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Abstract

This paper proposes a notion of finitely-verifiable
classes of sentences. Informally, a class of sentences
is finitely-verifiable if whether a sentence in this class is
a theorem of a given theory can be checked with respect
to a finite set of models of the theory. The usefulness
of this notion is illustrated using examples from arith-
metics, first-order logic, game theory, and planning.

Introduction

Theorem discovery is the process of coming up with inter-
esting and useful consequences of a theory, and is a highly
creative human endeavor. Computer-aided theorem discov-
ery attempts to make this discovery process as automatic as
possible. One example is from combinatorial mathematics.
The American Mathematical Monthliged to have problems
about the computation of hypergeometric identities such as

(")

in problem 10424. With the work of Sister Mary Celine
Fasenmyer, Gosper, Petkovsek, Wilf, and Zeilberger (cf.
[Petkovseket al, 1994), the discoveries and the proofs
of these hypergeometric identities have been largely auto-
mated. For instance, using the programs give®Ptkovsek
et al, 1994, it is a simple matter to compute thfitn) =
2n=1 4 cos(nm/2) for the above identity.

More recently in Al, Lin[2003; 2004 showed that for

n—k
2k

certain classes of causal theories, the discoveries and proofs

of equivalent action theories in the forms of successor state
axioms and STRIPS-like systems can be automated, and for
certain types of actions theories, the discoveries and proofs
of certain types of state invariants can be automated as well.
Lin and Chen2004 showed that the discoveries of certain
classes of strongly equivalent logic programs under answer
set semantics can also be automated to certain extent.

In this paper we shall propose a notion of finitely-
verifiable classes of sentences that we believe underpins re-
cent work on computer-aided theorem discovery. Briefly,
a class of sentences is finitely-verifiable if there is a finite
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set of models such that whether a sentence in the class is a
theorem can be proved by checking whether it is true in all
models in this finite set. Thus if the theorems that one is
looking for fall into such a class, then in principle one could
discover them by going through the sentences in this class
one by one to see if any of them is a theorem, assuming that
whether a sentence is true in a model can be checked effec-
tively. In practice, though, such brute-force search may not
work and some effective search control strategies need to be
used.

As we shall see, the formal definition of finitely-verifiable
classes of sentences is actually very simple. The main part
of this paper is to give examples to show that this notion is
general enough to cover many interesting cases.

The rest of the paper is organized as follows. We define
formally the notion of finitely-verifiable classes of sentences
in a given theory in the next section. We then show how this
notion can be applied in arithmetics for computing the poly-
nomial sum of a series of polynomials, in first-order logic for
checking the validity of some prenex first-order sentences,
in game theory for discovering classes of two-person games
with unique Nash equilibria, and in planning for discovering
state invariants.

Basic Definitions

In this paper, aheoryis defined to be a tripl¢L, M, ),
where/ is a set of sentences called thaguageof the the-
ory, M a set called the class ofiodelsof the theory, and
> a subset ofM x L called thesatisfiability relationof the
theory.

Given a theory7 = (£, M, >), a sentence in L is said
to be atheoremof 7 iff forall M € M, M > .

A set.S of sentences if is said to bdfinitely-verifiable

if there is a finite sef\ of models such that for any sentence
pin S, pis a theorem off iff for all M € A, M > ¢.
In this case, we also say thétis finitely-verifiable onA.
The hardness of proving and discovering theoremS aan
be measured by the size of the smallésbn which S is
finitely-verifiable.

Clearly, if ¢ is a theorem, thefp} is finitely-verifiable.
This is like saying that if a given set of clauses in proposi-
tional logic is satisfiable, one can determine in constant time
whether this set of clauses is satisfiable. It is also clear that
if S is finite, then it is finitely-verifiable. However, even in



this case, computing a finite sé&t of models on whichS

is finitely-verifiable may not be trivial. For instance, &t
be the set of sentences in a first-order langudgethe set

of first-order structures for this language, andhe usual
satisfiability relation. IfS is the set of sentences that are no
more than, say 100 characters long, ti¥as a finite set thus
finitely-verifiable on the set

{M, | ¢ €S, and— is satisfiablé,

whereM,, is any model that satisfiesp. However, it is not
clear how this set can be actually computed.

We also remark that if the s@¢1 of models in a theory is
finite, then any set of sentences is trivially finitely-verifiable.
Thus the notion of finitely-verifiable classes of sentences be-
comes trivial when, sayM is a singleton consisting of the
standard model of number theory.

