
This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsense07

Decidable Reasoning in a Modified Situation Calculus

Yilan Gu
Dept. of Computer Science

University of Toronto
10 King’s College Road

Toronto, ON, M5S 3G4, Canada
Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

We consider a modified version of the situation calculus built
using a two-variable fragment of the first-order logic ex-
tended with counting quantifiers. We mention several addi-
tional groups of axioms that can be introduced to capture tax-
onomic reasoning. We show that the regression operator in
this framework can be defined similarly to regression in the
Reiter’s version of the situation calculus. Using this new re-
gression operator, we show that the projection and executabil-
ity problems are decidable in the modified version even if an
initial knowledge base is incomplete and open. For an incom-
plete knowledge base and for context-dependent actions, we
consider a type of progression that is sound with respect to
the classical progression. We show that the new knowledge
base resulting after our progression is definable in our modi-
fied situation calculus if one allows actions with local effects
only. We mention possible applications to formalization of
Semantic Web services.

Introduction
The situation calculus (SC) is a popular and well under-
stood predicate logic language for reasoning about actions
and their effects (Reiter 2001). It is used to provide a
well-defined semantics for Web services and a foundation
for a high-level programming language Golog (Reiter 2001;
McIlraith & Son 2002). However, because the SC is formu-
lated in a general predicate logic, reasoning about effects of
sequences of actions is undecidable (unless some restrictions
are imposed on the theory that axiomatizes the initial state of
the world). The first motivation for our paper is intention to
overcome this difficulty. We propose to use a two-variable
fragment FO2 of the first-order logic (FOL) as a founda-
tion for a modified SC. Because the satisfiability problem
in this fragment is known to be decidable (it is in NEXP-
TIME), we demonstrate that by reducing reasoning about ef-
fects of actions to reasoning in this fragment, one can always
guarantee decidability. The second motivation for our paper
comes from description logics. Description Logics (DLs)
(Baader et al. 2003) are a well-known family of knowl-
edge representation formalisms, which play an important
role in providing the formal foundations of several widely
used Web ontology languages including OWL in the area of
the Semantic Web. Many expressive DLs can be translated

An extended IJCAI-07 version of this paper (7 pages) is available
at http://www.cs.toronto.edu/∼yilan/publications/ijcai07.pdf.

to FO2 and offer considerable expressive power going far
beyond propositional logic, while ensuring that reasoning
is decidable (Borgida 1996). DLs have been mostly used
to describe static knowledge bases. However, several re-
search groups consider formalization of actions using DLs
or extensions of DLs. Following the key observation that
reasoning about complex actions can be carried in a frag-
ment of the propositional SC, (Giacomo et al. 1999) give
an epistemic extension of DLs to provide a framework for
the representation of dynamic systems. However, the rep-
resentation and reasoning about actions in this framework
are strictly propositional, which reduces the representation
power of this framework. In (Baader et al. 2005), Baader
et al. provide another proposal for integrating description
logics and action formalisms. They take the well known de-
scription logic ALCQIO (and its sub-languages) as founda-
tion and show that the complexity of executability and pro-
jection problems (two basic reasoning problems for possibly
sequentially composed actions) coincides with the complex-
ity of standard DL reasoning. However, actions (services)
are represented in their paper meta-theoretically, not as first-
order (FO) terms. This can potentially lead to some com-
plications when specifications of other reasoning tasks (e.g.,
planning) will be considered because it is not possible to
quantify over actions in their framework. In our paper, we
take a different approach and represent actions as FO terms,
but achieve integration of taxonomic reasoning and reason-
ing about actions by restricting the syntax of the SC and by
introducing additional axioms to represent a taxonomy.

Because after doing longer and longer sequences of ac-
tions, solving projection problems becomes increasingly
more difficult, it is beneficial to progress the initial incom-
plete knowledge base (KB) to represent the current state of
the world. Then, the subsequent projection problems can be
solved wrt a new progressed KB. The task of computing a
progressed KB is called the progression problem.

To save space, we skip the background of SC and DLs,
but briefly discuss the extension of FO2 with counting quan-
tifiers here. Two-variable FO logic FO2 is the fragment
of ordinary FO logic (with equality), whose formulas only
use no more than two variable symbols x and y (free or
bound). Two-variable FO logic with counting C2 extends
FO2 by allowing FO counting quantifiers ∃≥m and ∃≤m for
all m ≥ 1. (Pacholski, Szwast, & Tendera 1997) show that

satisfiability problem forC2 is decidable and recently (Pratt-
Hartmann 2005) proves that this problem is in NEXPTIME
even when counting quantifiers are coded succinctly. See ad-
ditional background on DLs and discussion of connections
between DLs with C2 in (Baader et al. 2003; Borgida 1996;
Gu & Soutchanski 2006).

