
This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsense07

On Domain-Independent Heuristics for Planning with Qualitative Preferences
Jorge A. Baier and Sheila A. McIlraith

Department of Computer Science
University of Toronto

Toronto, Canada

Abstract

This paper describes a method for planning with rich qualita-
tive, temporally extended preferences (QTEPs) using looka-
head heuristics inspired by those employed in state-of-the-art
classical planners. Key to our approach is a transformation of
the planning domain into an equivalent but simplified plan-
ning domain. First, compound preference formulae are trans-
formed into simpler, equivalent preference formulae. Second,
temporally extended preferences are replaced by equivalent,
atemporal preferences. These two simplifications enable us
to propose a number of simple heuristic strategies for plan-
ning with QTEPs. We propose an algorithm that uses these
heuristics and that furthermore is provably k-optimal, i.e. it
finds all optimal plans of length no greater than a parameter k.
We compare our planner against the PPLAN planner, which
does not use lookahead heuristics. Preliminary results show
a significant improvement in performance.

Introduction
Planners typically generate plans that satisfy a specified goal
formula, but the goal formula provides no information about
how to distinguish between multiple successful plans. Pref-
erences convey additional information about desirable prop-
erties of a plan, enabling a planner to evaluate the relative
quality of the plans that it generates. Planning with tem-
porally extended preferences (TEPs), i.e., preferences that
refer to properties that can range over the entire plan execu-
tion, has been the subject of recent research, e.g., [7, 16, 5].
It was also a theme of the 2006 International Planning Com-
petition (IPC-5).

The problem of planning with TEPs was popularized by
IPC-5. Nevertheless IPC-5 focused effort on planning with
preferences specified in PDDL3 [11], a preference language
that was ultimately quantitative, requiring a planner to op-
timize a numeric objective function. In contrast to PDDL3,
there have been several proposals for preference languages
that are qualitative or ordinal, rather than quantitative (e.g.,
[5, 16, 7]). Because such languages do not have to employ
numbers, they provide a natural and compelling means for
users to specify preferences over properties of plans. Un-
fortunately, existing qualitative preference planners such as
PPLAN [5] and Son & Pontelli’s planner [16] that deal with
qualitative temporal preferences (QTEPs) do not demon-
strate performance comparable to the PDDL3-based TEP
planners. To be fair to the developers of these systems, effi-
ciency was not their objective. Both planners were proof-of-
concept systems that had not been highly optimized. Nev-
ertheless, our analysis of their behaviour has led to obser-

vations that motivate the work presented here. In partic-
ular, PPLAN, the more efficient of the two planners, ex-
ploits a best-first heuristic search technique. Nevertheless,
the heuristic it exploits does not provide guidance based on
a measurement of achievement of the preferences.

In this paper, we study the problem of planning with
QTEPs specified in a dialect of LPP, the qualitative pref-
erence language proposed by [5] and exploited by their
planner PPLAN. Our objective is to improve the effi-
ciency of QTEP planning by exploiting lookahead domain-
independent heuristic search, such as that existing in state-
of-the-art classical planners. To do so, we propose a two-
step process to transform our QTEP planning problem into a
simplified planning problem. In the first step, we transform
LPP preferences into equivalent, more uniform, primitive
preferences that enables a simple adaptation of heuristic ap-
proaches to classical planning. Next we compile temporally
extended preferences into equivalent preferences that refer
to (non-temporal) predicates of the domain

With this simplified planning problem in hand, we are
now able to exploit heuristic search. To this end, we propose
domain-independent heuristic strategies tailored to QTEP
planning, that employ a provably sound strategy for prun-
ing states from the search space. We prove that our plan-
ner finds all optimal plans of length bounded by a parameter
k. We conduct a preliminary experimental investigation in a
domain where qualitative preferences are natural. We com-
pare our planner against the PPLAN planner, which does
not use lookahead heuristics. Our results demonstrate a sig-
nificant gain in performance.

Preliminaries
In this section we review the LPP preference language and
define the problem of planning with preferences. We use the
situation calculus as the formal framework, as presented by
Reiter [15].

