
A Framework for Commonsense Knowledge Retrieval
Preliminary Report

Phil Oertel
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801
oertel@uiuc.edu

Eyal Amir
Computer Science Department

University of Illinois at Urbana-Champaign
Urbana, IL 61801
eyal@cs.uiuc.edu

Abstract

An autonomous agent that explores and acts in a
rich world needs knowledge to act effectively. This
agent can use knowledge that is available inCom-
monsense Knowledge Bases(CSKBs), when the
agent designer cannot encode all the information
the agent might need. CSKBs include general-
purpose information about the everyday world in a
formal language, but this information is not always
correct, relevant, or useful for the agent’s purpose.
In this paper we present an approach to retriev-
ing commonsense knowledge for autonomous de-
cision making. We consider agents whose formal
language is different from that of the CSKB, and
can use multiple CSKBs of various expressivity and
coverage. We present a retrieval framework with
algorithms for mapping languages and selection of
knowledge. We report on preliminary experimen-
tal results of these algorithms for the ConceptNet
CSKB.

1 Introduction
There is growing interest in using knowledge about the world
to aid autonomous decision making, e.g.,[Bacchus and Ka-
banza, 2000; Doherty and Kvarnström, 2001]. This knowl-
edge is crafted carefully by a knowledge engineer to fit the
domain and goal. However, autonomous agents that explore
and acts in rich worlds cannot receive all their information
from the agent designer because he does not know the target
environment in design time or the environment is too com-
plex. In these cases this agent can use knowledge that is avail-
able inCommonsense Knowledge Bases(CSKBs).

Typically, CSKBs comprise of ontologies and hierarchical
concept information together with many thousands of axioms
that bring these concepts together. Examples include CYC
[Lenat, 1995], SUMO [Niles and Pease, 2001], the HPKB
project at SRI[Cohenet al., 1998], the HPKB project at Stan-
ford’s KSL [Fikes and Farquhar, 1999], ConceptNet[Singhet
al., 2002], and WordNet[Miller, 1995].

The challenges posed by decision making are not ad-
dressed by current CSKB research. Research on CSKBs has
focused so far on applications for natural language processing

and for question answering. The first typically uses the con-
cept hierarchy information that is embedded in the CSKB,
while the second uses axioms of the CSKB that are tuned
carefully for the specific topic and queries together with a
theorem prover. In contrast, autonomous exploration and de-
cision making require knowledge that is versatile and can aid
in answering questions like“what will action a do in my situ-
ation?” or “how do I get closer toX?” . The two challenges
posed by such applications are selecting knowledge that is
correct, relevant, and useful for the current task, and thenus-
ing this knowledge. We cannot expect fine tuning of axioms
or manual selection for an agent that explores an unknown
territory. Furthermore, our agent has to be able to select and
use knowledge that is not complete or accurate.

In this paper, we present an approach to retrieving com-
monsense knowledge for autonomous decision making, and
a retrieval framework with several algorithms for mapping
languages and selection of knowledge. We consider agents
whose formal language is different from that of the CSKB,
and can use multiple CSKBs of various expressivity and cov-
erage. Our algorithms translate an agent’s knowledge base
(AKB) to the language of a CSKB, even when the CSKB is
sparse. We discuss briefly how an agent may use the AKB
and knowledge from a CSKB to choose actions.

The usage of knowledge by our agent gives rise to two
types of queries that we can ask from a CSKB. These arere-
gion queries, which find relevant concepts and axioms given
a set of concepts that the agent considersactive, and path
queries, which find relevant concepts and axioms given the
current situation and a goal description. The corresponding
queries are processed using a graph that we associate with the
CSKB, and using methods from information retrieval[Salton
and Buckley, 1988] and automated reasoning. We report on
preliminary experimental results of these algorithms for the
ConceptNet CSKB.

This is work in progress, and some details are omitted with
only little experimental evaluation.

2 Knowledge and Decision Making

Our running example is that of an agent playing an adven-
ture game[Amir and Doyle, 2002]. This problem isolates the
commonsense reasoning problem from external challenges
like vision and motor control. Far from the arrows and breezy

Databases

Extraction Module
Decision Making

Module

Belief
State

Commonsense

Commonsense

World

Learning
Module

observations action decision

commonsense axioms

action choice

belief update

commonsense queries

current action model

Figure 1: This is the adventure game architecture in which
our framework operates. The current paper describes the
commonsense extraction module. Thanks to Hlubocky and
Amir for use of the diagram.