Modeling Dynamic Systems in a Modified
Situation Calculus

In this section, we consider dynamic systems formulated in a
modification of the language of the SC so that it can be con-
sidered as an extension to C2 (with an additional situation
argument).1 The key idea is to consider a syntactic modifi-
cation of the SC such that the executability and projection
problems are guaranteed to be decidable as a consequence
of the decidability of the satisfiability problem in C2. More-
over, since the modified SC has strong connections with de-
scription logics, which will be explained in detail below, we
will denote this language as LDLsc .

First of all, the three sorts in LDLsc (i.e., actions, situations
and objects) are the same as those in Lsc, except that they
obey the following restrictions: (1) all terms of sort object
are variables (x and y) or constants, i.e., object functional
symbols are not allowed; (2) all action functions include no
more than two arguments. Each argument of any term of sort
action is either a constant or an object variable (x or y); (3)
variable s of sort situation and/or variable a of sort action are
the only additional variables being allowed in D−Σ−Duna

in addition to variables x, y.
Second, any fluent in LDLsc is a predicate either with two

or with three arguments (including the one of sort situation).
We call fluents with two arguments (dynamic) concepts, and
call fluents with three arguments (dynamic) roles. In LDLsc ,
(static) concepts (i.e., unary predicates with no situation ar-
gument) and (static) roles (i.e., binary predicates with no
situation argument), if any, are considered as unchangeable
taxonomic properties and unchangeable classes of an appli-
cation domain. Moreover, each concept (static or dynamic)
can be either primitive or defined.

Third, apart from the standard FO logical symbols ∧, ∨
and ∃, with the usual definition of a full set of connectives
and quantifiers, LDLsc also includes counting quantifiers ∃≥m

and ∃≤m for all m ≥ 1. Equality = is allowed in LDLsc .
The dynamic systems we are dealing with here satisfy

the open world assumption (OWA): what is not stated
explicitly is currently unknown rather than false. In
this paper, the dynamic systems we are interested in
can be formalized as a basic action theory (BAT) D
using the following seven groups of axioms in LDLsc :
D = Σ ∪ Dap ∪ Dss ∪ DT ∪ DR ∪ Duna ∪ DS0

. Five of
them (Σ,Dap,Dss,Duna,DS0

) are similar to those groups
in a BAT in Lsc, and the other two (DT ,DR) are introduced
to axiomatize description logic related facts and properties
(see below). However, because LDLsc allows only two
object variables, all axioms must conform to the following

1The reason that we call it a ”modified” SC rather than a ”re-
stricted” SC is that we extend the SC with other features, such as
adding acyclic TBox axioms to basic action theories.

additional requirements.
Action precondition axioms Dap: For each ac-
tion A in LDLsc , there is one axiom of the form
Poss(A, s) ≡ ΠA[s] (or Poss(A(x), s) ≡ ΠA(x)[s],
or Poss(A(x, y), s) ≡ ΠA(x, y)[s], respectively), if A is
an action constant (or unary, or binary action term, respec-
tively), where ΠA (or ΠA(x), or ΠA(x, y), respectively) is
a C2 formula with no free variables (or with at most x, or
with at most x, y as the only free variables, respectively).
They characterize the preconditions of all actions.
Successor state axioms Dss: There are two types of
fluents in LDLsc : primitive dynamic concepts of the form
F (x, s) (fluents with exactly one non-situation argument)
and primitive dynamic roles of the form F (x, y, s) (fluents
with exactly two non-situation arguments). Let variable
vector ~x to be x, or y, or 〈x, y〉; a SSA is specified for each
fluent F (~x, do(a, s)). According to the general syntactic
form of the SSAs provided in (Reiter 2001), without loss of
generality, we can assume that the axiom has the form

F (~x, do(a, s)) ≡ ψF (~x, a, s), (1)

where the general structure of ψF (~x, a, s) is as follows:
∨m0

i=1[∃x][∃y](a=A+
i (~x(i,0,+)) ∧ φ

+
i (~x(i,1,+))[s]) ∨ F (~x, s)∧

¬(
∨m1

j=1[∃x][∃y](a=A−
j (~x(j,0,−)) ∧ φ

−
j (~x(j,1,−))[s])),

where each variable vector ~x(i,n,b) (or ~x(j,n,b) respectively)
(i = 1..m0, j = 1..m1, n ∈ {0, 1}, b ∈ {+,−}) repre-
sents a vector of object variables, which can be empty,
x, y, 〈x, y〉 or 〈y, x〉. Moreover, [∃x] or [∃y] represents
that the quantifier included in [] is optional; and each
φ+
i (~x(i,1,+)), i = 1..m0 (φ−i (~x(j,1,−)), j = 1..m1, respec-

tively), is a C2 formula with variables (both free and
quantified) among x and y. Note that when m0 (or m1

respectively) is equal to 0, the corresponding disjunctive
subformula is equivalent to false.

