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Abstract

A team of agents is jointly able to achieve a goal if despite
any incomplete knowledge they may have about the world or
each other, they still know enough to be able to get to a goal
state. Unlike in the single-agent case, the mere existence of a
working plan is not enough as there may be several incompat-
ible working plans and the agents may not be able to choose a
share that coordinates with the others’. Some formalizations
of joint ability ignore this issue of coordination within a coali-
tion. Others, including those based on game theory, deal with
coordination, but require a complete specification of agents’
beliefs. Such a complete specification is often not available.
Here we present a new formalization of joint ability based on
logical entailment in the situation calculus that avoids both of
these pitfalls.

Introduction
The coordination of teams of cooperating but autonomous
agents is a core problem in multiagent systems research. A
team of agents isjointly ableto achieve a goal if despite any
incomplete knowledge or even false beliefs that they may
have about the world or each other, they still know enough
to be able to get to a goal state, should they choose to do
so. Unlike in the single-agent case, the mere existence of
a working plan is not sufficient since there may be several
incompatible working plans and the agents may not be able
to choose a share that coordinates with the others’.

There is a large body of work in game theory (Osborne
& Rubinstein 1999) dealing with coordination and strategic
reasoning for agents. The classical game theory framework
has been very successful in dealing with many problems in
this area. However, a major limitation of the framework is
that it assumes there is acomplete specificationof the struc-
ture of the game including the agents’ beliefs. It is also of-
ten assumed that this structure is common knowledge among
agents. These assumptions often do not hold for team mem-
bers, let alone for a third party attempting to reason about
what the team members can do. Much of the work in the
area also assumes that the set of states is finite and the run-
ning time of algorithms used to compute optimal strategies
generally depends on the size of the state space.

In recent years, there has been a lot of work aimed at de-
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veloping symbolic logics of games (Pauly 2002; van der
Hoek & Wooldridge 2003) so that more incomplete and
qualitative specifications can be dealt with. This can also
lead to faster algorithms as sets of states that satisfy a
property can be abstracted over in reasoning. However,
this work has often incorporated very strong assumptions.
Many logics of games like Coalition logic (Pauly 2002) and
ATEL (van der Hoek & Wooldridge 2003) ignore the is-
sue of coordination within a coalition and assume that the
coalition can achieve a goal if there exists a strategy profile
that achieves the goal. This is only sufficient if we assume
that the agents can communicate arbitrarily to agree on a
joint plan/strategy profile. As well, most logics of games are
propositional, which limits expressiveness.

In this paper, we develop a new first-order (with some
higher-order features) logic framework to model the coordi-
nation of coalitions of agents based on the situation calcu-
lus (Reiter 2001). Our formalization of joint ability avoids
both of the pitfalls mentioned above: it supports reason-
ing on the basis of very incomplete specifications about
the belief states of the team members and it ensures that
team members do not have incompatible strategies. The for-
malization involves iterated elimination of dominated strate-
gies (Osborne & Rubinstein 1999; Brandenburger & Keisler
2001). Each agent compares her strategies based on her pri-
vate beliefs. Initially, they consider all available strategies
possible. Then they eliminate strategies that are not as good
as others given their beliefs about what strategies the other
agents have kept. This elimination process is repeated until
it converges to a set of preferred strategies for each agent.
Joint ability holds if all combinations of preferred strategies
succeed in achieving the goal.

In the next section, we describe a simple game setup that
we use to generate example games, and test our account of
joint ability. Then in Section 3, we present our formaliza-
tion of the notion of joint ability in the situation calculus.
In Section 4 and 5, we show some examples of the kind of
ability results we can obtain in this logic and how they are
proved. This includes examples where we prove that joint
ability holds given weak assumptions about the agents. Then
in Section 6, we discuss related work, and in Section 7, we
summarize our contributions and discuss future work.



