
This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsense07

Finitely-Verifiable Classes of Sentences

Fangzhen Lin
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

This paper proposes a notion of finitely-verifiable
classes of sentences. Informally, a class of sentences
is finitely-verifiable if whether a sentence in this class is
a theorem of a given theory can be checked with respect
to a finite set of models of the theory. The usefulness
of this notion is illustrated using examples from arith-
metics, first-order logic, game theory, and planning.

Introduction
Theorem discovery is the process of coming up with inter-
esting and useful consequences of a theory, and is a highly
creative human endeavor. Computer-aided theorem discov-
ery attempts to make this discovery process as automatic as
possible. One example is from combinatorial mathematics.
The American Mathematical Monthlyused to have problems
about the computation of hypergeometric identities such as

f(n) =
∑

0≤k≤n/3

2k n

n− k

(
n− k
2k

)
in problem 10424. With the work of Sister Mary Celine
Fasenmyer, Gosper, Petkovsek, Wilf, and Zeilberger (cf.
[Petkovseket al., 1996]), the discoveries and the proofs
of these hypergeometric identities have been largely auto-
mated. For instance, using the programs given in[Petkovsek
et al., 1996], it is a simple matter to compute thatf(n) =
2n−1 + cos(nπ/2) for the above identity.

More recently in AI, Lin [2003; 2004] showed that for
certain classes of causal theories, the discoveries and proofs
of equivalent action theories in the forms of successor state
axioms and STRIPS-like systems can be automated, and for
certain types of actions theories, the discoveries and proofs
of certain types of state invariants can be automated as well.
Lin and Chen[2005] showed that the discoveries of certain
classes of strongly equivalent logic programs under answer
set semantics can also be automated to certain extent.

In this paper we shall propose a notion of finitely-
verifiable classes of sentences that we believe underpins re-
cent work on computer-aided theorem discovery. Briefly,
a class of sentences is finitely-verifiable if there is a finite

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

set of models such that whether a sentence in the class is a
theorem can be proved by checking whether it is true in all
models in this finite set. Thus if the theorems that one is
looking for fall into such a class, then in principle one could
discover them by going through the sentences in this class
one by one to see if any of them is a theorem, assuming that
whether a sentence is true in a model can be checked effec-
tively. In practice, though, such brute-force search may not
work and some effective search control strategies need to be
used.

As we shall see, the formal definition of finitely-verifiable
classes of sentences is actually very simple. The main part
of this paper is to give examples to show that this notion is
general enough to cover many interesting cases.

The rest of the paper is organized as follows. We define
formally the notion of finitely-verifiable classes of sentences
in a given theory in the next section. We then show how this
notion can be applied in arithmetics for computing the poly-
nomial sum of a series of polynomials, in first-order logic for
checking the validity of some prenex first-order sentences,
in game theory for discovering classes of two-person games
with unique Nash equilibria, and in planning for discovering
state invariants.

Basic Definitions
In this paper, atheory is defined to be a triple(L,M,�),
whereL is a set of sentences called thelanguageof the the-
ory, M a set called the class ofmodelsof the theory, and
� a subset ofM×L called thesatisfiability relationof the
theory.

Given a theoryT = (L,M,�), a sentenceϕ in L is said
to be atheoremof T iff for all M ∈M, M � ϕ.

A setS of sentences inT is said to befinitely-verifiable
if there is a finite set∆ of models such that for any sentence
ϕ in S, ϕ is a theorem ofT iff for all M ∈ ∆, M � ϕ.
In this case, we also say thatS is finitely-verifiable on∆.
The hardness of proving and discovering theorems inS can
be measured by the size of the smallest∆ on whichS is
finitely-verifiable.