Acyclic TBox axioms DT : Similar to the TBox axioms in
DL, we may define new concepts using TBox axioms. Any
group of TBox axioms DT may include two sub-classes:
static TBox DT,st and dynamic TBox DT,dyn. Every for-
mula in static TBox is a concept definition formula of the
form G(x) ≡ φG(x), where G is a unary predi-
cate symbol and φG(x) is a C2 formula in the domain with
free variable x, and there is no fluent in it. Every formula
in dynamic TBox is a concept definition formula of the form

G(x, s) ≡ φG(x)[s], where φG(x) is a C2 for-
mula with free variable x, and there is at least one fluent
in it. All the concepts appeared in the left-hand side of
TBox axioms are called defined concepts. We also require
that the set of TBox axioms must be acyclic (acyclicity in
DT is defined exactly as it is defined for TBox).

RBox axioms DR: Similar to the idea of RBox in DL, we
may also specify a group of axioms, called RBox axioms be-
low, to support a role taxonomy. Each role inclusion axiom
is represented as R1(x, y)[s] ⊃ R2(x, y)[s],
where R1 and R2 are primitive roles (either static or dy-
namic). We assume that D is specified correctly in the sense
that the meaning of any RBox axiom included in the theory
is correctly compiled into SSAs. That is, one can prove by

induction that (D − DR) |= ∀s.R1(x, y)[s] ⊃ R2(x, y)[s].
Although RBox axioms are not used by the regression op-
erator, they are used for taxonomic reasoning in the initial
theory.
Initial theory DS0

: It is a finite set of C2 sentences (as-
suming that we suppress the only situation term S0 in all
fluents). It specifies the incomplete information about the
initial problem state and also describes all the facts that are
not changeable over time in the domain of an application.
In particular, it includes static TBox axioms DT,st as well
as RBox axioms in the initial situation S0 (if any). In addi-
tion, DS0

also includes all unique name axioms for object
constants.

The remaining two classes (foundational axioms for situ-
ations Σ and unique name axioms for actions Duna) are the
same as those in the BATs of the usual SC. Note that these
axioms (as well as Dap and Dss) use more than two vari-
ables (e.g., Dss use action and situation variables in addition
to object variables), but we will see in the next section, that
these axioms will be eliminated in the process of regressing
a regressable formula to a sentence that will use no more
than two object variables and no other variables.

Modified Regression with Lazy Unfolding
After giving the definition of what the BAT in LDLsc is, we
turn our attention to the reasoning tasks.

Given a formula W of LDLsc in the domain D, the defini-
tion ofW being regressable (called LDLsc regressable below)
is slightly different from the definition of W being regress-
able in Lsc (see (Reiter 2001)) by adding the following two
conditions: (i) any variable (free or bounded) in W is either
x or y; (ii) every term of sort situation inW is ground. More-
over, in LDLsc we have to be more careful with the definition
of the regression operator R for two main reasons. First, to
deal with TBox we have to extend regression. For a LDLsc
regressable formula W , we extend below the regression op-
erator defined in (Reiter 2001) with the lazy unfolding tech-
nique (see (Baader et al. 2003)) to expand defined dynamic
concepts. We still denote such operator as R. Second, LDLsc
uses only two object variables and we have to make sure that
after regressing a fluent atom we still get a LDLsc formula,
i.e., that we never need to introduce new (free or bound) ob-
ject variables. To deal with the two-variable restriction, we
modify our regression operator R in comparison to the con-
ventional operator defined in (Reiter 2001). For example,
when replacing Poss atom or fluent atoms about do(α, σ),
the definition of the conventional regression operator in (Re-
iter 2001) has the assumption that the quantified variables in
the right-hand side of the corresponding axioms should be
renamed to new variables different from the free variables in
the atoms that to be replaced. This assumption of using new
variables for renaming assures equivalence of original for-
mula and the formula after regression. To avoid introducing
new variables (as required by the Reiter’s regression opera-
tor) and to assure defined dynamic concepts being handled,
we modify the regression operator for each LDLsc regressable
formula. Possibility of reusing variables is guaranteed by
the general format of the SSAs given in the previous section
and the additional condition (ii) in the definition of the LDLsc

regressable formula.
The complete formal definition of our R is as follows,

where σ denotes the term of sort situation, and α denotes
the term of sort action.