Computing the Sum of a Series of Polynomials

Our first example is from arithmetics, for computing the sum

of a series of polynomials. It is a simple case of the problem

mentioned above for computing hypergeometric identities.
The sentences in this theory are strings of form

> pi(i) = pa(@), 1)

=0

wherep; is a polynomial ini, andp, a polynomial inz, and
their coefficients are real numbers. We ealtz{k, k2 } the
degreeof the sentence, whefg is the degree of the polyno-
mial p;, 7 = 1, 2. Amodel of the theory is an assignment that
mapsz to a non-negative integer. A model= n satisfies
the sentence

S pii) = pa(o)
=0

is true.

In this language, for any finite numbét the setS of
sentences whose degrees are no greater khiarfinitely-
verifiable: for any sentence i), it is a theorem iff it is satis-
fied by all models iz = 0, ...,z = k,z = k + 1}. “Only
if” is obvious. To prove the “if” part, suppose

S pii) = pa(o)
1=0

isin S, and that it is true for = 0, ..., k, k + 1. We show
by induction that it is true for alt. The base case far= 0
is true by assumption. Inductively, suppose it is truedfos
n — 1, we need to show that it is true far= n:

i=n
> pi(i) = pa(n).
1=0
By the inductive assumption, this is equivalent to

p2(n) —pa(n —1) —p1(n) = 0.

By our assumption, this equation holds foe= 1, ..., k, k +
1, and thatpa(n) — p2(n — 1) — p1(n) is a polynomial of
degree at most. Thus this equation must be true for all
for otherwise the polynomialy (n) — pa(n—1) —py (n) will
havek +1 distinct solution, a contradiction to the fundamen-
tal theorem of algebra.

Thus to discover a polynomigh such that (1) holds, one
could assume a general form fty(z) = co+crz+- - - cpa®,
let £ = 0 to begin with and increase it by one on each iter-
ation until one finds & and% + 1 numbersc, ..., ¢, such
that (1) holds forr =0, ..., k + 1.

V3-Prenex Formulas in First-Order Logic

Consider the theoryL, M, >), whereL is the set of sen-
tences in a finite first-order languag#f the class of first-
order structures, and the usual satisfiability relatiop-.

In the following, for each natural number we denote by
M?™ the set of structures whose domairf{is2, ..., n}:

M ={M | M € MAdomain(M)={1,2,....,n}}.

One can considet™ to be the set o€anonicalfirst-order
structure with a domain of size.

We call a formula of the fornvZQ a V-prenexformula,
where( contains no quantifiers or proper function symbols.
We call the sum of the number of variablesdand the num-
ber of constants i) the degreeof the V-prenex formula.
Similarly, aV3-prenex formula is one of the formz35Q,
where(Q contains no quantifiers or proper function symbols,
and its degree is the sum of the number of variableg in
and the number of constants r An Jv-prenex formula
is one of the forndzVyQ, where@ contains no quantifiers
or proper function symbols, and its degree is the sum of the
number of variables i and the number of constantsdn

Proposition 1 For any finite numbek, the set of/3-prenex
sentences whose degrees are not greater thafinitely-
verifiable onM™, wheren = 1 if £ = 0, andn = k other-
wise.

This proposition follows from the following simple
lemma in first-order logic (c.f. Exercise 19(a), page 96, of
[Enderton, 197D:

Lemma 1 If an 3V-prenex sentence is satisfiable, then it is
true in an interpretation with a domain ofiaz{1, k} ob-
jects, wherek is the degree of the prenex sentence.

Proposition 1 (Lemma 1) can be extended to entailment
under a universal theory.

Let £ be again the set of sentences in a finite first-order
language. LeE be a set of/-prenex sentences. Latly, be
the set of models of, andr> the usual satisfiability relation
E. Let ME& = My N M™.
Proposition 2 If S is a set ofy3-prenex sentences such that
the degree of each sentenceSiiis less thark for some fixed
finite k, thenS is finitely-verifiable onM$ under the theory
(L, Mx, E), wheren is the maximal element in the follow-
ing set:

{1}y

{degree(p) + (number of constants iB but not iny)
| pe S}



Proof: First of all, notice that since our first-order language
is finite, there is only a finite number of constants in the
language, thus only finite number of them3h Therefore
the numbem in the proposition is well-defined. To prove
this proposition, we only need to prove that for any formula

Lemma 2 If an 3v-prenex formula in a many-sorted first-
order language is satisfiable, then it is satisfiable imra
structure, where the rank is defined as follows: for any
primitive sortg, if (g,n) is in the degree of the prenex for-
mula, then(g, maxz{n,1}) € 7.

pin S, ifthereis aM € My suchthat\/ | —y, then there
is a modelM’ € M% such thatM’ = —¢. Suppose that
VZIGQ isin S, M € My, andM | —VZ3yQ. Thus there
is a variable assignmentsuch that
M, o = V§-Q.