Planning in the Situation Calculus
A planning problem is a tuple 〈D,G〉 where D is a ba-
sic situation calculus action theory and G is a goal for-
mula, representing properties that must hold in the fi-
nal situation. In the situation calculus, planning is char-
acterized as deductive plan synthesis. Given a plan-
ning problem 〈D,G〉, the task is to determine a situa-
tion s = do(an, . . . ,do(a1,S0))))1 (or equivalently a plan

1which we abbreviate to do([a1, . . . ,an],S0), or do(~a,S0)

a1 · · ·an) such that D |= (∃s).executable(s) ∧ G(s) where

executable(s) def= (∀a,s′).do(a,s′) v s ⊃ Poss(a,s′), and
s′ v s iff s′ does not succeed s in the situation tree.

The Preference Language LPP
In this section, we describe the syntax of LPP [5] 2, a first-
order language for specifying user preferences. We provide
a brief description of LPP repeating basic definitions and
examples from [5]. The reader is directed to this paper for
further details. LPP enables the specification of preferences
over properties of state as well as temporally extended pref-
erences over multiple states. Unlike many preference lan-
guages, LPP provides a total order on preferences. It is
qualitative in nature, facilitating elicitation.

To illustrate LPP, we present the dinner example domain.
The Dinner Example: It’s dinner time and Claire is tired
and hungry. Her goal is to be at home with her hunger sated.
Claire can get food by cooking, ordering take-out food, or
by going to a restaurant. Because she is tired, she’d rather
stay home, and Italian food is her most desired meal.

To understand the preference language, consider the plan
we are trying to generate to be a situation as defined earlier.
A user specifies his or her preferences in terms of a single,
so-called General Preference Formula. This formula is an
aggregation of preferences over constituent properties of sit-
uations. The basic building block of a preference formula is
a Basic Desire Formula which describes properties of situa-
tions. In the context of planning, situations can be thought
of as partial plans.
Definition 1 (Basic Desire Formula (BDF)) A basic de-
sire formula is a sentence drawn from the smallest set B
where:
1. F ⊂ B
2. f ∈ F , then final(f) ∈ B
3. If a ∈ A, then occ(a) ∈ B
4. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1∧ϕ2, ϕ1∨ϕ2, (∃x)ϕ1,

(∀x)ϕ1,next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).
final(f) states that fluent f holds in the final situation, occ(a)
states that action a occurs in the present situation, and
next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2) are basic
linear temporal logic (LTL) constructs.

BDFs establish preferred situations. By combining BDFs
using boolean and temporal connectives, we are able to ex-
press a wide variety of properties of situations. E.g,

(∃x).(∃y).eventually(occ(orderTakeout(x,y))) (P1)
(∃x).(∃y).eventually(occ(orderRestaurant(x,y))) (P2)

P1 – P2 tell us respectively that Claire prefers to order take-
out food, or order at a restaurant, at some point in the plan.

To define preference orderings over alternative properties
of situations, we define Atomic Preference Formulae. Each
alternative being ordered comprises two components: the
property of the situation, specified by a BDF, and a value
term which stipulates the relative strength of the preference.
Definition 2 (Atomic Preference Formula (APF)) Let V
be a totally ordered, finite set with minimal element vmin and
maximal element vmax. An atomic preference formula is a
formula ϕ0[v0]� ϕ1[v1]� ...� ϕn[vn], where each ϕi is a

2The name LPP was coined after publication of [5].

BDF, each vi ∈ V , vi < v j for i < j, and v0 = vmin. When
n = 0, atomic preference formulae correspond to BDFs.

