
This paper was selected by a process of 
anonymous peer reviewing for presentation at

COMMONSENSE 2007 

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007, 
Stanford University, California

Further information, including follow-up notes for some of the 
selected papers, can be found at:

www.ucl.ac.uk/commonsense07



Variables in Ation Desriptions: Merging C+ with ADLVladimir Lifshitz and Wanwan RenUniversity of Texas, Austin, USAfvl,rww6g�s.utexas.eduAbstratAtion desription language C+ is more expres-sive than ADL in many ways; for instane, itaddresses the rami�ation problem. On theother hand, ADL is based on �rst-order logi,while C+ is only propositional; expressions withvariables, whih are frequently used when a-tion domains are desribed in C+, are merelyshemas desribing �nite sets of ausal lawsthat are formed aording to the same pattern.In this paper we propose a new approah tothe semantis of ation desriptions with vari-ables that ombines attrative features of ADLand C+.1 IntrodutionCurrent researh on the design of ation desription lan-guages ontinues the line of work that started with theinvention of ADL [Pednault, 1994℄. Semantially, an a-tion desription represents a transition system (\state-transition model," in Pednault's terminology), that is, adireted graph, with verties orresponding to states ofthe world, and edges orresponding to transitions thatmay be aused by the exeution of ations.Modern ation desription languages, suh as C+[Giunhiglia et al., 2004℄, are more expressive than ADLin many ways. In partiular, they solve the rami�ationproblem, that is, allow the user to haraterize e�ets ofations indiretly. But in one sense ADL is more expres-sive than C+: the former is based on �rst-order logi,and the latter is only propositional. In [Pednault, 1994℄,state-transition models for a �rst-order language are de-�ned (De�nition 2.3); their states are semanti stru-tures, or interpretations, in the sense of �rst-order logi.In C+, on the other hand, a state is an interpretationof a (multi-valued) propositional signature [Giunhigliaet al., 2004, Setion 4.4℄. There are no variables in C+,stritly speaking. Expressions with variables, whih arefrequently used when ation domains are desribed inC+, are merely shemas desribing �nite sets of ausallaws that are formed aording to the same pattern.For example, the desription of the bloks-world ationPut(b; l) in [Pednault, 1994, Figure 2℄ has the formula

On(b; l) on its add list. In this formula, b and l areobjet variables in the sense of �rst-order logi, and Onis a binary prediate onstant. In C+ we an express thesame idea by writingPut(b; l) auses On(b; l): (1)But here b and l are metavariables, and we need tospeify their possible values when we say that (1) ispart of an ation desription. We an say, for instane,that b stands for any of the symbols Blok1 , Blok2 ,Blok3 , and that l stands for Blok1 , Blok2 , Blok3 orTable . Expression (1) will denote then a set of 12 ausallaws, obtained from (1) by grounding. The expressionOn(Blok2 ;Table), ourring in one of them, is a uentonstant, aording to the syntax of C+, but the threeparts that this expression is built from | On, Blok2and Table | have no syntati status in the de�nitionof the language.In this paper we show how to de�ne a semantis ofation desriptions that is similar to the semantis of C+and, at the same time, allows us to use genuine objetvariables. Like the semantis of ADL, it is based onstate-transition models for �rst-order languages.The tool that helps us ahieve this is the �rst-orderausal logi proposed in [Lifshitz, 1997℄. Reall thatthe semantis of C+ is haraterized in [Giunhiglia etal., 2004, Setion 4.2℄ by a translation that turns anyation desription D into a sequene of propositionalausal theories D0; D1; : : :. Models of Dm orrespondto the possible behaviors of the state-transition systemdesribed by D over suessive time instants 0; 1; : : : ;m.In partiular, models of D0 are the states of the system,and models of D1 are its transitions. In our modi�ationof this approah, Dm beomes a �rst-order ausal the-ory. As a result, the new semantis of ausal laws withvariables avoids any referenes to grounding. We arguethat this feature will bring signi�ant advantages whenapplied to more omplex ation languages.The entral part of this paper is Setion 5, whih de-sribes a new way to represent ation desriptions byausal theories. It is preeded by the disussion of thesyntax of ation desriptions with variables adopted inthis paper and a review of �rst-order ausal logi, andfollowed by the investigation of mathematial propertiesof the new semantis.