Clearly, if ϕ is a theorem, then{ϕ} is finitely-verifiable.
This is like saying that if a given set of clauses in proposi-
tional logic is satisfiable, one can determine in constant time
whether this set of clauses is satisfiable. It is also clear that
if S is finite, then it is finitely-verifiable. However, even in

this case, computing a finite set∆ of models on whichS
is finitely-verifiable may not be trivial. For instance, letL
be the set of sentences in a first-order language,M the set
of first-order structures for this language, and� the usual
satisfiability relation. IfS is the set of sentences that are no
more than, say 100 characters long, thenS is a finite set thus
finitely-verifiable on the set

{Mϕ | ϕ ∈ S, and¬ϕ is satisfiable},
whereMϕ is any model that satisfies¬ϕ. However, it is not
clear how this set can be actually computed.

We also remark that if the setM of models in a theory is
finite, then any set of sentences is trivially finitely-verifiable.
Thus the notion of finitely-verifiable classes of sentences be-
comes trivial when, say,M is a singleton consisting of the
standard model of number theory.

Computing the Sum of a Series of Polynomials
Our first example is from arithmetics, for computing the sum
of a series of polynomials. It is a simple case of the problem
mentioned above for computing hypergeometric identities.

The sentences in this theory are strings of form

i=x∑
i=0

p1(i) = p2(x), (1)

wherep1 is a polynomial ini, andp2 a polynomial inx, and
their coefficients are real numbers. We callmax{k1, k2} the
degreeof the sentence, whereki is the degree of the polyno-
mialpi, i = 1, 2. A model of the theory is an assignment that
mapsx to a non-negative integer. A modelx = n satisfies
the sentence

i=x∑
i=0

p1(i) = p2(x)

if
i=n∑
i=0

p1(i) = p2(n)

is true.
In this language, for any finite numberk, the setS of

sentences whose degrees are no greater thank is finitely-
verifiable: for any sentence inS, it is a theorem iff it is satis-
fied by all models in{x = 0, ..., x = k, x = k + 1}. “Only
if” is obvious. To prove the “if” part, suppose

i=x∑
i=0

p1(i) = p2(x)

is in S, and that it is true forx = 0, ..., k, k + 1. We show
by induction that it is true for allx. The base case forx = 0
is true by assumption. Inductively, suppose it is true forx =
n− 1, we need to show that it is true forx = n:

i=n∑
i=0

p1(i) = p2(n).

By the inductive assumption, this is equivalent to

p2(n)− p2(n− 1)− p1(n) = 0.

By our assumption, this equation holds forn = 1, ..., k, k +
1, and thatp2(n) − p2(n − 1) − p1(n) is a polynomial of
degree at mostk. Thus this equation must be true for alln,
for otherwise the polynomialp2(n)−p2(n−1)−p1(n) will
havek+1 distinct solution, a contradiction to the fundamen-
tal theorem of algebra.

Thus to discover a polynomialf2 such that (1) holds, one
could assume a general form forf2(x) = c0+c1x+· · · ckxk,
let k = 0 to begin with and increase it by one on each iter-
ation until one finds ak andk + 1 numbersc0, ..., ck such
that (1) holds forx = 0, ..., k + 1.

∀∃-Prenex Formulas in First-Order Logic
Consider the theory(L,M,�), whereL is the set of sen-
tences in a finite first-order language,M the class of first-
order structures, and� the usual satisfiability relation|=.

In the following, for each natural numbern, we denote by
Mn the set of structures whose domain is{1, 2, ..., n}:
Mn = {M | M ∈M∧ domain(M) = {1, 2, ..., n}}.

One can considerMn to be the set ofcanonicalfirst-order
structure with a domain of sizen.

We call a formula of the form∀~xQ a ∀-prenexformula,
whereQ contains no quantifiers or proper function symbols.
We call the sum of the number of variables in~x and the num-
ber of constants inQ the degreeof the ∀-prenex formula.
Similarly, a∀∃-prenex formula is one of the form∀~x∃~yQ,
whereQ contains no quantifiers or proper function symbols,
and its degree is the sum of the number of variables in~x
and the number of constants inQ. An ∃∀-prenex formula
is one of the form∃~x∀~yQ, whereQ contains no quantifiers
or proper function symbols, and its degree is the sum of the
number of variables in~x and the number of constants inQ.