A simple game setup
To illustrate our formalization of joint ability, we will em-
ploy the following simple setup involving only two agents,
P andQ, one distinguished fluentF , and one distinguished
actionA. For simplicity, we assume that the agents act syn-
chronously and in turn:P acts first and then they alternate.
We assume that there is at least one other actionA′, and pos-
sibly more. All actions are public (observed by both agents)
and can always be executed. We assume for the purpose of
this paper that there are nopreestablishedconventions that
would allow agents to rule out or prefer strategies to others
or to use actions as signals for coordination (e.g. similar to
those used in the game of bridge). The sorts of goals we
will consider will only depend on whether or not the flu-
entF held initially, whether or notP did actionA first, and
whether or notQ then did actionA. Since there are2×2×2
options, and since a goal can be satisfied by any subset of
these options, there are28 = 256 possible goals to consider.

This does not mean, however, that there are only 256 pos-
sible games. We assume the agents can have beliefs about
F and about each other. Since they may have beliefs about
the other’s beliefs about their beliefs and so on, there are,
in fact, an infinite number of games. At one extreme, we
may choose not to stipulate anything about the beliefs of
the agents; at the other extreme, we may specify completely
what each agent believes. In between, we may specify some
beliefs or disbeliefs and leave the rest of their internal state
open. For each specification, and for each of the 256 goals,
we may ask if the agents are jointly able to achieve it.1

Example 1: Suppose nothing is specified about the be-
liefs of P andQ. Consider a goal that is satisfied byP
doingA andQ not doingA regardless ofF . In this case,P
andQ can jointly achieve the goal, since they do not need
to know anything aboutF or each other to do so. Had we
stipulated thatP believed thatF was true andQ believed
thatF was false, we would still say that they could achieve
the goal despite the false belief that one of them has.

Example 2: Suppose we stipulate thatQ knows thatP
knows whether or notF holds. Consider a goal that is satis-
fied byP doingA andQ not doingA if F is true andP not
doingA andQ doingA if F is false. In this case, the two
agents can achieve the goal:P will do the right thing since
he knows whetherF is true;Q will then do the opposite of
P since he knows thatP knows what to do. The action of
P in this case behaves like a signal toQ. Interestingly, if we
merely requireQ to believethatP knows whether or notF
holds, then even if this belief is true, it would not be suffi-
cient to imply joint ability (specifically, in the case whereit
is true for the wrong reason; we will return to this).

Example 3: Suppose again we stipulate thatQ knows
thatP knows whether or notF holds. Consider a goal that
is satisfied byP doing anything andQ not doingA if F is
true andP doing anything andQ doingA if F is false. In
a sense this is a goal that is easier to achieve than the one
in Example 2, since it does not require any specific action
from P . Yet, in this case, it would not follow that they can

1We may also ask whether the agentsbelieveor mutually be-
lievethat they have joint ability, but we defer this to later.

achieve the goal. Had we additionally stipulated thatQ did
not know whetherF held, we could be more definite and say
that they definitely cannot jointly achieve this goal as there
is nothingP can do to helpQ figure out what to do.

Example 4: Suppose again we stipulate thatQ knows that
P knows whether or notF holds. Consider a goal that is like
in Example 3 but easier, in that it also holds if both agents do
not doA whenF is false. In this case, they can achieve the
goal. The reason, however, is quite subtle and depends on
looking at the various cases according to whatP andQ be-
lieve. Similar to Example 2, requiringQ to have true belief
aboutP knowing whetherF holds is not sufficient.

To the best of our knowledge, there is no existing formal
account where examples like these and their variants can be
formulated. We will return to this in the discussion of related
work. In the next section, we present a formalization based
on entailment in the situation calculus.

The formal framework
The basis of our framework for joint ability is the situation
calculus (McCarthy & Hayes 1969; Levesque, Pirri, & Re-
iter 1998). The situation calculus is a predicate calculus lan-
guage for representing dynamically changing domains. A
situationrepresents a possible state of the domain. There is
a set of initial situations corresponding to the ways the do-
main might be initially. The actual initial state of the domain
is represented by the distinguished initial situation constant,
S0. The termdo(a, s) denotes the unique situation that re-
sults from an agent doing actiona in situations. Initial sit-
uations are defined as those that do not have a predecessor:
Init(s)

.
= ¬∃a∃s′. s = do(a, s′). In general, the situations

can be structured into a set of trees, where the root of each
tree is an initial situation and the arcs are actions. The for-
mula s ⊑ s′ is used to state that there is a path from sit-
uation s to situations′. Our account of joint ability will
require some second-order features of the situation calculus,
including quantifying over certain functions from situations
to actions, that we callstrategies.