sortsRoom;objetsRoom1 , Room2 : Room;onstantsLoation : uent(Room);GoTo(Room): ation;variablesr: Room;axiomsaused Loation = r if Loation = rafter Loation = r;aused GoTo(r) if GoTo(r);aused :GoTo(r) if :GoTo(r);aused Loation = r if > after GoTo(r);Figure 1: Ation desription R2 ExampleWe assume that the reader has some familiarity withthe syntati onstruts of C+ [Giunhiglia et al., 2004,Setion 4.2℄.An example illustrating the syntax of ation desrip-tions used in this paper is shown in Figure 1. The abbre-viations for ausal laws of speial kinds that are intro-dued in [Giunhiglia et al., 2004, Appendix B℄ wouldallow us to write the last four lines of Figure 1 moreonisely:inertial Loation ;exogenous GoTo(r);GoTo(r) auses Loation = r;but in the list of axioms all ausal laws are written infull, beause, for simpliity, we do not introdue theseabbreviations in our grammar (see Setion 3).A de�nition in Setion 5 below shows how to turn thisation desription R into a sequene R0; R1; : : : of ausaltheories. It turns out that for any m, a model I of theausal theory Rm an be spei�ed by seleting� its universe jI j | a non-empty set;� a subset I [Room ℄ of jI j | the set of rooms in themodel;� distint elements I [Room1 ℄, I [Room2 ℄ of jI j | therooms represented by the objet names | suh thatI [Room℄ = fI [Room1 ℄; I [Room2 ℄g;� for eah i 2 f0; : : : ;mg, an element I [i : Loation ℄of I [Room℄ | the loation of the agent at time i;� for eah i 2 f0; : : : ;m� 1g, a subset I [i : GoTo ℄ ofI [Room℄ | the set of rooms to whih the agent goesbetween times i and i+ 1 | suh that{ I [i : GoTo℄ is either empty or a singleton, be-ause ations in this domain annot be exe-uted onurrently,{ if it is empty then I [i + 1 : Loation ℄ =I [i : Loation ℄, beause the uent Loation isinertial,

{ if it is a singleton then its element equalsI [i+ 1 : Loation ℄, beause after going to aroom, the agent is in that room.3 Syntax of Ation DesriptionsAn ation desription onsists of �ve parts, as in theexample above. The �rst of them is a list of sort names:<sort delarations> ::= sorts f<sort name>`;'gThe objet delaration part is a list of objet spei�-ations. An objet spei�ation is a list of objet namesfollowed by a sort name:<objet delarations> ::= objets f<objet spe>`;'g<objet spe> ::= f<objet name>`,'g<objet name> `:' <sort name>The onstant delaration part is a list of onstant spe-i�ations. Eah onstant represents either a simple u-ent or an ation; for simpliity, we do not allow stati-ally determined uent onstants (see [Giunhiglia et al.,2004, Setion 4.2℄). A uent onstant an be Booleanor non-Boolean. For simpliity, we do not allow non-Boolean ation onstants; also, non-Boolean uent on-stants are not allowed to take arguments:<onstant delarations>::= onstants f<onstant spe>`;'g<onstant spe> ::= <Boolean uent spe> j<non-Boolean uent spe> j<ation spe><Boolean uent spe>::= f<Boolean uent shema>`,'g<Boolean uent shema> `:' uent<non-Boolean uent spe>::= f<non-Boolean uent name>`,'g<non-Boolean uent name>`:' uent `('<sort name>`)'<ation spe> ::= f<ation shema>`,'g<ation shema> `:' ation<Boolean uent shema>::= <Boolean uent name>[`('f<sort name>`,'g <sort name>`)'℄<ation shema>::= <ation name>[`('f<sort name>`,'g <sort name>`)'℄The form of the variable delaration part is similar tothe form of the objet delaration part.The axiom part is a list of ausal laws:<axioms> ::= axioms f<ausal law>`;'g<ausal law> ::= <stati law> j<ation dynami law> j<uent dynami law><stati law> ::= aused <uent formula>if <uent formula><ation dynami law> ::= aused <ation formula>if <formula><uent dynami law> ::= aused <uent formula>if <uent formula>after <formula>