Proposition 1 For any finite numberk, the set of∀∃-prenex
sentences whose degrees are not greater thank is finitely-
verifiable onMn, wheren = 1 if k = 0, andn = k other-
wise.

This proposition follows from the following simple
lemma in first-order logic (c.f. Exercise 19(a), page 96, of
[Enderton, 1972]):
Lemma 1 If an ∃∀-prenex sentence is satisfiable, then it is
true in an interpretation with a domain ofmax{1, k} ob-
jects, wherek is the degree of the prenex sentence.

Proposition 1 (Lemma 1) can be extended to entailment
under a universal theory.

Let L be again the set of sentences in a finite first-order
language. LetΣ be a set of∀-prenex sentences. LetMΣ be
the set of models ofΣ, and� the usual satisfiability relation
|=. LetMn

Σ = MΣ ∩Mn.

Proposition 2 If S is a set of∀∃-prenex sentences such that
the degree of each sentence inS is less thank for some fixed
finitek, thenS is finitely-verifiable onMn

Σ under the theory
(L,MΣ, |=), wheren is the maximal element in the follow-
ing set:

{1} ∪
{degree(ϕ) + (number of constants inΣ but not inϕ)

| ϕ ∈ S}

Proof: First of all, notice that since our first-order language
is finite, there is only a finite number of constants in the
language, thus only finite number of them inΣ. Therefore
the numbern in the proposition is well-defined. To prove
this proposition, we only need to prove that for any formula
ϕ in S, if there is aM ∈MΣ such thatM |= ¬ϕ, then there
is a modelM ′ ∈ Mn

Σ such thatM ′ |= ¬ϕ. Suppose that
∀~x∃~yQ is in S, M ∈ MΣ, andM |= ¬∀~x∃~yQ. Thus there
is a variable assignmentσ such that

M,σ |= ∀~y¬Q.

Now letD be the following set:

{σ(x) | x ∈ ~x} ∪
{cM | a is a constant occur inΣ ∪ {Q}}.

Now let M1 be a structure with domainD (if D is empty
then let its domain be any singleton set) and

• The interpretation of each predicate inM1 is the restric-
tion of its interpretation inM onD.

• For each constantc mentioned inΣ ∪ {Q}, cM1 = cM .

It is clear that for any suchM1,

M1, σ |= ∀~y¬Q,

thusM1 |= ∀~x∃~yQ. It is also clear thatM1 ∈ MΣ. By the
definition ofD, its size is not greater than the numbern in
the proposition. Thus there is aM ′ ∈ Mn such thatM1 is
isomorphic to some sub-structure ofM ′. ThusM ′ is also a
model ofΣ and satisfies¬∀~x∃~yQ.

These results can be extended to first-order logic with
many sorts. To do this, we first need to extend the notion
of degrees of a prenex formula.

A rank τ of a many-sorted first-order language is a set of
the form

τ = {(g, n) | g a primitive sort, andn an ordinal}.
We say thatτ is a finite rank if for all(g, n) ∈ τ , n is finite.
Given two ranksτ andτ ′, we say thatτ is smaller or equal
to τ ′, written τ ≤ τ ′ if for each sortg, (g, n) ∈ τ , and
(g, n′) ∈ τ ′, n ≤ n′.

Now the degree of a∀∃-prenex formula∀~x∃~yQ is the
rank τ defined as follows: for each primitive sortg, if n
is the sum of the number of variables that may be of sortg
in ~x and the number of constants inQ that may be of sortg,
then(g, n) ∈ τ , where a variable (constant) may be of sort
g if it is either of sortg or of sortg′ that containsg.