Predicates and functions whose values may change from
situation to situation (and whose last argument is a situa-
tion) are calledfluents. The effects of actions on fluents are
defined using successor state axioms (Reiter 2001), which
provide a succinct representation for both effect axioms and
frame axioms (McCarthy & Hayes 1969). To axiomatize
a dynamic domain in the situation calculus, we use Re-
iter’s (Reiter 2001) action theory, which consists of (1) suc-
cessor state axioms ; (2) initial state axioms, which describe
the initial states of the domain including the initial beliefs
of the agents; (3) precondition axioms, which specify the
conditions under which each action can be executed (we as-
sume here that all actions are always possible); (4) unique
names axioms for the actions, and (5) domain-independent
foundational axioms (we adopt the ones given in (Levesque,
Pirri, & Reiter 1998) which accommodate multiple initial
situations, but we do not describe them further here).

For our examples, we only need three fluents: the fluent
F mentioned in the previous section in terms of which goals
are formulated, a fluentturn which says whose turn it is to
act, and a fluentB to deal with the beliefs of the agents.



Moore (Moore 1985) defined a possible-worlds semantics
for a logic of knowledge in the situation calculus by treating
situations as possible worlds. Scherl and Levesque (Scherl
& Levesque 2003) adapted this to Reiter’s theory of action
and gave a successor state axiom forB that states how ac-
tions, including sensing actions, affect knowledge. Shapiro
et al. (Shapiro, Lespérance, & Levesque 1998) adapted this
to handle the beliefs of multiple agents, and we adopt their
account here.B(x, s′, s) will be used to denote that in sit-
uations, agentx thinks that situations′ might be the actual
situation. Note that the order of the situation arguments is
reversed from the convention in modal logic for accessibil-
ity relations. Belief is then defined as an abbreviation:2

Bel(x, φ[now], s)
.
= ∀s′.B(x, s′, s) ⊃ φ[s′].

We will also use

TBel(x, φ[now], s)
.
= Bel(x, φ[now], s) ∧ φ[s]

as an abbreviation for true belief (which we distinguish from
knowledge formalized as a KT45 operator, for reasons al-
luded to above in Example 2).

Our examples use the following successor state axioms:

• F (do(a, s)) ≡ F (s).
The fluentF is unaffected by any action.

• turn(do(a, s)) = x ≡
x = P ∧ turn(s) = Q ∨ x = Q ∧ turn(s) = P .

Whose turn it is to act alternates betweenP andQ.

• B(x, s′, do(a, s)) ≡ ∃s′′.B(x, s′′, s) ∧ s′ = do(a, s′′).
This is a simplified version of the successor state axiom
proposed by Scherl and Levesque. It is appropriate when
actions have no preconditions, when there are no sensing
actions, and all actions are public to all agents.

The examples also include the following initial state axioms:

• Init(s) ⊃ turn(s) = P . So, agentP gets to act first.

• Init(s) ∧B(x, s′, s) ⊃ Init(s′).
Each agent initially knows that it is in an initial situation.

• Init(s) ⊃ ∃s′B(x, s′, s).
Each agent initially has consistent beliefs.

• Init(s) ∧B(x, s′, s) ⊃ ∀s′′. B(x, s′′, s′) ≡ B(x, s′′, s).
Each agent initially has introspection of her beliefs.

The last two properties of belief can be shown to hold for
all situations using the successor state axiom forB so that
belief satisfies the modal system KD45 (Chellas 1980). In
addition, since the axioms above are universally quantified,
they are known to all agents, and in fact are common knowl-
edge.3 We will let Σe denote the action theory containing the
successor and initial state axioms above. All the examples
in Section 4 will useΣe with additional conditions.