<uent formula> ::= <formula><ation formula> ::= <formula>Formulas are formed using propositional onnetives;for simpliity, quanti�ers are not allowed:<formula> ::= <atom> j `('<term>`='<term>`)' j? j > j `:'<formula> j`(' <formula> <binary onnetive><formula> `)'<atom>::= (<Boolean uent name> j <ation name>)[`('f<argument>,g <argument>`)'℄<argument> ::= <objet name> j <variable name><term> ::= <non-Boolean uent name> j<objet name> j <variable name>Any name ourring in an ation desription shouldbe delared exatly one. In delarations, atoms andterms, a name an only be used in aordane with itsdelaration.A uent formula annot ontain ation names. Anation formula should ontain an ation name, but itannot ontain uent names.4 Review of Causal LogiThe review of the syntax and semantis of ausal theoriesin this setion follows [Lifshitz, 1997, Setion 2℄.A ausal rule is an expression of the formF ( G; (2)where F and G are �rst-order formulas, alled the headand the body of the rule. Expression (2) reads: there isa ause for F if G holds. A ausal theory is de�ned by� a �nite subset of the signature1 of the underlyinglanguage, alled the explainable symbols of the the-ory, and� a �nite set of ausal rules.In the de�nition of the semantis of ausal theories be-low, we use the substitution of variables for the explain-able symbols in a formula. In onnetion with this, it isonvenient to denote formulas by expressions like F (E),where E is the list of all explainable symbols. Then, forany tuple e of variables that is similar2 to E, the resultof replaing all ourrenes of the onstants E in F (E)by the variables e an be denoted by F (e).Consider a ausal theory T with the explainable sym-bols E and the ausal rulesFi(E; xi)( Gi(E; xi) (i = 1; : : :);1The signature of a (nonsorted) �rst-order language is theset of its funtion onstants and prediate onstants (otherthan equality). This inludes, in partiular, objet onstants(funtion onstants of arity 0) and propositional onstants(prediate onstants of arity 0).2The similarity ondition means that (i) e has the samelength as E, (ii) if the k-th member of E is a funtion onstantthen the k-th member of e is a funtion variable of the samearity, and (iii) if the k-th member of E is a prediate onstantthen the k-th member of e is a prediate variable of the samearity.

where xi is the list of all free variables of the i-th rule.Take a tuple e of new variables similar to E. By T �(e)we denote the formulaî 8xi(Gi(E; xi)! Fi(e; xi)):Note that the ourrenes of explainable symbols in theheads are replaed here by variables, and the ourrenesin the bodies are not. We will view T as shorthand forthe sentene 8e(T �(e)$ e = E): (3)(The expression e = E stands for the onjuntion of theequalities between the members of e and the orrespond-ing members of E.) For instane, by a model of T wemean a model of (3); a formula is entailed by T if it isentailed by (3). Note that the tuple e may ontain fun-tion and prediate variables, so that (3) is, generally, aseond-order formula.Intuitively, the ondition T �(e) expresses that the pos-sible values e of the explainable symbols E are \ausallyexplained" by the rules of T . Sentene (3) says that theatual values of these symbols are the only ones that areexplained by the rules of T .For instane, let T be the ausal theory with the rulesRoom(Room1 )( >;Room(Room2 )( >;:Room(x)( :Room(x); (4)where the prediate onstant Room is explainable, andthe objet onstants Room1 , Room2 are not explainable.Intuitively, the last line of (4) expresses the losed-worldassumption for Room in the language of ausal logi:if x is not a room then there is a ause for this. In thisase, E is Room, e is a unary prediate variable room ,and T �(room) isroom(Room1 )^ room(Room2 )^8x(:Room(x)! :room(x)):The seond-order sentene8room(T �(room)$ room = Room)an be equivalently rewritten as the �rst-order sentene8x(Room(x)$ x = Room1 _ x = Room2 ): (5)5 Semantis of Ation DesriptionsGiven an ation desription D and a nonnegative inte-ger m, the orresponding ausal theory Dm is formed asfollows.Its signature �Dm onsists of� an explainable unary prediate onstant S for eahsort name S delared in D;� a non-explainable objet onstant V for eah objetname V delared in D;� an explainable prediate onstant i : P for eahBoolean uent name P delared in D, and everyi 2 f0; : : : ;mg; the arity of i : P is the same as thearity of P ;