In what follows, we let V = [0,1] for parsimony (we could
have chosen a strictly qualitative set like {best < good <
indifferent < bad < worst} instead). Returning to our exam-
ple, the following APF expresses Claire’s preference over
what to eat (pizza followed by spaghetti):
eventually(occ(eat(pizza)))[0]�eventually(occ(eat(spag)))[0.4]

(P3)

To allow the user to aggregate preferences, General Pref-
erence Formulae extend LPP to conditional, conjunctive,
and disjunctive preferences.
Definition 3 (General Preference Formula (GPF)) A for-
mula Φ is a general preference formula if one of the follow-
ing holds:

• Φ is an atomic preference formula
• Φ is γ : Ψ, where γ is a BDF and Ψ is a general

preference formula [Conditional]
• Φ is one of

- Ψ0 &Ψ1 & ...&Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a general preference formula.
For example, the GPF P1 : P3 specifies a preference for

pizza over spaghetti when ordering takeout food.
Semantics Informally, the semantics of LPP is achieved
through assigning a weight to a situation s with respect to
a GPF, Φ, written ws(Φ). This weight is a composition of its
constituents. For BDFs, a situation s is assigned the value
vmin if the BDF is satisfied in s, vmax otherwise. Similarly,
given an APF, and a situation s, s is assigned the weight
of the best BDF that it satisfies within the defined APF. Fi-
nally GPF semantics follow the natural semantics of boolean
connectives. As such General Conjunction yields the max-
imum of its constituent GPF weights and General Disjunc-
tion yields the minimum of its constituent GPF weights.

The following definition shows us how to compare two
situations with respect to a GPF.
Definition 4 (Preferred Situations) A situation s1 is at
least as preferred as a situation s2 with respect to a GPF
Φ, written pre f (s1,s2,Φ) if ws1(Φ)≤ ws2(Φ).

Planning with preferences A preference-based planning
problem can be characterized by a tuple 〈D,G,Φ〉, where
Φ is a GPF, and D is a theory of action and G is a goal for-
mula. The problem of finding an optimal plan can be defined
also as a deductive task in the situation calculus.
Definition 5 (Optimal Plan, k-Optimal Plan) Let
P = 〈D,G,Φ〉 be a preference-based planning prob-
lem. Then ~a is an optimal plan (resp. k-optimal plan) for P
iff ~a is a plan (resp. a plan of length at most k) for 〈D,G〉,
and for every plan (resp. every plan of length at most k)~b
for 〈D,G〉, pre f (do(~a,S0),do(~b,S0),Φ).

Simplifying the Planning Problem
In this section we propose a means of transforming planning
problems with LPP preferences into planning problems in
which preferences are described in a simplified but equiva-
lent form. We start by motivating the need for heuristics in

planning with preferences, and then we propose two sim-
plifications to the LPP representation of preferences that
together enable the development and exploitation of new
heuristic search techniques for planning with QTEPs ex-
pressed in LPP.

The Need for Heuristics and Simplification
A common property of existing planners for QTEPs like
PPLAN and Son and Pontelli’s planner [16] is that they do
not actively guide search towards actions that satisfy pref-
erences. This tends to result in poor performance even on
problems with very simple preferences. To understand why
this happens, we focus on how PPLAN operates.

PPLAN is a best-first search forward chaining planner.
Search is guided by an admissible evaluation function that
evaluates partial plans with respect to whether they satisfy a
user-specified GPF, Φ. This function is the optimistic evalu-
ation of the preference formula with the pessimistic evalua-
tion and the plan length used as tie breakers where necessary,
in that order. A GPF is evaluated over intermediate states of
a partial plan by exploiting progression [5]. Evaluation of a
GPF with respect to a partial plan results in assignment of
a weight to that partial plan. This weight is used to guide
search towards plans with better (lower) weights.

To illustrate the limitations of this approach, and the mo-
tivation for a lookahead-style of heuristic search, consider
how PPLAN processes the following GPF Φ,
[eventually(ϕ1)∧ eventually(ϕ2)][v1]�always(ϕ3)[v2].

Here, ϕ1 might be occ(clean(kitchen)), ϕ2 might be
occ(eat(pizza)) and ϕ3 might be at(home). As its name sug-
gests, the optimistic evaluation of a component predicate in
a GPF assumes the predicate to be true, until proven false.
As such, the BDF eventually(ϕ1)∧ eventually(ϕ2) will be
true whether or not either of ϕ1 or ϕ2 have actually been sat-
isfied. eventually(ϕi) can never be falsified, since there is
always hope that it will be achieved in a subsequent state of
the plan. Thus, there is no distinction between a partial plan
in which one or both of ϕ1 or ϕ2 is true and one in which they
are both false, and as such no measure of progress towards
satisfaction of the BDF. In contrast, the BDF always(ϕ3) is
falsifiable as soon as ϕ3 is false in some state.