2Free variables are assumed to be universally quantified from
outside. Ifφ is a formula with a single free situation variable,φ[t]
denotesφ with that variable replaced by situation termt. Instead of
φ[now] we occasionally omit the situation argument completely.

3Common knowledge is to knowledge what mutual belief is to
belief.

Our definition of joint ability
We assume there areN agents named1 to N . We use the
following abbreviations for representing strategy4 profiles:

• A vector of sizeN is used to denote a complete strategy
profile, e.g.~σ for σ1, σ2, · · · , σN .

• ~σ-i
represents an incomplete profile with strategies for ev-

eryone except playeri, i.e.σ1, · · · , σi−1, σi+1 · · · , σN .

• ⊕
i

is used to insert a strategy for playeri into an incom-
plete profile:~σ-i

⊕i δ : σ1, · · · , σi−1, δ, σi+1 · · · , σN .

• |i is used to substitute theith player’s strategy in a com-
plete profile:~σ|

i
δ : σ1, · · · , σi−1, δ, σi+1 · · · , σN .

All of the definitions below are abbreviations for formulas in
the language of the situation calculus presented above. The
joint ability of N agents trying to achieve a common goal
Goal5 is defined as follows:6

• JCan(s)
.
=

∀~σ. [
∧N

i=1
Pref(i, σi, s)] ⊃ Works(~σ, s).

Agents1 · · ·N can jointly achieve the goal iff all combi-
nations of their preferred strategies work together.

• Works(~σ, s)
.
= ∃s′′. s ⊑ s′′ ∧ Goal[s′′] ∧

∀s′. s ⊑ s′ < s′′ ⊃∧N

i=1
(turn(s′) = i ⊃ do(σi(s

′), s′) ⊑ s′′).
Strategy profile~σ works if there is a future situation where
Goal holds and the strategies prescribe the actions to get
there according to whose turn it is.

• Pref(i, σi, s)
.
= ∀n.Keep(i, n, σi, s)

Agenti prefers strategyσi if it is kept for all levelsn.7

• Keepis defined inductively:8

– Keep(i, 0, σi, s)
.
= Strategy(i, σi).

At level 0, all strategies are kept.
– Keep(i, n+ 1, σi, s)

.
= Keep(i, n, σi, s) ∧

¬∃σ′
i.Keep(i, n, σ′

i, s) ∧
GTE(i, n, σ′

i, σi, s) ∧ ¬GTE(i, n, σi, σ
′
i, s).

For each agenti, the strategies kept at leveln + 1 are
those kept at leveln for which there is not a better one
(σ′

i is better thanσi if it is as good as, i.e. greater than
or equal to,σi while σi is not as good as it).

• Strategy(i, σi)
.
=

∀s. turn(s) = i ⊃ ∃a.TBel(i, σi(now) = a, s)
Strategies for an agent are functions from situations to ac-
tions such that the required action is known to the agent
whenever it is the agent’s turn to act.

4Strictly speaking, theσi’s are second-order variables ranging
over functions from situations to actions. We useStrategy(i, σi) to
restrict them to valid strategies.

5All definitions are w.r.t. to this goal. To avoid clutter, theGoal
argument has been removed from all definitions.

6Section 6 generalizes these definitions to the case where some
of the agents are outside of the coalition.

7The quantification is over the sort natural number.
8Strictly speaking, the definition we propose here is ill-formed.

We want to use it with the second argument universally quanti-
fied (as inPref). KeepandGTEactually need to be defined using
second-order logic, from which the definitions here emerge as con-
sequences. We omit the details for space reasons.



• GTE(i, n, σi, σ
′
i, s)

.
=

Bel(i, ∀~σ-i
. ([

∧
j 6=i Keep(j, n, σj , now) ∧

Works(~σ-i
⊕iσ

′
i, now)] ⊃ Works(~σ-i

⊕iσi, now)), s).
Strategyσi is as good as (Greater Than or Equal to)σ′

i for
agenti if i believes that wheneverσ′

i works with strategies
kept by the rest of the agents so doesσi.