Now let D be the following set:

{o(z) | zeZ}U

{c™ | ais a constant occur iE U {Q}}.

Now let M; be a structure with domai® (if D is empty

then let its domain be any singleton set) and

e The interpretation of each predicatefify is the restric-
tion of its interpretation in\/ on D.

e For each constamtmentioned i U {Q}, M1 = M.

It is clear that for any such/;,

Mla a ': v?j_'Q7

thusM; = VZ3yQ. Itis also clear thafl/; € Msy. By the
definition of D, its size is not greater than the numbein

the proposition. Thus there isd’ € M™ such that)M; is

isomorphic to some sub-structure &f . ThusM’ is also a
model ofY and satisfiesVZ35(Q). =

These results can be extended to first-order logic with
many sorts. To do this, we first need to extend the notion

of degrees of a prenex formula.

A rank 7 of a many-sorted first-order language is a set of

the form
7 ={(g,n) | gaprimitive sort, anch an ordina}.

We say that- is a finite rank if for all(g, n) € 7, n is finite.
Given two ranksr andr’, we say that is smaller or equal
to 7/, written = < 7’ if for each sortg, (¢,n) € 7, and
(g;n") et ,n<n

Now the degree of &3-prenex formulavz3yQ is the
rank = defined as follows: for each primitive sagt if n

is the sum of the number of variables that may be of gort

in # and the number of constants@hthat may be of sorg,

then(g,n) € 7, where a variable (constant) may be of sort

g ifitis either of sortg or of sortg’ that containg).
Similarly the degree of aAv-prenex formuladzVy(Q is
the rankr defined as follows: for each primitive sartif n

is the sum of the number of variables that may be of gort

in # and the number of constantsdhthat may be of sorg,
then(g,n) € 7.

A first-order structure is said to berastructureif for each
(g,m) € 7, the domain of sorg in the structure has at mast
elements. Similarly, &-model of a sentence (theory) isa

To generalize Proposition 2 to many-sorted case, we need
to first generalizeMy,, the set of canonical models of size
n. In the following, letL be the set of sentences in a finite
many-sorted first-order languagg,a set ofv-prenex sen-
tences, andMx. the set of models aE. For each finite rank
7, let MZ, be the set of modeld/ in My, such that for each
primitive sortg and(g,n) € 7, the domain ofM/ for sortg
is{g.1,9.2,...,g.n}.

Proposition 3 Let v be a finite rank, andS a set ofv3-
prenex sentences such that the rank of each sentenge in
is less or equal ta. ThenS is finitely-verifiable onMg,
under the theoryL, My, =), wherer is the rank such that
for each primitive sorty, (g,n) € 7 if n is the maximal
element in the following set:

{1} U {k + (number of constants may be of sgiin
but noting) | var € S, (g,k) € degree(y)}

In the following we show how these theorems can be used
for discovering theorems in two-person game theory and
planning.

Two-Person Games

The class of two-person games has been studied extensively.
Some important concepts and classical results in games the-
ory were initially done for such games.

A two-person game is a tupled, B, <, <»), where A
and B are sets (pure) strategies of players 1 and 2, respec-
tively, and<; and<, are total orders orl x B calledpref-
erence relationgor players 1 and 2, respectively.

For eachb € B, the set of best responses by player 1 to
the actiornb by player 2 is defined as follows:

Bi(b)={a | a€ A, andforalla’ € 4, (a’,b) <; (a,b)}.

Similarly, for eachu € A, the set of best responses by player
2is:

By(a) ={b | be B, andforallt’ € B, (a,t’) <3 (a,b)}.