An APF is assigned a weight equal to the smallest
weight BDF that is optimistically satisfied. Since BDF
eventually(ϕ1) ∧ eventually(ϕ2) is always optimistically
satisfied, our example Φ is always evaluated to weight v1.

In this case and other cases the optimistic evaluation func-
tion provides poor guidance. First,the optimistic evaluation
function used in PPLAN cannot distinguish between par-
tial plans that make progress towards satisfying preferences
and those that do not. Second, the evaluation function pro-
vides no estimate of the number of actions required to satisfy
BDF eventually(ϕ1) ∧ eventually(ϕ2) nor does it have a
way of determining actions to select that will make progress
towards satisfaction of preferences.

In classical planning, heuristic approaches have proved
to be quite successful (all winners of non-optimal tracks of
recent planning competitions use heuristics to guide their
search). Unfortunately, there are several barriers to immedi-

ate application of these techniques to planning with QTEPs.
First, these techniques have been developed for single goals.
Second, preferences, as specified in LPP, can interact in
rather complex ways (consider for example a conjunction of
conditional GPFs). Characterization of these complex inter-
actions is difficult with existing heuristic search formalisms
for classical planning. Finally, classical heuristic techniques
are tailored to final-state goals. In our case, preferences are
temporal formulae.

To adapt classical heuristic techniques for the case of
QTEP planning with LPP preferences, we propose to trans-
form the QTEP planning problem into an equivalent prob-
lem that is more amenable to these techniques. First we
simplify the syntax of LPP by transforming GPFs into an
equivalent APF representation, and then we represent tem-
poral first-order preference formulae into equivalent atem-
poral formula.

Simplifying GPFs into APFs
Here we prove that it is possible to significantly simplify the
syntax of GPFs. In fact, the conditional, conjunctive, and
disjunctive GPFs can all be simplified into simple APFs.
Theorem 1 Let Ψ be an arbitrary GPF over the set of pref-
erence values V , then it is possible to construct an equivalent
APF φΨ, over V .
Proof sketch: By induction in the number of operators of
the GPF. We prove, for each type of GPF Ψ, that there exists
an equivalent APF φψ = ϕ0[v0]� ϕ1[v1]� ·· ·� TRUE[vn],
where v0 is the minimum element in V and vn is the maxi-
mum. For brevity, we omit the resulting formulae for each
case. Nevertheless, the size of the resulting formulae is lin-
ear in |Ψ| for conditional and disjunctive GPFs, however,
its size is may be exponential in the number of conjunctive
operators. �

This simplification will be key when defining heuristics
for planning with LPP preferences. We will focus on com-
puting an estimation of each BDF composing the APF. Since
there are no general conjunctions or disjunctions the heuris-
tics do not need to handle complex interactions between
preferences.

Simplifying Temporal Formulae
We use techniques presented in [3] to represent the achieve-
ment of first-order temporally extended formulae within a
classical planning domain. This results in a new augmented
planning domain in which for each temporally extended
BDF ϕ , there is a new domain predicate, Accϕ that is true
in the final state of a plan if and only if the plan satisfies the
temporally extended formula ϕ .

The compilation process first constructs a parametrized
nondeterministic finite state automata (PNFA) Aϕ for each
temporally extended preference or hard constraint expressed
as an LTL formula ϕ .3 The PNFA represents a family of
nondeterministic finite state automata. Its transitions are la-
beled by sets of first-order formulae. Its states intuitively

3The construction works for an expressive a subset of LTL, i.e.
those formulae in extended prenex normal form [3].

“monitor” the progress towards satisfying the original tem-
poral formula. A PNFA Aϕ accepts a sequence of domain
states iff such sequence satisfies ϕ .

We then represent the automata within the planning do-
main. To that end, for each automaton, we define a predicate
specifying the automaton’s current set of states. When the
automaton is parametrized, the predicate represents the cur-
rent set of automaton states for a particular tuple of objects.
Moreover, for each automaton we define an accepting pred-
icate. This predicate is true of a tuple of objects if the plan
has satisfied the temporal formula for such a tuple.