• If W is not atomic, i.e. W is of the form W1 ∨ W2,
W1 ∧ W2, ¬W ′, Qv.W ′ where Q represents a quantifier
(including counting quantifiers) and v represents a variable
symbol, then
R[W1 ∨W2] = R[W1] ∨R[W2], R[¬W ′] = ¬R[W ′],
R[W1 ∧W2] = R[W1] ∧R[W2],R[Qv.W ′] = Qv.R[W ′].

• Otherwise, W is atom. There are several cases.

a. If W is of the form A1(~t) = A2(~t
′) for some ac-

tion function symbols A1 and A2, then by using axioms in
Duna,2 we define the regression of W as

R[W] =

{
⊥ if A1 6= A2,∧|~t|

i=1 ti = t′i otherwise.

Otherwise, if W is situation independent atom (including
equality between object constants or variables), or W is a
concept or role uniform in S0, then R[W] = W .

b. If W is a regressable Poss atom, so it has the form
Poss(A(~t), σ), for terms of sort action and situation respec-
tively in LDLsc . Then there must be an action precondition
axiom for A of the form Poss(A(~x), s) ≡ ΠA(~x, s), where
the argument ~x of sort object can either be empty (i.e., A
is an action constant), a single variable x or two-variable
vector 〈x, y〉. Because of the syntactic restrictions of LDLsc ,
each term in ~t can only be a variable x, y or a constant C.
Then,

R[W] =

R[(∃y)(x = y ∧ ΠA(x, y, σ))] if ~t = 〈x, x〉,

R[(∃x)(y = x ∧ ΠA(x, y, σ))] else if ~t = 〈y, y〉,

R[ΠA(~t, σ)] else if ~t = 〈x,C〉 or
~t = 〈x, y〉 or ~t = x,

R[Π̃A(~t, σ)] otherwise,

where C is a constant and φ̃ denotes a dual formula for
formula φ obtained by replacing every variable symbol x
(free or quantified) with variable symbol y and replacing
every variable symbol y (free or quantified) with variable
symbol x in φ, i.e., φ̃ = φ[x/y, y/x].

c. If W is a defined dynamic concept, so it has the
form G(t, σ) for some object term t and situation term
σ, and there must be a TBox axiom for G of the form
G(x, s) ≡ φG(x, s). Because of the restrictions of the
language LDLsc , term t can only be a variable x, y or a
constant. Then, we use lazy unfolding technique as follows:

R[W] =

{
R[φG(t, σ)] if t is not variable y,
R[φ̃G(y, σ)] otherwise.

d. If W is a primitive concept (a primitive role,
respectively), so it has the form F (t1, do(α, σ)) or
F (t1, t2, do(α, σ)) for some terms t1 (and t2) of sort object,
term α of sort action and term σ of sort situation. There
must be a SSA for fluent F such as Eq. (1). Because of
the restriction of the language LDLsc , the term t1 and t2 can

2Notice that the action functions with different number of argu-
ments always use different function symbols (i.e., different names).

only be a variable x, y or a constant C and α can only be
an action function with no more than two arguments of sort
object. Then, when W is a concept,

R[W] =

{
R[ψF (t1, α, σ)] if t1 is not variable y,
R[ψ̃F (y, α, σ)] otherwise, i.e., if t1 = y;

and, when W is a role,

R[W] =

R[(∃y)(x = y ∧ ψF (x, y, α, σ))] if t1 = x, t2 = x;

R[(∃x)(y = x ∧ ψF (x, y, α, σ))] if t1 = y, t2 = y;

R[ψ̃F (y, x, α, σ)] if t1 = y, t2 = x;

or t1 = y, t2 = C;

R[ψF (t1, t2, α, σ)] otherwise.

