. To
model that, we allow our competitor to have two goals with
a preference relation among them: the goal to win, and the
goal to at least not lose, where the former is preferred to the
second. The second goal formalizes the strategy of waiting
for a mistake by the adversary. To introduce the second goal
and the preference, we obtain P ′ from P by adding to it the
rules:

selected goal(win)←
not ¬selected goal(win).

¬selected goal(win)←
selected goal(not lose).

← lose(C),me(C), selected goal(not lose).

selected goal(not lose)
+
← .

The first rule says that our competitor’s goal is to win, unless
otherwise stated. The second rule says that one exception
to this is if the selected goal is to not lose. The constraint
says that, if the competitor’s goal is to not lose, all action
selections causing a loss must be discarded. The last rule
says that our competitor may possibly decide to select the
goal to just not lose, but only if strictly necessary (that is, if
the goal of winning cannot be currently achieved).

Now, it can be shown that the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′

is consistent. One of its answer sets includes for example
the atoms:

{faster(h(a)),
o(wait, a, 0), o(move, b, 0),
o(wait, a, 1), o(move, b, 1),
o(move, a, 2), o(wait, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which represent the possibility that, if a’s horse is faster, a
and b will reach the finish line, and then wait there indefi-
nitely. To confirm that the race will not be completed, let us
introduce a set of rules C containing the definition of com-
pletion, together with a constraint that requires the race to
be completed in any model of the underlying theory:

completed← h(crossed(X), S).
← not completed.

The first rule states that the race has been completed when
one competitor has crossed the finish line (the result of the
race at that point is fully determined). Because the theory

σ ∪ F∨ ∪ AD ∪W ∪ P ′ ∪ C

is inconsistent, we can conclude formally that, if the com-
petitors act rationally, they will not complete the race.

The last problem left to solve is answering the ques-
tion “Which four wise words did the Wise Mountain Man
speak?” In terms of our formalization, we need to find ad-
ditional information, to be included in the theory developed
so far, that allows to entail the completion of the race. No-
tice that, often, to solve a riddle one needs to revisit assump-
tions that were initially taken for granted. From a knowledge
representation perspective, that means revisiting the defaults
used in the encoding of the theory, and allowing the reasoner
to select appropriate exceptions to the defaults.

The simple formalization given so far contains only one
default, the rule for fluent riding in σ:

h(riding(C,H), 0)←
owns(C,H),
not ¬h(riding(C,H), 0).

To allow the reasoner to consider exceptions to this default,
we add a cr-rule stating that a competitor may possibly ride
the opponent’s horse, although that should happen only if
strictly necessary.

h(riding(C,H2), 0)
+
←

owns(C,H1), horse(H2),H1 6= H2.



We use a cr-rule, instead of a regular rule, to capture the in-
tuition that the competitors will not normally switch horses.
Although for simplicity here we focus on a specific default, it
is important to stress that this technique can be extended to
the general case by writing the knowledge base so that each
default is accompanied by a cr-rule allowing the reasoner
to consider unexpected exceptions (but only if strictly nec-
essary). Let σ′ be obtained from σ by adding to it the new
cr-rule. It can be shown that the theory8

σ′ ∪ F∨ ∪ AD ∪W ∪ P

is consistent and its unique answer set contains:

{faster(h(b)),
h(riding(a, h(b)), 0), h(riding(b, h(a)), 0),
o(move, a, 0), o(move, b, 0),
o(cross, a, 1), o(move, b, 1),
o(wait, a, 2), o(cross, b, 2),
o(wait, a, 3), o(wait, b, 3),
o(wait, a, 4), o(wait, b, 4) }

which encodes the answer that, if the competitors switch
horses and the horse owned by b is faster, then a can win
by immediately reaching the finish line and crossing it. In
agreement with common-sense, a does not expect to win if
the horse b owns is slower. On the other hand, it is not diffi-
cult to see that b will win in that case. That is, the race will
be completed no matter what.

The conclusion obtained formally here agrees with the ac-
cepted solution of the riddle: “Take each other’s horse.”

Conclusions

In this paper we have described an exercise in the use of
ASP for common-sense knowledge representation and rea-
soning, aimed at formalizing and reasoning about an easy-
to-understand, but non-trivial riddle. One reason why we
have selected this particular riddle, besides its high content
of common-sense knowledge, is the fact that upon an ini-
tial analysis, it was unclear whether and how ASP or other
formalisms could be used to solve it. Solving the riddle has
required the combined use of some of the latest ASP tech-
niques, including using consistency restoring rules to allow
the reasoner to select alternative goals and to consider excep-
tions to the defaults in the knowledge base as a last resort,
and has shown how ASP can be used for adversarial reason-
ing by employing it to encode a model of the adversary’s
behavior.

Another possible way of solving the riddle, not
shown here for lack of space, consists in introducing a
switch horses action, made not relevant by default, but
with the possibility to use it if no solution can be found oth-
erwise. Such action would be cooperative, in the sense that
both competitors would have to perform it together. How-
ever, as with many actions of this type in a competitive en-
vironment, rationally acting competitors are not always ex-

8The same answer is obtained by replacing P by P
′. However,

doing that would require specifying preferences between the cr-
rule just added and the cr-rule in P

′. To save space, we use P to
answer the final question of the riddle.

pected to agree to perform the action. An interesting contin-
uation of our exercise will consist of an accurate formaliza-
tion of this solution of the riddle, which we think may yield
useful results in the formalization of sophisticated adversar-
ial reasoning.

One last note should be made regarding the use of triggers
to model the adversary’s behavior. We hope the present pa-
per has shown the usefulness of this technique and the sub-
stantial simplicity of implementation using ASP. This tech-
nique has limits, however, due to the fact that an a-priori
model is not always available. Intuitively, it is possible to
use ASP to allow a competitor to “simulate” the opponent’s
line of reasoning (e.g. by using choice rules). However, an
accurate execution of this idea involves solving a number of
non-trivial technical issues. We plan to expand on this topic
in a future paper.

References

Balduccini, M., and Gelfond, M. 2003. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-
Carthy, J.; and Williams, M.-A., eds., International Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9–18.

Balduccini, M. 2007. Learning Action Descriptions with
A-Prolog: Action Language C. In Amir, E.; Lifschitz, V.;
and Miller, R., eds., Procs of Logical Formalizations of
Commonsense Reasoning, 2007 AAAI Spring Symposium.

Brewka, G.; Niemela, I.; and Syrjanen, T. 2004. Logic
Programs wirh Ordered Disjunction. 20(2):335–357.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 365–385.

Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on AI 3(16).

Gelfond, M. 2002. Representing Knowledge in A-
Prolog. In Kakas, A. C., and Sadri, F., eds., Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.

Hayes, P. J., and McCarthy, J. 1969. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.

Marek, V. W., and Truszczynski, M. 1999. Stable
models and an alternative logic programming paradigm.
The Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag, Berlin. 375–398.

Mellarkod, V. S.; Gelfond, M.; and Zhang, Y. 2008. In-
tegrating Answer Set Programming and Constraint Logic
Programming. Annals of Mathematics and Artificial Intel-
ligence. (to appear).

Sakama, C. 2005. Induction from answer sets in non-
monotonic logic programs. ACM Transactions on Com-
putational Logic 6(2):203–231.