A profile (a,b) € A x B is a (pure-strategy) Nash equi-
librium if both a € By (b) andb € By(a). A game can have
one, more than one, or no Nash equilibria. There has been
extensive study of properties of pure Nash equilibria. For
instance, if a game istrictly competitive Friedman, 1983;
Moulin, 1974, then it has unique Nash equilibria in the
sense that if botk ands’ are Nash equilibria of the game,
then the payoffs for them are the same for each player, i.e.
s <; ' ands’ <; sfori = 1,2. This is also true foweakly
unilaterally competitivggamedKats and Thisse, 1992It is
also known thabrdinal potentialgamed Topkis, 1998 and

structure that satisfies the sentence (theory). Notice that the super-modulagamegMonderer and Shapley, 19p&lways
domain of a non-primitive sort is computed from domains of have Nash equilibria.

primitive sorts.
The following lemma generalizes Lemma[Lif, 2004).

To discover similar results, we first formulate two-person
games in first-order logic.



Formulating two-person games in first-order logic

We consider a first-order language with two sartand 3,
equality, and two predicates; and<,. Sorta is for player

1's actions, ang for player 2's actions. In the following, we
use variables, z1, x», .. to range overy, andy, y1, ¥, ... t0
range overs. The two predicates represent the two players’
preference relations. In the following, as we have already
done above, we writeg; (z1,y1, 2, y2) in infix notation as
(-rh yl) <i (1‘2, y?)v 1 =1,2. We Write(mla yl) <y (1‘2, y2)

as a shorthand for

(1,y1) <i (x2,y2) A (22, 92) <i (21, 91),
and(x1,y1) ~; (22, y2) as a shorthand for
(1, 11) <i (T2,92) A (22, 92) <6 (21, 41),

wherei = 1, 2.
The two relations need to be total orders (in the rest of

the paper, unless otherwise stated, all free variables in a

displayed formula are assumed to be universally quantified
from outside):

(z,y) <i (z,y), (2)

(x1,91) <i (¥2,92) V (22,92) <i (z1,91), )

(x1,91) <i (¥2,92) A (22,92) <i (23,3) D
(z1,91) <i (73,93), 4)

wherei = 1, 2. In the following, we denote by the set of

Theorem 1 Suppos&) is a formula without quantifiersg;
andZ, tuples of variables of sort, andy; andy, tuples of
variables of sor{3. We have that
1. ¥ | 37,351 VEVyQ D (6)
iff for all model G of ¥ such that|A| < |#;| + 2 and
|B| < |i1| + 2, we have that
G ): 397:'133]1V3§’2V§2Q D) (6),
whereA is the domain of7 for sort o, and B the domain
of G for sort 3.
DY ': 3f13g1Vf2vg2Q D) ﬁal‘,y.NE(x, y)
iff for all model G of ¥ such that|A| < |#;| + 1 and
|B| < |#1] + 1 we have that
G ': 351351VCEQV272Q ) _\3.13, yNE($7 y)a
whereA is the domain otz for sort«, and B the domain
of G for sort 5.

Proof: (1) By Proposition 3, noting that
37, I VIV G Q D (6)
is equivalent to &3-prenex sentence of the form
37,32, £3371 3y, y3VIVYQ,
wherezs andxs (y2 andys) are new variables not if; (i;).
The proof of (2) is similarm

In other words, to prove that a sentence of the form
371371 V2. Vi, Q is a sufficient condition for the uniqueness
of Nash equilibria, it suffices to verify that this is the case

the above sentences. Thus two-person games correspond tdor all games of sizes up 021 | + 2) x (|71] + 2), and to

first-order models oE, and two-person finite games corre-
spond to first-order finite models &f.

We now show how some other notions in game theory can
be formulated in first-order logic. The condition for a profile
(£, ¢) to be a Nash equilibrium is captured by the following
formula:

In the following, we shall denote the above formula by

NE(E, Q).

prove that it is a sufficient condition for the non-existence of
Nash equilibria, it suffices to verify this for games of sizes
up to (|71] + 1) x (|71 + 1),

Theorem 1 holds for many specialized games as well. For
instance, it holds fostrict gamesas well. A game is strict
if for both players, different profiles have different payoffs,
that is, (a,b) (a’,b') whenever(a,b) <; (a/,b’) and
(o)) <; (a,b), wherei =1, 2.

Theorem 2 Theorem 1 holds when the following axioms are
added toX:

The following sentence expresses the uniqueness of Nash

equilibria:
NE(.T17y1) A NE(£U27y2) D)
(1, 1) 1 (z2,92) A (T1,91) =2 (22,y2) (6)

A game is strictly competitive if it satisfies the following
property:

(w1,91) <1 (w2,2) = (22,92) <2 (21,91).  (7)
Thus it should follow that
X (7)>(6). (8)

Notice that we have assumed that all free variables in a
displayed formula are universally quantified from outside.
Thus (7) is a sentence of the fotvtx, zo, y1, y20. Simi-
larly for (6).