These formulas define joint ability in a way that resembles
the iterative elimination of weakly dominated strategies of
game theory (Osborne & Rubinstein 1999) (see Section 6).
As we will see in the examples next, the mereexistenceof
a working strategy profile is not enough; the definition re-
quires coordination among the agents in thatall preferred
strategies must work together.

Formalizing the examples
As we mentioned, for each of the 256 possible goals we can
consider various assumptions about agents’ beliefs. In this
Section, we provide theorems for the goals of the four ex-
amples mentioned in Section 2. Due to lack of space we
omit the proofs. Since there are only two agents, the previ-
ous definitions can be simplified. For better exposition, we
useg (possibly superscripted) to refer to strategies of agent
1 (hereafter calledP ) andh for those of agent 2 (calledQ).

Example 1
For this example, the goal is defined as follows:
Goal(s)

.
= ∃s′. Init(s′) ∧ ∃a. a 6= A ∧ s = do(a, do(A, s′))

Note that the goal in this example (and other examples) is
satisfied only in situations resulting from doing a sequence
of two actions starting from an initial situation. Therefore,
using axioms of the situation calculus, we can prove that
Works(g, h, s) depends only on the first action prescribed by
g and the action prescribed byh in response to that action :

Therefore, we have the following:

Lemma 1 Σe |= Works(g, h, s) ≡
Init(s) ∧ g(s) = A ∧ h(do(A, s)) 6= A.

Theorem 1 Σe |= Init(s) ⊃ JCan(s)

We can then easily show that the agents can achieve the goal
despite having false beliefs aboutF (see corollary 3):

Corollary 1 Σe |= [Init(s) ∧ Bel(P,¬F, s) ∧
Bel(Q,F, s)] ⊃ JCan(s).

We can also trivially show that the agents have mutual belief
that joint ability holds (again see corollary 3):

Corollary 2 Σe |= Init(s) ⊃ MBel(JCan(now), s).9

Example 2
For this example, the goal is defined as follows:

Goal(s)
.
= ∃s′, a. Init(s′) ∧ a 6= A ∧ [F (s′) ∧

s = do(a, do(A, s′)) ∨ ¬F (s′) ∧ s = do(A, do(a, s′))].

Lemma 2 Σe |= Works(g, h, s) ≡
Init(s)∧ [F (s)∧ g(s) = A∧h(do(A, s)) 6= A∨

¬F (s)∧g(s) 6= A∧h(do(g(s), s)) = A].

9MBel is mutual belief among the agents and can be defined
either as a fix-point or by introducing a new accessibility relation
using a second-order definition.

For the rest of the examples, the following definitions will
be useful in presenting the proofs:

• BW(x, φ, s)
.
= Bel(x, φ, s) ∨ Bel(x,¬φ, s)

the agent believes whetherφ holds.

• TBW(x, φ, s)
.
= TBel(x, φ, s) ∨ TBel(x,¬φ, s).

As mentioned in Section 2,Q’s having true belief about
P truly believing whetherF is not sufficient for joint abil-
ity. This is becauseTBel(Q,TBW(P, F, now), s) does not
precludeQ having a false belief aboutP , e.g. F (s) ∧
Bel(P, F, s) ∧ Bel(Q,Bel(P,¬F, now), s) being true.

Theorem 2 Σe ∪ {TBel(Q,TBW(P, F, now), S0)} 6|=
JCan(S0).

To ensure we are dealing with knowledge and not merely
true belief, we can simply add the reflexivity axiom to the
initial axioms (i.e. ∀s. Init(s) ⊃ B(x, s, s)) which results
in a KT45 modal logic (Chellas 1980). Another approach is
to remain in the KD45 logic but assert thatQ’s belief about
P ’s belief ofF is correct:

BTBel(Q,P, F, s)
.
=

[Bel(Q,TBel(P, F, now), s) ⊃ TBel(P, F, s)]∧
[Bel(Q,TBel(P,¬F, now), s) ⊃ TBel(P,¬F, s)]

To keep our framework as general as possible, we take
the second approach and addBTBel(Q,P, F, s) whenever
needed. With this, we have the following theorem:

Theorem 3 Σe |= [Init(s) ∧ BTBel(Q,P, F, s) ∧
TBel(Q,TBW(P, F, now), s)] ⊃ JCan(s).