� an explainable objet onstant i : C for eah non-Boolean uent name C delared in D, and everyi 2 f0; : : : ;mg;� an explainable prediate onstant i : P for eahation name P delared in D, and every i 2f0; : : : ;m � 1g; the arity of i : P is the same asthe arity of P .For instane, the signature �Rm orresponding to theation desription R shown in Figure 1 onsists of theobjet onstantsRoom1 ; Room2 ; i : Loationand the unary prediate onstantsRoom; i : GoTo:Among these, Room1 and Room2 are non-explainable.For any objet name V delared in D, SORTV standsfor the sort name assigned to V in the objet delara-tion part, and similarly for variable names and for non-Boolean uent names. By i : F we denote the result ofprepending i : to all uent names and ation names in F .The ausal theory Dm onsists of the following rules:(i) :S(x) ( :S(x) for eah sort name S, where xis an objet variable;(ii) SORTV (V ) ( > for eah objet name V ;(iii) V1 6= V2 ( > for eah pair of distint objetnames V1, V2;(iv) the rules0 : P (x1; : : : ; xn) ( 0 : P (x1; : : : ; xn)^S1(x1) ^ � � � ^ Sn(xn);: 0 : P (x1; : : : ; xn) ( : 0 : P (x1; : : : ; xn)^S1(x1) ^ � � � ^ Sn(xn)for eah Boolean uent shema P (S1; : : : ; Sn)from D, where x1; : : : ; xn are distint objet vari-ables;(v) the rules: i : P (x1; : : : ; xn) ( :Sj(xj) (1 � j � n)for eah Boolean uent shema P (S1; : : : ; Sn)from D and 0 � i � m, and for eah ationshema P (S1; : : : ; Sn) fromD and 0 � i < m, wherex1; : : : ; xn are distint objet variables;(vi) the rules0 : C = x ( 0 : C = x ^ SORTC(x)and: (i : C = x) ( :SORTC(x) (0 � i � m)for eah non-Boolean uent name C, where x is anobjet variable;(vii) the rulesi : F ( i : G ^ x̂ SORTx(x) (0 � i � m)for eah stati ausal lawaused F if Gin D, where the onjuntion is over all variables xourring in F or G;

:Room(x) ( :Room(x);Room(Room1 ) ( >;Room(Room2 ) ( >;Room1 6= Room2 ( >;: i : GoTo(x) ( :Room(x) (0 � i < m);0 : Loation = x ( 0 : Loation = x ^ Room(x);: (i : Loation = x) ( :Room(x) (0 � i � m);i+ 1 : Loation = r ( i+ 1 : Loation = r^ i : Loation = r ^ Room(r);i : GoTo(r) ( i : GoTo(r) ^ Room(r);: i : GoTo(r) ( : i : GoTo(r) ^ Room(r);i+ 1 : Loation = r ( i : GoTo(r) ^ Room(r)(0 � i < m):Figure 2: Rules of ausal theory Rm(viii) the rulesi : F ( i : G ^ x̂ SORTx(x) (0 � i < m)for eah ation dynami ausal lawaused F if Gin D, where the onjuntion is over all variables xourring in F or G;(ix) the rulesi+ 1 : F ( i+ 1 : G ^ i : H ^ Vx SORTx(x)(0 � i < m)for eah uent dynami ausal lawaused F if G after Hin D, where the onjuntion is over all variables xourring in F , G or H .Clauses (vii){(ix) in this de�nition generalize the pro-ess of translating ausal laws of C+ into propositionalausal logi desribed in [Giunhiglia et al., 2004, Se-tion 4.2℄.Intuitively, the models of Dm in the sense of Setion 4represent the possible behaviors, or \histories," of thestate-transition system desribed by D over suessivetime instants 0; 1; : : : ;m.For instane, the ausal theory Rm orresponding tothe ation desription R from Figure 1 is shown in Fig-ure 2. The models of this theory are desribed in Se-tion 2 above.For any sort name S, by jSj we denote the set of allobjet names of sort S.Proposition 1 For any sort name S, Dm entails8x0�S(x)$ _V 2jSjx = V1A :In other words, the extent of any sort in a model ofDmis the set of elements of the universe representing theobjets of that sort. For instane, any model of Rmsatis�es (5).