Planning for LPP with Heuristic Search
With the new compiled problem in hand, we propose several
heuristics for planning with LPP preferences using forward
search. These heuristics are inspired by those used in state-
of-the-art heuristic-search classical planners. They provide
a way of measuring progress towards the goal and the pref-
erences. The rest of this section describes these heuristics,
and a planning algorithm for planning with preferences.

Guiding the Search
Our heuristics for preferences and goals utilize the additive
heuristic proposed for classical planning by [6]. To compute
them, we use a well-known artifact for classical planning:
the relaxed planning graph [13]. We can view this graph
as composed of relaxed states. A relaxed state at depth n +
1 is generated by adding all the effects of actions that can
be performed in the relaxed state of depth n, and then by
copying all facts that appear in layer n.

Moreover, each fact f in layer i is assigned a heuristic cost
h(f , i). All facts in the first layer of the graph have cost 0. If
a fact does not appear in layer i, then h(f , i) =∞. If the fact
f is added by action a to layer n+1, then,

h(f ,n+1) = min {h(f ,n),1+ ∑
`∈Γa, f

h(`,n)},

where Γa, f is a minimal set of facts in layer n that are needed
to produce effect f from action a. On the other hand, if fact
f was copied from layer n to n+1 then h(f ,n+1) = h(f ,n).

Intuitively, any mechanism for guiding search when plan-
ning with preferences should guide the search towards
(1) satisfying the goal, and (2) generating good-quality
plans. Nevertheless, low-weight preferences may be hard
to achieve, and therefore this fact should be considered by
the heuristics. Below we describe 3 heuristic functions that
we use to build search strategies for planning with QTEPs.
Goal distance function (G) This function is a measure of
how hard it is to reach the goal. Let G be a set of goal facts,
and let N be the last layer of the expanded relaxed graph.4
The goal distance for a state s is G(s) = ∑g∈G h(g,N).
Preference distance function (P) Suppose the APF describ-
ing our preferences is ϕ0[v0] � ·· · � ϕn[vn]. We can
estimate how hard it is to achieve each of the formulae
ϕ0, . . . ,ϕn in a similar way to the processing of the goal.
Thus, P is a function returning a vector such that its i-th

4To simplify the explanation, we assume that the goal is a con-
junction of facts. Our planner can also handle the general case.

component is pi = h(Accϕi ,N), where Accϕi is the accepting
predicate of ϕi, and N is the depth of the relaxed graph. If ϕi
is not temporal, we use the heuristic cost of ϕi.

Best relaxed preference weight (B) This function is a lower-
bound on the preference weight that a successor of the cur-
rent state can achieve when completed to satisfy the goal.
Although it is similar to the optimistic weight by [5], by us-
ing the relaxed planning graph, we can often obtain a better
estimate. We compute the preference weight in each of the
relaxed states. The B function corresponds to the lowest of
these. Intuitively, by using the relaxed graph, we are some-
times able to detect some accepting predicates that can never
be made true from the current state.

Strategies for Guiding Search With the heuristic func-
tions defined above, we are ready to propose strategies to
heuristically guide search for QTEP planning. Each strategy
corresponds to a particular way the search frontier is ranked.
Below, we define 4 different strategies to guide search.

Since in planning with preferences it is mandatory to
achieve the goal, all strategies we propose here guide the
search in some way towards the goal. Before we introduce
the strategies, we define two ways of comparing the prefer-
ence distance vectors.
Definition 6 (<VALUE) Let P = (p0, . . . , pmax) and Q =
(q0, . . . ,qmax) be preference distance vectors. Then we
say that P <VALUE Q if P is lexicographically smaller than
Q. Formally, P <VALUE Q iff p0 < q0, or p0 = q0 and
(p1, . . . , pmax) <VALUE (q1, . . . ,qmax).
Intuitively P <VALUE Q means that the best-weighted BDF
preference of P has been estimated easier than Q. Ties are
resolved by looking at the next best-weighted BDF.
Definition 7 (<EASY) Let P = (p0, . . . , pmax) and Q =
(q0, . . . ,qmax) be preference distance vectors. Moreover, let
bestP be the smallest i such that pi = min j{p j}, and let
bestQ be defined analogously. Then, we say that P <EASY Q
iff pbestP < qbestQ , or pbestP = qbestQ and bestP < bestQ.