It follows from the theorem that if we include reflexivity
axioms for the belief accessibility relations,Q’s knowing
thatP knows whetherF holds is sufficient to get joint abil-
ity. More interestingly, it follows immediately that common
knowledge of the fact thatP knows whetherF holds implies
common knowledge of joint ability (using corollary 3).

Example 3
As mentioned earlier, the goal for this example is easier to
satisfy than the one in Example 2:
Goal(s)

.
= ∃s′, a, b. Init(s′) ∧

[F (s′) ∧ b 6= A ∧ s = do(b, do(a, s′)) ∨
¬F (s′) ∧ b = A ∧ s = do(b, do(a, s′))].

Lemma 3 Σe |= Works(g, h, s) ≡ Init(s) ∧ [F (s) ∧
h(do(g(s), s)) 6= A∨¬F (s)∧ h(do(g(s), s)) = A].

Nonetheless, we can prove that, unlike in Example 2, from
Q knowing thatP knows whetherF holds, it does not follow
that the agents can achieve the goal.

Theorem 4 Σe 6|= [Init(s) ∧ BTBel(Q,P, F, s)
TBel(Q,TBW(P, F, now), s)] ⊃ JCan(s).

Note that the reason they cannot achieve the goal is not be-
cause no promising joint plan exists. Quite the opposite, it
is the existence of at least two incompatible preferred joint
plans that results in the lack of ability. We can prove that if
Q truly believes whetherF holds they can achieve the goal.

Theorem 5 Σe |= Init(s) ∧ TBW(Q,F, s) ⊃ JCan(s).



Example 4
The goal here is easier than in Examples 2 and 3:
Goal(s)

.
= ∃s′, a, b. Init(s′) ∧

{F (s′) ∧ b 6= A ∧ s = do(b, do(a, s′)) ∨ ¬F (s′) ∧
[s = do(A, do(A, s′))∨b 6= A∧s = do(a, do(b, s))]}.

This goal gives rise to the following lemma:

Lemma 4 Σe |= Works(g, h, s) ≡
Init(s) ∧ {F (s) ∧ h(do(g(s), s)) 6= A ∨

¬F (s)∧ [g(s) 6= A∨h(do(g(s), s)) = A]}.

Similarly to Example 2, we show that ifQ has true belief
aboutP truly believing whetherF holds, then assuming
BTBel(Q,P, F, s), the agents can achieve the goal:

Theorem 6 Σe |= Init(s) ∧ BTBel(Q,P, F, s) ∧
TBel(Q,TBW(P, F, now), s) ⊃ JCan(s).

It follows thatQ’s knowingthatP knows whetherF holds
is sufficient to get joint ability. More interestingly, common
knowledge of the fact thatP knows whetherF holds implies
common knowledge of joint ability even thoughQ may still
have incomplete or false belief aboutF (see corollary 3).

Properties of the definition
In this section, we present several properties of our proposed
definition to show its plausibility. LetΣ be an arbitrary ac-
tion theory describing a system withN agents with aKD45
logic of belief and a background goalGoal.

Our definition of ability is quite general and can be nested
within beliefs. For example, we might consider cases where
agents believe that joint ability holds while it is false in the
real world. The following corollary can be used to prove
various subjective properties about joint ability:

Corollary 3 Let φ and ψ be arbitrary formulas with free
situation variables. If Σ |= ∀s. φ[s] ⊃ JCan(s) thenΣ |=
∀s.Bel(i, φ[now], s) ⊃ Bel(i, JCan(now), s). Moreover, if
Σ |= ∀s. ψ[s] ⊃ φ[s] as well thenΣ |= ∀s. ψ[s] ⊃ JCan(s).

To prove, for example,Bel(i,Bel(j, JCan, now), S0), it
is sufficient to find a formulaφ such thatΣ |= ∀s. φ[s] ⊃
JCan(s) andΣ |= Bel(i,Bel(j, φ, now), S0).