Similarly the degree of an∃∀-prenex formula∃~x∀~yQ is
the rankτ defined as follows: for each primitive sortg, if n
is the sum of the number of variables that may be of sortg
in ~x and the number of constants inQ that may be of sortg,
then(g, n) ∈ τ .

A first-order structure is said to be aτ -structureif for each
(g, n) ∈ τ , the domain of sortg in the structure has at mostn
elements. Similarly, aτ -model of a sentence (theory) is aτ -
structure that satisfies the sentence (theory). Notice that the
domain of a non-primitive sort is computed from domains of
primitive sorts.

The following lemma generalizes Lemma 1 ([Lin, 2004]).

Lemma 2 If an ∃∀-prenex formula in a many-sorted first-
order language is satisfiable, then it is satisfiable in aτ -
structure, where the rankτ is defined as follows: for any
primitive sortg, if (g, n) is in the degree of the prenex for-
mula, then(g,max{n, 1}) ∈ τ .

To generalize Proposition 2 to many-sorted case, we need
to first generalizeMn

Σ, the set of canonical models of size
n. In the following, letL be the set of sentences in a finite
many-sorted first-order language,Σ a set of∀-prenex sen-
tences, andMΣ the set of models ofΣ. For each finite rank
τ , letMτ

Σ be the set of modelsM in MΣ such that for each
primitive sortg and(g, n) ∈ τ , the domain ofM for sortg
is {g.1, g.2, ..., g.n}.
Proposition 3 Let υ be a finite rank, andS a set of∀∃-
prenex sentences such that the rank of each sentence inS
is less or equal toυ. ThenS is finitely-verifiable onMτ

Σ
under the theory(L,MΣ, |=), whereτ is the rank such that
for each primitive sortg, (g, n) ∈ τ if n is the maximal
element in the following set:

{1} ∪ {k + (number of constants may be of sortg in Σ
but not inϕ) | var ∈ S, (g, k) ∈ degree(ϕ)}

In the following we show how these theorems can be used
for discovering theorems in two-person game theory and
planning.

Two-Person Games
The class of two-person games has been studied extensively.
Some important concepts and classical results in games the-
ory were initially done for such games.

A two-person game is a tuple(A,B,≤1,≤2), whereA
andB are sets (pure) strategies of players 1 and 2, respec-
tively, and≤1 and≤2 are total orders onA×B calledpref-
erence relationsfor players 1 and 2, respectively.

For eachb ∈ B, the set of best responses by player 1 to
the actionb by player 2 is defined as follows:

B1(b) = {a | a ∈ A, and for alla′ ∈ A, (a′, b) ≤1 (a, b)}.

Similarly, for eacha ∈ A, the set of best responses by player
2 is:

B2(a) = {b | b ∈ B, and for allb′ ∈ B, (a, b′) ≤2 (a, b)}.

A profile (a, b) ∈ A × B is a (pure-strategy) Nash equi-
librium if both a ∈ B1(b) andb ∈ B2(a). A game can have
one, more than one, or no Nash equilibria. There has been
extensive study of properties of pure Nash equilibria. For
instance, if a game isstrictly competitive[Friedman, 1983;
Moulin, 1976], then it has unique Nash equilibria in the
sense that if boths ands′ are Nash equilibria of the game,
then the payoffs for them are the same for each player, i.e.
s ≤i s′ ands′ ≤i s for i = 1, 2. This is also true forweakly
unilaterally competitivegames[Kats and Thisse, 1992]. It is
also known thatordinal potentialgames[Topkis, 1998] and
super-modulargames[Monderer and Shapley, 1996] always
have Nash equilibria.

To discover similar results, we first formulate two-person
games in first-order logic.