6 States and TransitionsThe models of D0 will be alled states; the models of D1are transitions.In the theory of C+, the view that histories of lengthman be thought of as paths in a transition system is jus-ti�ed by two theorems, Propositions 7 and 8 from [Giun-higlia et al., 2004℄. The �rst of them shows that anytransition \starts" in a state and \ends" in a state. A-ording to the seond theorem, an interpretation of thesignature of Dm is a model of Dm if and only if it \on-sists of m transitions." Propositions 2 and 3 below aresimilar to these theorems.Let D be an ation desription. For any interpreta-tion I of �D1 , by I0 and I1 we denote the interpretationsof �D0 de�ned as follows:jI ij = jI j;I i[S℄ = I [S℄ for every sort name S;I i[V ℄ = I [V ℄ for every objet name V;I i[0 : C℄ = I [i : C℄ for every uent name C (i = 0; 1):Proposition 2 For any transition I, the interpretationsI0 and I1 are states.For any interpretation I of �Dm , by I(i) (0 � i < m)we denote the interpretations of �D1 de�ned as follows:jI(i)j = jI j;I(i)[S℄ = I [S℄ for every sort name S;I(i)[V ℄ = I [V ℄ for every objet name V;I(i)[0 :C℄ = I [i :C℄ for every uent or ation nameC;I(i)[1 :C℄ = I [i+ 1:C℄ for every uent name C:Proposition 3 For any positive integer m and any in-terpretation I of �Dm , I is a model of Dm i� every I(i)(0 � i < m) is a transition.7 Redution to C+As disussed in the introdution, our semantis treatsvariables in essentially the same way as the semantisof lassial logi. On the other hand, when ations aredesribed in C+, variables an be only used in shematiexpressions that represent groups of ausal laws obtainedfrom these expressions by grounding. To relate these twoviews to eah other, we show in this setion that ground-ing allows us to haraterize the new semantis in termsof the semantis of C+, at least under the assumptionthat the \extent" jSj of every sort S is non-empty. Thisassumption orresponds to the requirement, in the se-mantis of C+, that the domain of every onstant be anon-empty set.Given an ation desriptionD in the sense of Setion 3suh that jSj 6= ; for eah of its sort names S, the orre-sponding C+ ation desription D0 is formed as follows.Its signature onsists of� Boolean simple uent onstants C(V1; : : : ; Vn) foreah Boolean uent shema C(S1; : : : ; Sn) in theonstant delaration part ofD, where Vi (1 � i � n)is an objet name of sort Si;

� a simple uent onstant C with domain jSORTC j,for eah non-Boolean uent name C delared in D;� Boolean ation onstants C(V1; : : : ; Vn) for eah a-tion shema C(S1; : : : ; Sn) in the onstant delara-tion part of D, where Vi (1 � i � n) is an objetname of sort Si.For instane, the signature of the C+ ation desrip-tion R0 orresponding to ation desription R (Fig-ure 1) onsists of three onstants: the simple u-ent onstant Loation with domain fRoom1 ;Room2gand the Boolean ation onstants GoTo(Room1 ) andGoTo(Room2 ).The presene of variables in ausal laws in the sense ofSetion 3 is not the only feature that makes them moregeneral than the ausal laws of C+. In a formula of theform t1 = t2, we allow eah of the terms t1, t2 to bean arbitrary objet name or an arbitrary non-Booleanuent name. In atoms in the sense of C+, on the otherhand, the left-hand side must be a onstant, and theright-hand side must be an element of the domain ofthat onstant. (Also, Boolean onstants and equalitiesbetween two onstants an be used as abbreviations; see[Giunhiglia et al., 2004, Setion 2.1℄.) For this reason,the ausal laws of D0 are obtained from the ausal lawsin the axioms part of D in two steps: �rst grounding,then adapting the form of equalities to the requirementsof the syntax of C+.By D0 we denote the C+ ation desription obtainedfrom D by� grounding all ausal laws of D so that the symbolssubstituted for eah variable x are arbitrary objetnames of the sort SORTx,� then modifying the parts t1 = t2 in the expressionsobtained after result of grounding, as follows:{ whenever t1 and t2 are objet names, replaet1 = t2 with > if t1 equals t2, and with ? oth-erwise;{ then, whenever t1 is an objet name and t2 isa uent name, replae t1 = t2 with t2 = t1;{ then, whenever t1 is a uent name and t2 is anobjet name of a sort di�erent from SORTt1 ,replae t1 = t2 with ?.(See Figure 3 for an example.)Proposition 4 below shows how models of Dm in thesense of Setion 5 an be haraterized in terms of modelsofD0m in the sense of C+. In its statement, we refer to thefollowing two onditions on an interpretation I of �Dm :(a) I j= V1 6= V2 for any distint objet names V1, V2;(b) I j= _V 2jSORTC j i : C = V for any non-Booleanuent name C and any i 2 f0; : : : ;mg.For any interpretation I of �Dm satisfying these on-ditions, by I 0 we denote the interpretation (in the senseof C+) of the signature �D0m suh that