One simple case where we can show that an agent believes
that joint ability holds is when there is no need to coordi-
nate. In particular, if agenti has a strategy that she believes
achieves the goal regardless of choices of other team mem-
bers, then she believes that joint ability holds10 (Example 3
with BW(Q,F, s) is an instance of this case asQ believes
that a strategy that says doA whenF is false and do a spe-
cific non-A action whenF is true achieves the goal regard-
less of any strategy thatP chooses):

Theorem 7 Σ |= ∃σi∀~σ-i
.Bel(i,Works(~σ-i

⊕i σi,
now), s) ⊃ Bel(i, JCan(now), s).

However, note that there are theoriesΣ′ such that even
though agenti has a strategy that always achieves the goal
(regardless of choices of other team members) joint ability
does not actually follow:

10Note that, however, this does not imply that joint ability holds
in the real world sincei’s beliefs might be wrong.

Theorem 8 There existΣ′ such that
Σ′ ∪ {∃σi∀~σ-i

.Works(~σ-i
⊕i σi, S0)} 6|= JCan(S0).

Another simple case where joint ability holds is when
there exists a strategy profile that every agent truly believes
works, and moreover everyone believes it is impossible to
achieve the goal if someone deviates from this profile:11

Theorem 9 Σ |= [∃~σ.ETBel(Works(~σ, now), s) ∧

∀~δ 6= ~σ.EBel(¬Works(~δ, now), s)] ⊃ JCan(s).

It turns out that joint ability can be proved from weaker con-
ditions. In particular, instead ofETBel(Works(~σ, now), s),
it is sufficient to have both Works(~σ, s) and
¬Bel(i,¬Works(~σ, now), s) for each agenti, i.e. Works(~σ)
is consistent with every agent’s beliefs. Also, it is worth
noting that even if there are several (incompatible) working
profiles in the real world, the agents will prefer~σ (due to
their wrong beliefs) and achieve the goal.

We can generalize the result in theorem 9 if we assume
there exists a strategy profile that isknownby everyone to
achieve the goal. Then, it is sufficient for every agent to
knowthat their share in the profile is at least as good as any
other available strategy to them, forJCanto hold:

Theorem 10 Σ |= [(∀s′. init(s′) ⊃
∧N

i=1
B(i, s′, s′)) ∧

∃~σ.EBel(Works(~σ, now), s) ∧ ∀~δ.
∧N

i=1
Bel(i,

Works(~δ, now) ⊃ Works(~δ|
i
σi, now), s)] ⊃ JCan(s).

Another important property of joint ability is that it is non-
monotonic w.r.t. the goal. Unlike in the single agent case, it
might be the case that a team is able to to achieve a strong
goal while it is unable to achieve a weaker one (The goals in
examples 3 and 4 of Section 4 are an instance of this):

Theorem 11 Let JCanG(s) be joint ability w.r.t. to back-
ground goalG. Then there are theoriesΣ′ such that
Σ′∪{∀s.G1(s) ⊃ G2(s)}∪{JCan

G1
(S0)} 6|= JCan

G2
(S0).

Discussion and related work
The definition of joint ability in Section 3.1 is w.r.t.N agents
all trying to achieve a common goal. It can be straightfor-
wardly generalized to allow some agents to be outside of
the coalition. LetC be a coalition (i.e. a subset of agents
{1, · · · , N}). Since each agentj 6∈ C might conceivably
choose any of her strategies, agents inside the coalitionC
must coordinate to make sure their choices achieve the goal
regardless of the choices of agents outsideC. It turns out
that a very slight modification to the definition ofKeep is
sufficient for this purpose. In particular, the definition of
Keepfor agents insideC remains unchanged while for every
agentj 6∈ C, we defineKeep(j, n, σj , s)

.
= Strategy(j, σj).

Therefore, for every agentj outside the coalition we have
Pref(j, σj , s) ≡ Strategy(j, σj).