Intuitively, P <EASY Q means that either P contains a pref-
erence formula that has been estimated to be easier than all
those in Q, or the easiest preferences of both vectors have
been estimated to be equally hard but P’s easiest preference
has a better associated weight.

Now, when ranking the search frontier we say that the
state s1 is better than the state s2 (denoted by s1 ≺ s2) using
four different criteria. These criteria are shown in Table 1,
and they correspond to a prioritization of some of the func-
tions defined above. For example, under strategy goal-value
first we check whether the distance to the goal from s1 is
less than that from s2; in case of a tie we check whether s1’s
preference vector is better than s2’s with respect to <VALUE.

Our proposed strategies are based on intuitions and hands-
on experience. The “value” family of strategies are greedy
in the sense that they strive to create a highly-preferred plan
first. Although this is intuitively desirable, it can be the case
that low-weight BDFs are difficult to achieve, requiring very
long plans, and therefore a lot of search effort. With that in
mind, the “easy” family of heuristics attempt to gradually
satisfy those preferences that are estimated as easily achiev-

Strategy Check whether If tied, check whether
goal-value G1 < G2 P1 <VALUE P2
goal-easy G1 < G2 P1 <EASY P2
value-goal P1 <VALUE P2 G1 < G2
easy-goal P1 <EASY P2 G1 < G2

Table 1: Four strategies to determine whether s1 ≺ s2. G1
and G2 are the goal distances, and P1 and P2 are the prefer-
ence distance vectors of s1 and s2.

able. These strategies guide the search towards rapidly find-
ing a plan, no matter how good it is. However, finding a plan
is always good, since the algorithm is able to use its weight
as a upperbound to prune the search space for subsequent
better plans, as we see in the next section.

The Planning Algorithm
Our planning algorithm, depicted in Figure 1, performs a
best-first search in the space of states, incrementally gen-
erating plans of ever better quality. Additionally, the al-
gorithm prunes states from the search space in two cases:
(1) when the plan violates a user-defined hard constraint, or
(2) when an estimate of the lowerbound on the weight of
all its successors (computed by the function PREFWEIGHT-
BOUNDFN) is no better than the weight of the best plan
that has been found so far. In our implementation, PRE-
FWEIGHTBOUNDFN corresponds to the B function pro-
posed above. Henceforth, we refer to pruning using PRE-
FWEIGHTBOUNDFN as the pruning strategy.

Theoretical Results
We have investigated two relevant properties of the pro-
posed algorithm: whether the pruning strategy is sound, and
whether the algorithm is able to produce k-optimal plans.
We now elaborate on these notions and our results.

Soundness of Pruning Strategy We say that a pruning
strategy is sound if whenever it prunes a state s from the
search space then no successor of s has a weight that is better
than that of the best plan found so far.
Theorem 2 The best relaxed preference weight function is
a sound pruning strategy.

This property of the pruning is very important, since it
will allow the algorithm to sometimes prove that an optimal
solution has been found without exploring the entire search
space.

k-Optimality We say that a planning algorithm is k-
optimal, if it eventually returns the best-weighted plan
among all those of length bounded by k.
Theorem 3 The algorithm of Figure 1 is k-optimal.
Proof sketch: This is straightforward from Theorem 2 and
the fact that the algorithm exhausts the space of plans of
length up to k.

It is important to note here that this result does not mean
that the first plan found by HPLAN-QP is k-optimal. This is
an important difference with respect to the PPLAN planner,
where effectively the first (and only) plan returned is a k-
optimal plan.