Based on the above definition, we are able to prove the
following theorems.
Theorem 1 Suppose W is a LDLsc regressable formula, then
the regression R[W] defined above terminates in a finite
number of steps.
Proof: Immediately follows from conditions (i) and (ii)
of the definition of LDLsc regressable formula, acyclicity of
the TBox axioms, and from the assumption that RBox ax-
ioms are compiled into the SSAs and consequently do not
participate in regression. �

Theorem 2 Suppose W is a LDLsc regressable formula with
the background basic action theory D. Then, R[W] is a
LDLsc formula uniform in S0 with no more than two variables
(x and y). Moreover, D |= W ≡ R[W], and

D |= W iff DS0
|= R[W].

Proof: According to the definition of the modified regres-
sion operator, prove by induction over the structure of W .
The first statement holds because all replacements done by
R transform W to logically equivalent formula. The sec-
ond statement follows from the regression theorem in (Re-
iter 2001). �

Theorem 3 Suppose W is a LDLsc regressable formula with
the background basic action theory D. Then, the problem
whether D |= W is decidable.
Proof: According to Theorem 2, D |= W iff DS0

|=
R[W], where R[W] and the axioms in DS0

are C2 formu-
las. Therefore, the problem whether D |= W is equivalent to
whether DS0

∧¬R[W] is unsatisfiable or not, which is a de-
cidable problem, according to the fact that the satisfiability
problem in C2 is decidable. �

This theorem is important because it guarantees that the
projection and executability problems in LDLsc are decidable
even if the initial KB DS0

is incomplete. (Gu & Soutchanski
2006) give some detailed examples that illustrate the basic
reasoning tasks described above and reduction techniques
for dealing with properties that need more than two vari-
ables, and show that using LDLsc , one can model realistic dy-
namic domains such as school enrollment services and on-
line shopping services.

We say that the SSA for a fluent F is context-free if the
SSA for F has the form
F (~x, do(a, s)) ≡ γ+

F (~x, a) ∨ F (~x, s) ∧ ¬γ−F (~x, a).
Then, we have the following theorem about the complexity
analysis for reasoning about projection problem.
Theorem 4 Given a basic action theory D in LDLsc , suppose
that the SSA for a fluent F is context-free, then the com-
putational complexity of answering the queries of the form

F (~X, σ) is co-NEXPTIME, where ~X is a vector of object
constants and σ is a ground situation term.
Proof: The result follows from the complexity analysis of
projection problem in (Reiter 2001) (Chapter 4), Theorem 3,
and the theorem in (Pratt-Hartmann 2005) that the satisfia-
bility problem in C2 is decidable in NEXPTIME. �

Progression of CNF -based KBs
The progression problem (also known as filtering and up-
date) is how to compute the new theory in response to a
given sequence of actions. In this section, we consider the
progression problem for KBs in language LDLsc . In this sec-
tion, let D = Dss ∪ Dap ∪ Σ ∪ Duna.

A formal definition of (classical) progression is given in
(Reiter 2001). A set of sentences DSα

is the (classical) pro-
gression of the initial KB DS0

(wrt basic action theory D) af-
ter performing a ground action α in the situation S0 iff DSα

is uniform in do(α, S0), D |= DSα
, and for every modelMα

of D ∪ DSα
, there is a model M of D such that M and Mα

have the same domain and interpret situation independent
predicates, function symbols, Poss and all fluents about the
future of do(α, S0) identically (in the sequel, we say that M
and Mα have a progression relationship). The progression
can be iteratively repeated if the progressed KB has the same
format as the initial KB and we can consider the computed
progression as the new initial KB at the next iteration. (Lin
& Reiter 1997) shows that the (classical) progression of a
finite FO KB is not always FOL definable (but it is always
definable in the second-order logic). By using an example
similar to (Lin & Reiter 1997), one can prove

Theorem 5 Progression of a theory in LDLsc is not always
FO definable, therefore it is definitely not definable in LDLsc .

Proof: We consider the theory D1 obtained by modify-
ing the theory D given in (Lin & Reiter 1997) as follows:
(1) replace one constant symbol 0 in D by an infinite set of
constant symbols {0, 1, 2, · · · }; (2) replace function symbol
succ(x) = y in D by predicate succ(x, y) which will be true
iff y is the successor of x; (3) replace the empty initial KB
by the new DS0

which includes infinitely many axioms of
the form c1 6= c2 for any non-identical constant symbols c1
and c2 given above and of the form succ(c, c′) where con-
stant c′ is the successor of constant c in the sense of natural
numbers. The rest of the proof is exactly the same as the
proof given in (Lin & Reiter 1997). �

Notice that the proof assumes that an LDLsc theory D1 is
infinite. The problem whether progression of a finite theory
in LDLsc is always FO definable remains open.