Formulating two-person games in first-order logic
We consider a first-order language with two sortsα andβ,
equality, and two predicates≤1 and≤2. Sortα is for player
1’s actions, andβ for player 2’s actions. In the following, we
use variablesx, x1, x2, .. to range overα, andy, y1, y2, ... to
range overβ. The two predicates represent the two players’
preference relations. In the following, as we have already
done above, we write≤i (x1, y1, x2, y2) in infix notation as
(x1, y1) ≤i (x2, y2), i = 1, 2. We write(x1, y1) <i (x2, y2)
as a shorthand for

(x1, y1) ≤i (x2, y2) ∧ ¬(x2, y2) ≤i (x1, y1),

and(x1, y1) 'i (x2, y2) as a shorthand for

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x1, y1),

wherei = 1, 2.
The two relations need to be total orders (in the rest of

the paper, unless otherwise stated, all free variables in a
displayed formula are assumed to be universally quantified
from outside):

(x, y) ≤i (x, y), (2)

(x1, y1) ≤i (x2, y2) ∨ (x2, y2) ≤i (x1, y1), (3)

(x1, y1) ≤i (x2, y2) ∧ (x2, y2) ≤i (x3, y3) ⊃
(x1, y1) ≤i (x3, y3), (4)

wherei = 1, 2. In the following, we denote byΣ the set of
the above sentences. Thus two-person games correspond to
first-order models ofΣ, and two-person finite games corre-
spond to first-order finite models ofΣ.

We now show how some other notions in game theory can
be formulated in first-order logic. The condition for a profile
(ξ, ζ) to be a Nash equilibrium is captured by the following
formula:

∀x.(x, ζ) ≤1 (ξ, ζ) ∧ ∀y.(ξ, y) ≤2 (ξ, ζ) (5)

In the following, we shall denote the above formula by
NE(ξ, ζ).

The following sentence expresses the uniqueness of Nash
equilibria:

NE(x1, y1) ∧NE(x2, y2) ⊃
(x1, y1) '1 (x2, y2) ∧ (x1, y1) '2 (x2, y2) (6)

A game is strictly competitive if it satisfies the following
property:

(x1, y1) ≤1 (x2, y2) ≡ (x2, y2) ≤2 (x1, y1). (7)

Thus it should follow that

Σ |= (7) ⊃ (6). (8)

Notice that we have assumed that all free variables in a
displayed formula are universally quantified from outside.
Thus (7) is a sentence of the form∀x1, x2, y1, y2ϕ. Simi-
larly for (6).

Theorems like (8) can actually be generated automatically
using the following theorem, which follows from the results
in first-order logic in the last section.

Theorem 1 SupposeQ is a formula without quantifiers,~x1

and~x2 tuples of variables of sortα, and~y1 and~y2 tuples of
variables of sortβ. We have that

1. Σ |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ (6)
iff for all model G of Σ such that|A| ≤ |~x1| + 2 and
|B| ≤ |~y1|+ 2, we have that
G |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ (6),
whereA is the domain ofG for sortα, andB the domain
of G for sortβ.

2. Σ |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ ¬∃x, y.NE(x, y)
iff for all model G of Σ such that|A| ≤ |~x1| + 1 and
|B| ≤ |~y1|+ 1 we have that
G |= ∃~x1∃~y1∀~x2∀~y2Q ⊃ ¬∃x, y.NE(x, y),
whereA is the domain ofG for sortα, andB the domain
of G for sortβ.

Proof: (1) By Proposition 3, noting that

∃~x1∃~y1∀~x2∀~y2Q ⊃ (6)

is equivalent to a∀∃-prenex sentence of the form

∃~x1∃x2, x3∃~y1∃y2, y3∀~x∀~yQ′,

wherex2 andx3 (y2 andy3) are new variables not in~x1 (~y1).
The proof of (2) is similar.

In other words, to prove that a sentence of the form
∃~x1∃~y1∀~x2∀~y2Q is a sufficient condition for the uniqueness
of Nash equilibria, it suffices to verify that this is the case
for all games of sizes up to(|~x1| + 2) × (|~y1| + 2), and to
prove that it is a sufficient condition for the non-existence of
Nash equilibria, it suffices to verify this for games of sizes
up to(|~x1|+ 1)× (|~y1|+ 1).