Input : init: initial state, goal: goal formula, hardConstraints: a
formula for hard constraints, ϕ: an APF, STRATEGY: a
ranking function, k: a bound for the plan length

begin
frontier← INITFRONTIER(init)
bestWeight←∞; while frontier 6= ∅ do

current← REMOVEBEST(frontier)
f ←Progress hardConstraints over to last state of current
if f is not false then

if current is a plan and its weight is < bestWeight then
Output the current plan
if this is first plan found then

hardConstraints← hardConstraints∪
{always(PREFWEIGHTBOUNDFN < bestWeight)}

bestWeight←WEIGHT(ϕ,current)
if LENGTH (succ)< k then

succ← EXPAND(current)
COMPUTEHEURISTICS (succ)
f rontier←MERGE(succ, frontier,STRATEGY)

end
Figure 1: HPLAN-QP’s search algorithm.

Implementation and Evaluation
We implemented the proof-of-concept planner HPLAN-QP.
The planner consists of two modules. The first is a pre-
processor that reads problems in an extended PDDL3 lan-
guage, which allows the definition of APFs through an ad-
ditional construct. The second module is a modified version
of TLPLAN [1] which is able to compute the heuristic func-
tions and implements the search algorithm of Figure 1.

We performed a preliminary evaluation of the different
strategies we proposed over a dinner domain originally in-
troduced in [5]. In this domain, there is an agent that is able
to drive to restaurants and stores, cook, and eat food. In all
our experiments, the agent is initially at home and her goal
is to be sated; availability of ingredients to cook and weather
conditions vary across individual initial states. Different
problems are obtained by adding preferences about things
she would like to eat or places she would like to visit. In the
most complex problems, preferences state that she would
like to eat several types of food or visit different places.

Table 2 contains a summary of the results. It shows the
number of states visited by the planner (equivalent to the
number of times the main loop of the algorithm of Figure 1
has been executed) and the length of the final plan. We also
show the same metrics for the PPLAN planner. Problems
that contain a star (*) are those where preferences cannot be
fully satisfied, and so the most preferred plan is found.

The results show that in most cases, at least one of our
strategies outperforms PPLAN in the number of states vis-
ited, sometimes by several orders of magnitude. Also, it’s
often the case that the strategies that make the goal the first
priority expand more nodes, and sometimes generate longer
plans. A plausible explanation is that these strategies tend
to be “goal obsessive” in the sense that whenever a plan is
found, any action that violates the goal will have a low pri-
ority, even if it helps to satisfy a preference.

Finally, it is important to note that PPLAN is an optimal
planner. It uses an admissible heuristic to guarantee that it
always finds the optimal plan first. The benefit of our ap-
proach is that the heuristic is more informative, the draw-

Prob# PPLAN goal-easy goal-value easy-goal value-goal

1 7 3 3 3 3
7 29 34 20 27 8
8 42 12 12 4 4
9 55 13 13 4 4
10 57 22 22 10 9
11* 57 107 45 102 5
12 92 33 33 6 6
13 171 11617 11617 24 24
14 194 4 4 4 4
15 257 178 32 174 26
17 13787 12 12 7562 7
19* >20000 3 3 3 3
20 >20000 554 22 554 9
21 >20000 71 71 8 8
22* >20000 85 30 7 145
23* >20000 4 4 4 6
24* >20000 49 22 7 8

Table 2: Nodes expanded by PPLAN and our 4 strategies
from Table 1.

back that optimality cannot be guaranteed unless we search
the entire search space. The number of expanded nodes re-
ported in the table for HPlan-QP is the number required to
find the plan; usually HPlan-QP needs to expand more nodes
in order to prove that the plan found is optimal.

Summary and Related Work
In this paper we explored computational issues associated
with planning with QTEPs expressed in the LPP preference
language. Poor performance of existing QTEP planners pro-
vided motivation for our approach, which was to develop
domain-independent heuristic search techniques for QTEP
planners. To this end, we proposed a suite of heuristic func-
tions and associated strategies that can be used for planning
with QTEPs expressed in LPP. We also proposed a planning
algorithm that is k-optimal. We were able to employ more
informative inadmissible heuristics while still guaranteeing
optimality by developing sound pruning techniques that en-
abled us to vastly reduce the plan search space. While fo-
cused on LPP our results are amenable to a variety of QTEP
languages.