Now, we consider a (weaker than classical) modified pro-
gression for certain type of incomplete KBs only. For this
special case of incomplete KBs, we show below that a mod-
ified progression of a KB is in LDLsc and it is sound wrt a
classical progression of this KB.

First, we restrict the syntactic form of the KBs that are
allowed. We use e to range over ewffs, i.e., quantifier-free
boolean formulas with equalities and inequalities only. For
any vector ~x that is 〈x, y〉 (or single x, or y) and any vector

of object constants ~B that is 〈B1, B2〉 (or a single constant
B), we write ~x= ~B as an abbreviation for x=B1 ∧ y=B2

(or x=B, respectively). We use l(~x, S) to range over fluent
literals, where S is a ground situation term. We call formu-
las of the form ∀~x.e(~x) ⊃ l(~x, S) equality-based formulas.
We define a CNF-based KB DS=KBI ∪KBS , where KBI
is a set of situation-independent formulas (including unique
name axioms for object constants, i.e., KBI is a subset of
DS0

), and KBS is a finite set of sentences uniform in S,
where each sentence (also called clause below) is a disjunc-
tion of finitely many equality-based formulas. In particular,
DS0

=KBI∪KBS0
. A CNF formula composed from ground

fluent literals uniform in S is a simple example of KBS .
Secondly, we consider an action theory D that is local-

effect. Let a SSA of a fluent F have the syntactic form
F (~x, do(a, s)) ≡ γ+

F (~x, a, s)∨F (~x, s)∧¬γ−F (~x, a, s). This
SSA is local-effect if γ+

F (~x, a, s) and γ−F (~x, a, s) are dis-
junctions of formulas of the form ∃~z[a = A(~y) ∧ φ(~y, s)],
where A is a action function, ~y contains ~x, ~z = ~y − ~x, and
φ is quantifier-free. An action theory D is local-effect if
each SSA in D is local-effect. Let ∗ be + or −. Consider a
ground action α and a fluent Fi in a local-effect action the-
ory D of language LDLsc , then it is easy to see that the right-
hand side (RHS) of SSA for Fi(~x, do(α, s)) has the follow-

ing syntactic form:
∨m

+

i

k=1(~x= ~B+
ik ∧φ

+
ik(s))∨Fi(~x, s)∧

¬
∨m

−

i

k=1(~x= ~B−
ik ∧ φ

−
ik(s)), where each m∗

i is a natural
number, the variables in ~x are among x and y, and for each k,
φ∗ik(s) is a propositional formula. This SSA is a special case
of the generic SSA (1) from the previous section. Moreover,
according to Theorem 3 the problem whether D |= φ∗

ik(S)
is decidable for each k and any ground situation S. We de-
fine the following abbreviations.

Add(Fi, α, S)
def
=

∨
{k∈1..m

+

i
|D|=φ

+

ik
(S)}

~x= ~B+
ik,

Add(¬Fi, α, S)
def
=

∨
{k∈1..m

−

i
|D|=φ

−

ik
(S)}

~x= ~B−
ik,

Delete(Fi, α, S)
def
=

∨

k=1..m
−

i

~x= ~B
−
ik ∧ ¬

∨

{k | D|=¬φ
−

ik
(S)}

~x= ~B
−
ik

Delete(¬Fi, α, S)
def
=

∨

k=1..m
+

i

~x= ~B
+
ik ∧ ¬

∨

{k | D|=¬φ
+

ik
(S)}

~x= ~B
+
ik

When there is no disjunct satisfying the condition on the
context formula φ∗

ik, the corresponding disjunction is equiv-
alent to ⊥. It is easy to see that all formulas above are ewffs.

The intuition behind these abbreviations is simple. For
instance, Add(Fi, α, S) is a collection of all those cases
when Fi will become true in every model if the context
φ+
ik(S) holds in S. Therefore, these cases provide support

for adding the fluent Fi to the new KB. If one takes all those
cases ~x = ~B−

ik when Fi ceases to be true in some models
(where contexts might or might not be entailed) and removes
from them those cases when negations of contexts are known
to be entailed (i.e., remove models where it is guaranteed
that Fi will not cease to be true), then as a result one gets
Delete(Fi, α, S) that represents the collections of all those
objects for which Fi has to be deleted from the current KB.

Now consider a ground action α and a CNF-based KB
DS = KBI ∪ KBS as the current KB of a local-effect BAT

D = D ∪ DS . Assume that D |= Poss(α, S), otherwise
there is no need in progression. We provide an algorithm to
compute a variant of progression, called a modified progres-
sion of DS wrt D and the ground action α executed in S, and
denote the resulting KB as P(α,DS).