Theorems like (8) can actually be generated automatically
using the following theorem, which follows from the results
in first-order logic in the last section.

(z1,91) =1 (22,92) D (21 = 22 Ay1 = y2),
(z1,91) =2 (22,92) D (21 =22 Ay1 = y2).

In fact, as can be seen from its proof, Theorem 1 holds
whenX is replaced by any set 6fprenex sentences.

Based on these theorems, Lin and Té2007 conducted
some computer experimentations. Among others, their pro-
gram re-discovered Kats and Thisse’s class of weakly unilat-
erally competitive games which correspond to the following
condition:

(xlvy) <1 ($27y) ) (CEg,y) <o (mlvy) A
(xayl) <2 (xva) ) (xva) <1 (xvyl)'

Discovering State Invariants in Planning
Domains

We now turn to the problem of discovering state constraints
and state invariants in planning. In planning, state con-
straints are conditions that are true in all legal situations, i.e.



all legal initial situations as well as their future situations. The following definition captures the intuition that a state
State constraints are useful in planning for pruning search invariant is a formula that if true initially, will continue to be
spaces, and several systems have been designed specifitrue after the successful completion of every possible action.
cally for learning state constraints (c[fuanget al.,, 2000;
Gerevini and Schubert, 1998

On the other hand, state invariaitsn, 2004 are those
that if true in a situation will be true in all successor situ-
ations. It is clear that a state constraint may not be a state
invariant, and vice versa. However, many state constraints
are invariants that are true in all legal initial situations. Thus whereWW (A(%)) is the result of replacing each atofY(z) in
given a planning domain with some example initial situa- 1 by F(F, A(%)), and |= is the logical entailment in first-

Definition 2 Given an action theor{T4 | A is an action
type}, a formulall” in the domain language is a state invari-
ant if for each action typet,

Ty = V§.W A Poss(A(§)) S W(A®@)), (1)

tions, the system iriLin, 2004 tries to discover state in-
variants that are true in all the given initial situations. This

system is based on a theorem similar to Proposition 3 that

identifies a class of sentences that are finitely-verifiable.

A planning domain has a set of predicates representing

order logic.

The following theorem reduces the problem of checking
whether a formula is a state invariant to that of the logical
validity checking of a formula in the domain language.

fluents and other relations. It can also have some non-action Theorem 3 Let W’ be a state invariant. For any formula

functions such asolor(x) (the color of blockz). We call
this set of predicates and functiosmain languageTo for-

malize the effects of actions, we extend the domain language

with a special sortction for representing actions. Thus ac-

tions in the planning domain are represented by functions

whose values are afction sort. For each predicate in the

domain language we also introduce a new predicate with the

same name but with an extra argument of setton. We

call these new predicates “successor state predicates”. For

instance, ifclear is a fluent, then we writelear(x) to mean
that blockz is clear in the given initial situation, and write
clear(xz,unstack(z,y)) to mean that: is clear in the suc-
cessor situation of doingnstack(x,y) in the initial state.
We also assume a special unary predidates to denote the
action precondition. Thu®oss(unstack(z,y)) will stand
for the precondition of doingnstack(x, y).

Definition 1 An action theory is a family of first-order the-
ories{T4 | Ais an action typé, where for each action type
A, T4 consists of the following axioms:
e An action precondition axiom of the form
VZ.Poss(A(Z)) = 0, 9
whereV is a formula in the domain language whose free
variables are in¥. (Thus¥ cannot mentiorPoss and any
successor state predicates.)

e For each domain predicaté' an axiom of the following
form:
(VZ,9).F(Z, A(Y)) = ®r(Z,7), (20)
where# and ¢ do not share common variables, afg-
is a formula in the domain language whose free variables
are fromz andy.

Example 1 In the blocks world, for the action typ&ack,
we have the following axioms (all free variables below are
universally quantified from outside):

Poss(stack(x,y)) = holding(x) A clear(y),
on(x,y, stack(u,v)) = (x =u Ay =0v)Von(z,y),
ontable(z, stack(u,v)) = ontable(x),
handempty(stack(u,v)) = true,

holding(x, stack(u,v)) = false,

clear(z, stack(u,v)) = clear(z) Az # v.