Key to our approach is the simplification of the original
qualitative preference formula: first, by simplifying it syn-
tax, and then by incorporating additional predicates in the
domain to eliminate their temporal formulae. Preliminary
experimental results suggest that our planner performs up to
orders of magnitude better than PPLAN, a planner designed
for the same language.

For obvious reasons, we did not compare our planner to
a variety of related work on planning with quantitative pref-
erences. Most notable among them are the participants of
IPC-5, which handle the PDDL3 language. YochanPS [4]
is a heuristic planner for finite-state preferences. MIPS-XXL
[9] and MIPS-BDD [8] both use Büchi automata to plan with
temporally extended preferences. SGPlan5 [14] uses a com-
pletely different approach, partitioning the planning problem
into several subproblems. Finally, HPLAN-P [2], a heuris-
tic planner that we developed, exploits the same compilation
used in this paper to simplify temporal formulae in PDDL3.

However, it cannot handle qualitative preferences.
Other planners for problems with preferences include the

following. [16] proposes a planner for QTEPs based on an-
swer set programming. This planner was not designed to be
efficient. The planning strategy described in [10] employs
the heuristic planner Metric-FF [12] to plan for prioritized
goals. A plan for a high-priority goal is found by iteratively
planning for goals with increasing priority. Prioritized goals
only refer to final states.

References
[1] F. Bacchus and F. Kabanza. Planning for temporally extended

goals. Annals of Math and AI, 22(1-2):5–27, 1998.

[2] J. A. Baier, F. Bacchus, and S. McIlraith. A heuristic
search approach to planning with temporally extended pref-
erences. In IJCAI-07, pp. 1805–1818, Hyderabad, India, Jan-
uary 2007.

[3] J. A. Baier and S. A. McIlraith. Planning with first-order
temporally extended goals using heuristic search. In AAAI-
06, pp. 788–795, Boston, MA, 2006.

[4] J. Benton, S. Kambhampati, and M. B. Do. YochanPS:
PDDL3 simple preferences and partial satisfaction planning.
In IPC-2006, pp. 54–57, Lake District, England, July 2006.

[5] M. Bienvenu, C. Fritz, and S. McIlraith. Planning with qual-
itative temporal preferences. In KR-06, pp. 134–144, Lake
District, England, 2006.

[6] B. Bonet and H. Geffner. Planning as heuristic search. AIJ,
129(1-2):5–33, 2001.

[7] J. P. Delgrande, T. Schaub, and H. Tompits. Domain-specific
preferences for causal reasoning and planning. In ICAPS-04,
pp. 63–72, Whistler, Canada, June 2004.

[8] S. Edelkamp. Optimal symbolic PDDL3 planning with
MIPS-BDD. In IPC-2006, pp. 31–33, Lake District, Eng-
land, July 2006.

[9] S. Edelkamp, S. Jabbar, and M. Naizih. Large-scale optimal
PDDL3 planning with MIPS-XXL. In IPC-2006, pp. 28–30,
Lake District, England, July 2006.

[10] R. Feldmann, G. Brewka, and S. Wenzel. Planning with prior-
itized goals. In KR-06, pp. 503–514, Lake District, England,
July 2006.

[11] A. Gerevini and D. Long. Plan constraints and preferences for
PDDL3. Tech. Report 2005-08-07, Univ. of Brescia, 2005.

[12] J. Hoffmann. The Metric-FF planning system: Translat-
ing “ignoring delete lists” to numeric state variables. JAIR,
20:291–341, 2003.

[13] J. Hoffmann and B. Nebel. The FF planning system: Fast
plan generation through heuristic search. JAIR, 14:253–302,
2001.

[14] C.-W. Hsu, B. Wah, R. Huang, and Y. Chen. Constraint par-
titioning for solving planning problems with trajectory con-
straints and goal preferences. In IJCAI-07, pp. 1924–1929,
Hyderabad, India, January 2007.

[15] R. Reiter. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press,
Cambridge, MA, 2001.

[16] T. C. Son and E. Pontelli. Planning with preferences using
logic programming. TPLP, 6(5):559–608, 2006.