Let P(α,DS) be the following set of sentences:

1. Initialize P(α,DS) to
KBI∪

{(∀~x)Add(Fi, α, S) ⊃ Fi(~x, do(α, S)) | Add(Fi, α, S) 6≡ ⊥}∪

{(∀~x)Add(¬Fi, α, S) ⊃ ¬Fi(~x, do(α, S)) | Add(¬Fi, α, S) 6≡ ⊥}.

2. For each clause in KBS of the form Cj = p1 ∨ · · · ∨ ph ∨ · · · ,
where each ph is an equality-based formula (∀~x)ejh

(~x) ⊃
ljh

(~x, S) and ljh
is either Fi or its negation ¬Fi, we update

this clause as follows.
(a) Initialize a temporary set T = ∅.
(b) For each ph, if
KBI ∪ {(∀~x)ejh

(~x) ∧ ¬Delete(ljh
, α, S)} 6|= ⊥, add

(∀~x)ejh
(~x) ∧ ¬Delete(ljh

, α, S) ⊃ ljh
(~x, do(α, S))

into the set T .
(c) If T 6=∅, add a new clause C′

j =
∨

p∈T p to P(α,DS); other-
wise, do nothing (i.e., replace Cj with >).

It is easy to see that the resulting KB P(α,DS) remains
to be a CNF-based KB in LDLsc . Therefore, such progression
can be repeated for the next ground action, say α′.

The intuition behind this algorithm is simple. The succes-
sor model of the KB after performing a ground action at the
current situation should keep all the situation-independent
information, add truth values for each fluent for those ob-
jects where it will definitely become true (or false), and also
keep the remaining consistent information by removing con-
flicting knowledge for objects from the current KB. Note
that we detect conflicts between cases supported by ejh and
cases included in the Delete(ljh , α, S) condition by using
unique name axioms for constants in KBI , if necessary, to
solve the entailment problem in (b).

For any given BAT D =D ∪ DS and a ground action α,
we say that a modified progression P(α,DS) is (classically)
sound if any model of the classical progression of DS (wrt
α and D) is a model of the modified progression. Also, we
say that P(α,DS) is (classically) complete if every model of
D ∪P(α,DS) is a model of the classical progression of DS

(wrt α and D). The modified progression has the following
nice properties.

Theorem 6 Given a BAT D with the current KB DS and
a ground action α. Then, (1) if D is consistent and
RHS of SSAs are consistent, then the modified progression
P(α,DS) is also consistent; (2) the modified progression
P(α,DS) is (classically) sound.

Proof: (1) Prove by cases using the definition of P(α,DS).
(2) According to the definition of P(α,DS), prove that D |=
P(α,DS) using the RHS of the SSAs for Fi(~x, do(α, S)).
Let Mα be any model of the (classical) progression of DS .
Then, there is a model M of D such that M and Mα have
a progression relationship. Then M is also a model of
P(α,DS) by D |= P(α,DS), and then since M and Mα

have a progression relationship we can prove that Mα is a
model of any sentence uniform in do(α, S) iff M is a model

of any sentence uniform in do(α, S). Therefore, we con-
clude that Mα is a model of P(α,DS) because P(α,DS) is
a set of sentences uniform in do(α, S). �

Discussion and Future Work
The major consequence of the results proved above for the
problem of service composition is the following. If both
atomic services and properties of the world that can be af-
fected by these services have no more than two parame-
ters, then we are guaranteed that even in the state of in-
complete information about the world, one can always deter-
mine whether a sequentially composed service is executable
and whether this composite service will achieve a desired
effect. The previously proposed approaches made different
assumptions: (McIlraith & Son 2002) assumes that the com-
plete information is available about the world when effects
of a composite service are computed, and (Giacomo et al.
1999) considers the propositional fragment of the SC.

As we mentioned in Introduction, (McIlraith & Son 2002)
propose to use Golog for composition of Semantic Web ser-
vices. It is surprisingly straightforward to define almost all
Golog operators starting from our C2 based SC. The only
restriction in comparison with the original Golog (Reiter
2001) is that we cannot define the operator (πx)δ(x), non-
deterministic choice of an action argument, because LDLsc re-
gressable formulas cannot have occurrences of non-ground
action terms in situation terms. The recent paper (Baader et
al. 2005) proposes integration of description logics ALCQIO
(and its sub-languages) with an action formalism for reason-
ing about Web services. We discuss that paper in (Gu &
Soutchanski 2006).