Theorem 1 holds for many specialized games as well. For
instance, it holds forstrict gamesas well. A game is strict
if for both players, different profiles have different payoffs,
that is, (a, b) = (a′, b′) whenever(a, b) ≤i (a′, b′) and
(a′, b′) ≤i (a, b), wherei = 1, 2.

Theorem 2 Theorem 1 holds when the following axioms are
added toΣ:

(x1, y1) '1 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2),
(x1, y1) '2 (x2, y2) ⊃ (x1 = x2 ∧ y1 = y2).

In fact, as can be seen from its proof, Theorem 1 holds
whenΣ is replaced by any set of∀-prenex sentences.

Based on these theorems, Lin and Tang[2007] conducted
some computer experimentations. Among others, their pro-
gram re-discovered Kats and Thisse’s class of weakly unilat-
erally competitive games which correspond to the following
condition:

(x1, y) ≤1 (x2, y) ⊃ (x2, y) ≤2 (x1, y) ∧
(x, y1) ≤2 (x, y2) ⊃ (x, y2) ≤1 (x, y1).

Discovering State Invariants in Planning
Domains

We now turn to the problem of discovering state constraints
and state invariants in planning. In planning, state con-
straints are conditions that are true in all legal situations, i.e.

all legal initial situations as well as their future situations.
State constraints are useful in planning for pruning search
spaces, and several systems have been designed specifi-
cally for learning state constraints (c.f.[Huanget al., 2000;
Gerevini and Schubert, 1998]).

On the other hand, state invariants[Lin, 2004] are those
that if true in a situation will be true in all successor situ-
ations. It is clear that a state constraint may not be a state
invariant, and vice versa. However, many state constraints
are invariants that are true in all legal initial situations. Thus
given a planning domain with some example initial situa-
tions, the system in[Lin, 2004] tries to discover state in-
variants that are true in all the given initial situations. This
system is based on a theorem similar to Proposition 3 that
identifies a class of sentences that are finitely-verifiable.

A planning domain has a set of predicates representing
fluents and other relations. It can also have some non-action
functions such ascolor(x) (the color of blockx). We call
this set of predicates and functionsdomain language. To for-
malize the effects of actions, we extend the domain language
with a special sortaction for representing actions. Thus ac-
tions in the planning domain are represented by functions
whose values are ofaction sort. For each predicate in the
domain language we also introduce a new predicate with the
same name but with an extra argument of sortaction. We
call these new predicates “successor state predicates”. For
instance, ifclear is a fluent, then we writeclear(x) to mean
that blockx is clear in the given initial situation, and write
clear(x, unstack(x, y)) to mean thatx is clear in the suc-
cessor situation of doingunstack(x, y) in the initial state.
We also assume a special unary predicatePoss to denote the
action precondition. ThusPoss(unstack(x, y)) will stand
for the precondition of doingunstack(x, y).
Definition 1 An action theory is a family of first-order the-
ories{TA | A is an action type}, where for each action type
A, TA consists of the following axioms:
• An action precondition axiom of the form

∀~x.Poss(A(~x)) ≡ Ψ, (9)
whereΨ is a formula in the domain language whose free
variables are in~x. (ThusΨ cannot mentionPoss and any
successor state predicates.)

• For each domain predicateF an axiom of the following
form:

(∀~x, ~y).F (~x,A(~y)) ≡ ΦF (~x, ~y), (10)
where~x and~y do not share common variables, andΦF

is a formula in the domain language whose free variables
are from~x and~y.

Example 1 In the blocks world, for the action typestack,
we have the following axioms (all free variables below are
universally quantified from outside):

Poss(stack(x, y)) ≡ holding(x) ∧ clear(y),
on(x, y, stack(u, v)) ≡ (x = u ∧ y = v) ∨ on(x, y),
ontable(x, stack(u, v)) ≡ ontable(x),
handempty(stack(u, v)) ≡ true,

holding(x, stack(u, v)) ≡ false,

clear(x, stack(u, v)) ≡ clear(x) ∧ x 6= v.