W in the domain languagéy A W' is a state invariant iff
for each action typed, the sentence

VEW AW AU O ROV.AG)  (12)

is valid, whereV is the action precondition oft as in the
right side of (9), andR (W, A(¥)), the regression ol over
A(7), is the result of replacing each atoi(t) in W by
®p(t,7) in the right of the axiom (10).

Lin [2004 showed that for so-callesimpleaction theo-
ries, by Theorem 3, checking whether a conjunctiory-of
prenex formulag/#B is a state invariant can be reduced to

checking the validity of &3-prenex sentence, thus Proposi-
tion 3 will apply.

Definition 3 An action theory is said to k@mpleif for each
action typeA:

e The formulaV in its action precondition axiom (9) has no
quantifiers.

e The formula®r in the axiom (10) for eactl’ has no
quantifiers, and (10) entails the following formula:
(VZ, §). ~subset(Z,7]) O F(Z, A(y)) = F (%),

where subset(Z, i), meaningz is a subset ofj, is the
following formula:
AVz=v

TET YEY

Notice that for context-free action domains such as the
blocks world and the logistics domain, successor state ax-
ioms (10) have the form:

F(Z,A(Y)) = E1V-- - VE, NV (F(Z)AN—Epi1 A---A-Ep),

whereFE;’s are conjunctions of equality atoms between vari-
ables inZ andy. For instance, in the blocks world, we have:
clear(z,unstack(y, z)) =
(x = 2) V (clear(x) Ny # x),

on(x1, xe, unstack(y, z)) =

on(z1,x2) A =(z1 =y AN xzg = 2).



Thus context-free action domains are simple according to These constraints turn out to be complete for the logistics
our definition as long as action preconditions do not mention domain in the sense that a state is “legal” if it satisfies all the

any quantifiers.
V-prenex sentenceésr B include many typical state con-

straints found in planning, such as the functional depen-

dency constraints like
on(z,y) Non(z,z) Dy =z,
exclusiveness conditions like
(Fy)on(z,y) D —ontable(x),
and information about types like
at(z,y) A airplane(z) D airport(y).

Lin [2004 described a system based on these results, and
reported that for the blocks world the system discovered the

following invariants (more precisely the conjunction of the
following sentences):

—handempty V —(3x)holding(x),
—clear(xz) V =(3z)on(z, ),
—holding(x) V —clear(x),
=holding(x) V —=(3y)on(z,y),
—holding(z) V =(3z)on(z, z),

() V —holding(z),
—ontable(x) V =(Jy)on(z,y),
holding(x1) A holding(z2) D 1 = x2,
on(z1,x2) Aon(xy,x3) D T2 = X3,

—ontable

on(za,x1) Non(xz, 1) D x2 = T3
holding(x) V clear(x) V (3z)on(z, x),
ontable(x) V holding(z) V (3y)on(z,y),
handempty V (3zx)holding(x)

As one can see, these include many familiar state constraints

in the blocks world. However they are not complete in the

sense that there are some illegal states that satisfy all of

them. For instance, i3 is the only block in the domain,
then the statéon (B, B), handempty} is apparently illegal

but satisfies all the sentences in the above two sets. However,

if we add the following sentences:
above(z,y) = (on(z,y) V
(3z)(on(x, z) A above(z,y))),
above(x,y) D —on(y, ),

then we get a complete set of state invariants. It is not clear
how sentences like these can be discovered as they involve

new predicates, and are essentially second-order.
For the logistics domain, the system returns the following
state invariants:

inCity(zl, 22) A inCity(z1,23) D 22 = z3,
at(x2, 1) A airplane(xz2) D airport(xl),
~(3y)in(z, y) V ~(3y)at(z, y),

in(x1, z2) ANin(z1,z3) D T2 = T3,
package(x) > [(Jy)in(x,y) v (Jy)at(z, y)],
vehicle(z) D (3y)at(z,y),

(By)inCity(z,y)

constraints.

Conclusion Remarks

We have proposed a notion of finitely-verifiable classes of
sentences. The motivation is that if a class of sentences is
finitely-verifiable, then checking whether a sentence in this
class is a theorem can be done by model-checking in a fi-
nite set of models, thus paving the way for using comput-
ers to discover theorems in this class. Identifying finitely-
verifiable classes of sentences is a domain-dependent task,
and the main theoretical challenge for computer-aided theo-
rem discovery.
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