An interesting paper (Liu & Levesque 2005) aims to
achieve computational tractability of solving projection and
progression problems. The theory of the initial KB is as-
sumed to be in the so-called proper form (i.e., conjunc-
tions of equality-based formulas) and the query used in the
projection problem is expected to be in a certain normal
form. They consider a weaker type of progression defined
for proper KBs with local effect actions only and show that
their progression is sound (and sometimes complete) wrt the
classical progression. We also consider local effect action
theories, but our CNF-based KB is a set of disjunctions of
equality-based formulas. However, (Liu & Levesque 2005)
considers a SC formulated in a general FOL (where the en-
tailment problem is undecidable) and impose no restrictions
on arity of fluents. Because of these significant differences
in our approaches, it is not possible to compare them.

It is obvious that all cases from (Lin & Reiter 1997;
Shirazi & Amir 2005; Liu & Levesque 2005) when the pro-
gression is FOL definable also can be applied to our case
simply because we restrict the language to two object vari-
ables only. However, we do the disjunctive case that nobody
did before. Also, (Liu et al. 2006) considers update of an
ABox in a DL following (Winslett 1990) and also mentions
that update can be applied to a boolean ABox formulated in
C2, but their update is defined in terms of a conjunction of
primitive fluent literals, i.e., it is different from our progres-
sion because our update is defined in terms of changes in the
theory due to a ground action. (Giacomo et al. 2006) gen-

eralized the update approach of (Liu et al. 2006) from ALC
to a more expressive DL language DL-Lite which allows
general inclusion assertions in TBox , showed that the result
of an update is always expressible by a DL-Lite ABox and
provided a polynomial-time algorithm that computes the up-
date over a DL-Lite KB.

The most important direction for future research is effi-
cient implementation of practical scenarios of reasoning in
LDLsc . Although in general, the worst-case computational
complexity for the reasoning problems in LDLsc is high, some
practical scenarios may facilitate empirically efficient solu-
tions to the projection and executability problems. We are
planning to consider also the progression problem for a more
general class of incomplete KBs and conditions when the
modified progressions is (classically) complete.

References
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-
Schneider, P. F., eds. 2003. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University
Press.
Baader, F.; Lutz, C.; Miliĉić, M.; Sattler, U.; and Wolter,
F. 2005. Integrating description logics and action for-
malisms: First results. In Proc. of AAAI-05, 572–577. An
extended version: LTCS-Report-05-02 from http://lat.inf.tu-
dresden.de/research/reports.html.
Borgida, A. 1996. On the relative expressiveness of description
logics and predicate logics. Artificial Intelligence 82(1-2):353–
367.
Giacomo, G. D.; Iocchi, L.; Nardi, D.; and Rosati, R. 1999. A
theory and implementation of cognitive mobile robots. J. of Logic
and Computation 9(5):759–785.
Giacomo, G. D.; Lenzerini, M.; Poggi, A.; and Posati, R. 2006.
On the update of description logic ontologies at the instance level.
In Proc. of AAAI-06, 1271–1276.
Gu, Y., and Soutchanski, M. 2006. A logic for decidable rea-
soning about services. In Proceedings of AAAI-06 workshop
on AI-Driven Technologies for Services-Oriented Computing.
http://www.cs.toronto.edu/˜ yilan/publications/papers/aaai06.pdf.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92:131–167.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning with in-
complete first-order knowledge in dynamic systems with context-
dependent actions. In Proc. of IJCAI-05, 522–527.
Liu, H.; Lutz, C.; Milicic, M.; and Wolter, F. 2006. Updating
description logic ABoxes. In Proc. of KR2006, 46–56.
McIlraith, S., and Son, T. 2002. Adapting Golog for composition
of semantic web services. In Proc. of KR2002, 482–493.
Pacholski, L.; Szwast, W.; and Tendera, L. 1997. Complexity of
two-variable logic with counting. In Proc. of LICS-97, 318–327.
Warsaw, Poland: A journal version: SIAM Journal on Comput-
ing, v 29(4), 1999, p. 1083–1117.
Pratt-Hartmann, I. 2005. Complexity of the two-variable frag-
ment with counting quantifiers. Journal of Logic, Lang. and Inf.
14(3):369–395.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Describing and Implementing Dynamical Systems. The MIT
Press.
Shirazi, A., and Amir, E. 2005. First-order logical filtering. In
Proc. of IJCAI-05, 589–595.
Winslett, M. S. 1990. Updating logical databases. The Academic
Press.