The following definition captures the intuition that a state
invariant is a formula that if true initially, will continue to be
true after the successful completion of every possible action.

Definition 2 Given an action theory{TA | A is an action
type}, a formulaW in the domain language is a state invari-
ant if for each action typeA,

TA |= ∀~y.W ∧ Poss(A(~y)) ⊃ W (A(~y)), (11)

whereW (A(~y)) is the result of replacing each atomF (~t) in
W by F (~t, A(~y)), and |= is the logical entailment in first-
order logic.

The following theorem reduces the problem of checking
whether a formula is a state invariant to that of the logical
validity checking of a formula in the domain language.

Theorem 3 Let W ′ be a state invariant. For any formula
W in the domain language,W ∧W ′ is a state invariant iff
for each action typeA, the sentence

∀~y.W ∧W ′ ∧Ψ(~y) ⊃ R(W,A(~y)) (12)

is valid, whereΨ is the action precondition ofA as in the
right side of (9), andR(W,A(~y)), the regression ofW over
A(~y), is the result of replacing each atomF (~t) in W by
ΦF (~t, ~y) in the right of the axiom (10).

Lin [2004] showed that for so-calledsimpleaction theo-
ries, by Theorem 3, checking whether a conjunction of∀-
prenex formulas∀~xB is a state invariant can be reduced to
checking the validity of a∀∃-prenex sentence, thus Proposi-
tion 3 will apply.

Definition 3 An action theory is said to besimpleif for each
action typeA:

• The formulaΨ in its action precondition axiom (9) has no
quantifiers.

• The formulaΦF in the axiom (10) for eachF has no
quantifiers, and (10) entails the following formula:

(∀~x, ~y).¬subset(~x, ~y) ⊃ F (~x,A(~y)) ≡ F (~x),

wheresubset(~x, ~y), meaning~x is a subset of~y, is the
following formula: ∧

x∈~x

∨
y∈~y

x = y.

Notice that for context-free action domains such as the
blocks world and the logistics domain, successor state ax-
ioms (10) have the form:

F (~x,A(~y)) ≡ E1∨· · ·∨En∨(F (~x)∧¬En+1∧· · ·∧¬Em),

whereEi’s are conjunctions of equality atoms between vari-
ables in~x and~y. For instance, in the blocks world, we have:

clear(x, unstack(y, z)) ≡
(x = z) ∨ (clear(x) ∧ y 6= x),

on(x1, x2, unstack(y, z)) ≡
on(x1, x2) ∧ ¬(x1 = y ∧ x2 = z).

Thus context-free action domains are simple according to
our definition as long as action preconditions do not mention
any quantifiers.
∀-prenex sentences∀~xB include many typical state con-

straints found in planning, such as the functional depen-
dency constraints like

on(x, y) ∧ on(x, z) ⊃ y = z,

exclusiveness conditions like

(∃y)on(x, y) ⊃ ¬ontable(x),
and information about types like

at(x, y) ∧ airplane(x) ⊃ airport(y).
Lin [2004] described a system based on these results, and

reported that for the blocks world the system discovered the
following invariants (more precisely the conjunction of the
following sentences):

¬handempty ∨ ¬(∃x)holding(x),
¬clear(x) ∨ ¬(∃z)on(z, x),
¬holding(x) ∨ ¬clear(x),
¬holding(x) ∨ ¬(∃y)on(x, y),
¬holding(x) ∨ ¬(∃z)on(z, x),
¬ontable(x) ∨ ¬holding(x),
¬ontable(x) ∨ ¬(∃y)on(x, y),
holding(x1) ∧ holding(x2) ⊃ x1 = x2,

on(x1, x2) ∧ on(x1, x3) ⊃ x2 = x3,

on(x2, x1) ∧ on(x3, x1) ⊃ x2 = x3

holding(x) ∨ clear(x) ∨ (∃z)on(z, x),
ontable(x) ∨ holding(x) ∨ (∃y)on(x, y),
handempty ∨ (∃x)holding(x)