As mentioned in Section 1, there has been much re-
cent work on developing symbolic logics of cooperation.
In (Wooldridge & Jennings 1999) the authors propose a
model of cooperative problem solving and define joint abil-
ity by simply adapting the definition of single-agent ability,

11EBel(φ, s)
.
=

∧
N

i=1
Bel(i, φ, s).



i.e. they take the existence of a joint plan that the agents
mutually believe achieves the goal as sufficient for joint abil-
ity. They address coordination in the plan formation phase
where agents negotiate to agree on a promising plan before
starting to act. Coalition logic, introduced in (Pauly 2002),
formalizes reasoning about the power of coalitions in strate-
gic settings. It has modal operators corresponding to a coali-
tion being able to enforce various outcomes. The frame-
work is propositional and also ignores the issue of coordi-
nation insidethe coalition. In a similar vein, van der Hoek
and Wooldridge propose ATEL, a variant of alternating-time
temporal logic enriched with epistemic relations in (van der
Hoek & Wooldridge 2003). ATEL-based frameworks also
ignore the issue of coordination inside a coalition. In (Jam-
roga & van der Hoek 2004), the authors acknowledge this
shortcoming and address it by enriching the framework with
extra cooperation operators. These operators nonethelessre-
quire either communication among coalition members, or a
third-party choosing a plan for the coalition.

The issue of coordination using domination-based solu-
tion concepts has been throughly explored in game the-
ory (Osborne & Rubinstein 1999). Our framework differs
from these approaches, however, in a number of ways. Fore-
most, our framework not only handles incomplete informa-
tion (Harsanyi 1967), but also it handles incompletespecifi-
cationswhere some aspects of the world or agents includ-
ing belief/disbelief are left unspecified. Since our proofs
are based on entailment, they remain valid should we add
more detail to the theory. Second, rather than consider-
ing utility functions, our focus is on goal achievability for
a team. Moreover, we consider strict uncertainty and as-
sume no probabilistic information is available. Our frame-
work supports a weaker form of belief (as inKD45 logic)
and allows for false belief. Our definition of joint abil-
ity resembles the notion of admissibility and iterated weak
dominance in game theory (Osborne & Rubinstein 1999;
Brandenburger & Keisler 2001). Our work can be related to
these by noting that every model of our theory with a KT45
logic of belief can be considered as a partial extensive form
game with incomplete information represented by a set of
infinite trees each of which is rooted at an initial situation.
We can add Nature as a player who decides which tree will
be chosen as the real world and is indifferent among all her
choices. Also, for all agents (other than Nature) we assign
utility 1 to any situation that has a situation in its past history
whereGoal is satisfied, and utility 0 to all other situations.
However, since there is neither any terminal node nor any
probabilistic information, the traditional definition of weak
dominance cannot be used and an alternative approach for
comparing strategies (as described in Section 3.1) is needed,
one that is based on the private beliefs of each agent about
the world and other agents and their beliefs.

Conclusion
In this paper, we proposed a first-order logic framework
(with some higher-order features) for reasoning about the
coordination of teams of agents based on the situation cal-
culus. We developed a formalization of joint ability that
supports reasoning on the basis of very incomplete spec-

ifications of the belief states of the team members, some-
thing that classical game theory does not allow. In contrast
to other game logics such as (Pauly 2002; van der Hoek
& Wooldridge 2003), our formalization ensures that team
members are properly coordinated, i.e. do not have incom-
patible strategies. We showed how one can obtain proofs of
joint ability and lack of joint ability for various examplesin-
volving incomplete specifications of agents’ beliefs. We also
proved several intuitive properties about our definitions.

In future work, we will work to generalize the framework
in various ways. Supporting sensing actions and simple
communication actions should be straightforwardly handled
by revising the successor state axiom for belief accessibil-
ity as in (Scherl & Levesque 2003; Shapiro, Lespérance, &
Levesque 1998). We will also examine how different ways
of comparing strategies (theGTEorder) lead to different no-
tions of joint ability, and try to identify the best. We will also
evaluate our framework on more complex game settings. Fi-
nally, we will look at how our framework could be used in
automated verification and multiagent planning.
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