aused Loation = Room1if Loation = Room1 after Loation = Room1 ,aused Loation = Room2if Loation = Room2 after Loation = Room2 ,aused GoTo(Room1 ) if GoTo(Room1 ),aused GoTo(Room2 ) if GoTo(Room2 ),aused :GoTo(Room1 ) if :GoTo(Room1 ),aused :GoTo(Room2 ) if :GoTo(Room2 ),aused Loation = Room1if > after GoTo(Room1 ),aused Loation = Room2if > after GoTo(Room2 ).Figure 3: C+ ation desription R0� for eah Boolean onstant i : C(V1; : : : ; Vn),I 0[i : C(V1; : : : ; Vn)℄ = I [i : C℄(I [V1℄; : : : ; I [Vn℄);� for eah non-Boolean onstant i : C, I 0[i : C℄ is theobjet name V suh that I [i : C℄ = I [V ℄.(Conditions (a) and (b) guarantee the existene anduniqueness of suh V .)Proposition 4 An interpretation I of �Dm is a modelof Dm i�� I j= 8x0�S(x)$ _V 2jSj x = V1A,� I satis�es onditions (a) and (b),� I 0 is a model of D0m (in the sense of C+).Thus for the interpretations satisfying the formulafrom Proposition 1 and the onditions needed to de-�ne the mapping I 7! I 0, the new semantis of ationdesriptions an be redued to the semantis of C+ bygrounding.8 ConlusionThe semantis of ation desriptions proposed in this pa-per ombines attrative features of ADL and C+. Likethe former, it is based on state-transition models for lan-guages with variables and does not refer to grounding;like the latter, it uses a nonmonotoni ausal logi tosolve the rami�ation problem.We expet that the advantages of the new approahto the semantis of ation desriptions will beome es-sential when we extend it to additional syntati on-struts, important for the purposes of knowledge repre-sentation. Here are two examples of suh features, bothimplemented in the input language of the Causal Calu-lator (CCal)3.The syntax de�ned in Setion 3 allows the list of argu-ments in an atom to inlude objet names and variablenames, but not onstant names. But it is sometimesonvenient to write, for instane, C1(C2), where C1 is3http://www.s.utexas.edu/users/tag/al/ .

a Boolean uent name and C2 is a non-Boolean uentname; this expression has the same meaning as9x(C2 = x ^ C1(x));where x is a variable of the same sort as C2. A semantisbased on grounding has to be expliit about \expansionsteps" like this; the semantis de�ned in Setion 5 appliesto the extended syntax without any hanges.Seond, it is often onvenient to delare one sort to bea subsort of another. In the new approah, the assertionthat S1 is a subsort of S2 an be understood asS1(x)! S2(x)( >:Explaining subsort delarations in terms of grounding ismore umbersome.Our semantis of ation desriptions is somewhat sim-ilar to the semantis of logi programming proposedin [Ferraris, Lee, & Lifshitz, 2007℄: both refer to non-monotoni translations into lassial seond-order logiand are, in this sense, similar to irumsription [M-Carthy, 1986℄. We expet that these parallel approahesto ation desriptions and to stable models will help usextend the results on representing ations by logi pro-grams from [Lifshitz & Turner, 1999℄ to ation desrip-tions with variables.9 AknowledgementsWe are grateful to Selim Erdo�gan, Paolo Ferraris,Joohyung Lee and Hudson Turner for omments on adraft of this paper. This work was partially supportedby the National Siene Foundation under Grant IIS-0412907.Referenes[Ferraris, Lee, & Lifshitz, 2007℄ Ferraris, P.; Lee, J.;and Lifshitz, V. 2007. A new perspetive on stablemodels. In Proeedings of International Joint Confer-ene on Arti�ial Intelligene (IJCAI). To appear.[Giunhiglia et al., 2004℄ Giunhiglia, E.; Lee, J.; Lif-shitz, V.; MCain, N.; and Turner, H. 2004.Nonmonotoni ausal theories. Arti�ial Intelligene153(1{2):49{104.[Lifshitz & Turner, 1999℄ Lifshitz, V., and Turner, H.1999. Representing transition systems by logi pro-grams. In Proeedings of International Confereneon Logi Programming and Nonmonotoni Reasoning(LPNMR), 92{106.[Lifshitz, 1997℄ Lifshitz, V. 1997. On the logi ofausal explanation. Arti�ial Intelligene 96:451{465.[MCarthy, 1986℄ MCarthy, J. 1986. Appliations ofirumsription to formalizing ommon sense knowl-edge. Arti�ial Intelligene 26(3):89{116.[Pednault, 1994℄ Pednault, E. 1994. ADL and the state-transition model of ation. Journal of Logi and Com-putation 4:467{512.