As one can see, these include many familiar state constraints
in the blocks world. However they are not complete in the
sense that there are some illegal states that satisfy all of
them. For instance, ifB is the only block in the domain,
then the state{on(B,B), handempty} is apparently illegal
but satisfies all the sentences in the above two sets. However,
if we add the following sentences:

above(x, y) ≡ (on(x, y) ∨
(∃z)(on(x, z) ∧ above(z, y))),

above(x, y) ⊃ ¬on(y, x),
then we get a complete set of state invariants. It is not clear
how sentences like these can be discovered as they involve
new predicates, and are essentially second-order.

For the logistics domain, the system returns the following
state invariants:

inCity(x1, x2) ∧ inCity(x1, x3) ⊃ x2 = x3,

at(x2, x1) ∧ airplane(x2) ⊃ airport(x1),
¬(∃y)in(x, y) ∨ ¬(∃y)at(x, y),
in(x1, x2) ∧ in(x1, x3) ⊃ x2 = x3,

package(x) ⊃ [(∃y)in(x, y) ∨ (∃y)at(x, y)],
vehicle(x) ⊃ (∃y)at(x, y),
(∃y)inCity(x, y)

These constraints turn out to be complete for the logistics
domain in the sense that a state is “legal” if it satisfies all the
constraints.

Conclusion Remarks
We have proposed a notion of finitely-verifiable classes of
sentences. The motivation is that if a class of sentences is
finitely-verifiable, then checking whether a sentence in this
class is a theorem can be done by model-checking in a fi-
nite set of models, thus paving the way for using comput-
ers to discover theorems in this class. Identifying finitely-
verifiable classes of sentences is a domain-dependent task,
and the main theoretical challenge for computer-aided theo-
rem discovery.

References
H. Enderton.A Mathematical Introduction to Logic. Aca-
demic Press, 1972.
J. Friedman. On characterizing equilibrium points in two-
person strictly competitive games.International Journal of
Game Theory, 12:245 – 247, 1983.
A. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. InProceedings of the 15th
National Conference on Artificial Intelligence (AAAI–98),
AAAI Press, Menlo Park, CA., pages 905–912, 1998.
Y. Huang, B. Selman, and H. A. Kautz. Learning declar-
ative control rules for constraint-based planning. In
ICML’2000, pages 415–422, 2000.
A. Kats and J. Thisse. Unilaterally competitive games.In-
ternational Journal of Game Theory, 21:291 – 299, 1992.
F. Lin and Y. Chen. Discovering classes of strongly equiv-
alent logic programs. InProceedings of the Nineteenth
International Joint Conference on Artificial Intelligence
(IJCAI–05), pages 516–521, 2005.
F. Lin and P. Tang. Discovering theorems in game
theory: Two-person games with unique Nash equilib-
ria. http://www.cs.ust.hk/faculty/flin/papers/zerosum.pdf,
2007.
F. Lin. Compiling causal theories to successor state axioms
and STRIPS-like systems.Journal of Artificial Intelligence
Research, 19:279–314, 2003.
F. Lin. Discovering state invariants. InProceedings of the
Nineth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2004), pages 536–
544, 2004.
D. Monderer and L. S. Shapley. Potential games.Games
and Economic Behavior, 14:124 – 143, 1996.
H. Moulin. Cooperation in mixed equilibrium.Mathemat-
ics of Operations Research, 1:273 – 286, 1976.
M. Petkovsek, H. S. Wilf, and D. Zeilberger.A = B. Welles-
ley, Mass. : A K Peters, 1996.
D. Topkis.Supermodularity and Complementarity. Prince-
ton University Press, New Jersey, 1998.