Query

AKB

Query

AKB

Query

AKB

convert to synsets

WordNet

CSKB

 convert to

CSKB language

CSKB

graph

convert to

 graph

axioms

Figure 2: A high-level perspective of the retrieval framework

pits of the Wumpus world, these adventure games are in-
tended to be abstractions of real-world scenarios. The agent
is designed to track its world in a compact belief state, use
commonsense to reason about the semantics of its knowledge,
learn the effects of actions through observation, and use its
knowledge to progress toward some goal. Importantly, the
agent is required to learn the action model, which is unknown
initially1.

2.1 Problem Setting

We assume that there is a single agent in the partially ob-
servable world, with knowledge about the current state of the
world (and its effects of actions) that is represented by a set
of logical sentences. We also assume that the agent can ob-
serve its environment using its sensors and act upon it. The

1This paper does not concern learning action models or main-
taining a compact belief state; the focus is on knowledge retrieval
only.

world conforms to the assumptions of the basic Situation Cal-
culus[McCarthy and Hayes, 1969; Reiter, 2001]: the Markov
property holds, actions have explicit preconditions and effects
and are deterministic, and there is a set of unique names ax-
ioms. Simple adventure games already have these properties,
so they are not too restrictive, and they allow us to represent
actions using a well-understood language.

The agent is given a goal that is achievable from any state
via a finite sequence of executable actions. (In many adven-
ture games, a state satisfying the goal is not specified initially
but must bediscoveredthrough exploration (e.g., by reading
a note), but we ignore this case here.) Thus, in such envi-
ronments the agent can perform some default exploratory be-
havior until a goal is reached. However, this exploration is
infeasible because it may take time that is linear (or worse)in
the number of states in our system, which is inΩ(2n) for n
propositional features in the domain.

Thus, our decision maker is faced with the choice of a ac-
tion policy A such that executingA in the current states
produces the goal stateg. Methods that address this prob-
lem to some degree include planning under partial observabil-
ity [Bertoli and Pistore, 2004] and reinforcement learning in
partially observable domains[Even-Daret al., 2004]. They
maintain a belief state and compute a plan or a policy for a
given problem domain and goal.

2.2 Using Knowledge
There are four ways in which we wish to use knowledge: (1)
control knowledge for planning and search, (2) information
about the way actions change the world (eliminate some of
the uncertainty about the transition model), (3) better guid-
ance to exploration on the way to the goal (e.g., using infor-
mation gain), and (4) better guidance to acting on the way to
the goal (using projection paths).

Control knowledge for planning (e.g.,[Bacchus and Ka-
banza, 2000; Doherty and Kvarnström, 2001]) can be repre-
sented as a restriction strategy on the choices that the agent
can make. For example, one can state that if our agent is
faced by a locked door, then it should not try to unlock the
door with a banana (this may jam the door).

Information about actions’ effects and preconditions can
help in making our planning problem more feasible, and
should allow us to reach islands in our search space. For ex-
ample, if we know that unlocking the door with the correct
key will have the effect that the door is unlocked, then we
will try this action before others, to find if the key that we
have is the right one, and possibly get into the room on the
other side of the door as a result.

Knowledge about the way our actions change (or do not
change) the world, and knowledge about the way they are
likely or unlikely to change the world is important for explo-
ration. Information gain (see[Mitchell, 1997]) is a measure
that is typically used to perform this exploration. It is par-
ticularly attractive in adventure and exploration games be-
cause there one can use the information gain measure with
hill climbing to reach the goal (the goal is achieved exactly
when we discover an action that achieves it).

Finally, a chain of plausible, high-level concept landmarks
or actions (e.g., a chain of concepts connecting a house with

a grocery store) can guide both planning and reinforcement
learning. Planning techniques can use such chains to guide
a rough forward plan search with a subsequent process that
corrects the plan where needed (e.g.,[Hoffmann and Nebel,
2001]). Reinforcement learning can use such information to
re-shape the reward structure by transferring some of the final
reward (of reaching the goal) to various positions in the state
space[Ng et al., 1999].

2.3 Representing the Agent’s Knowledge and
Interaction Model

In this paper we assume a logical representation for actions
(e.g., in the situation calculus), having met the preconditions
for doing so with the previous section’s restrictions. As men-
tioned above, the action model is unknown initially. However,
we assume that the game environment provides the agent with
a list of relevant actions.

We use the intuition that actiona(~x) is relevant if it is ex-
ecutable (with a non-nil effect) in some states′ that is reach-
able from the initial state. Such a list of relevant actions is
usually available to a human agent in an adventure game, ei-
ther through a help system or through feedback that notifies
the player of an unrecognized action. The rest of the action
model is initially hidden from the agent.

Ideally, an agent should be able to receive all observa-
tions in natural language, as humans do, but converting natu-
ral language sentences to logical ones is tantamount to a so-
lution to the general knowledge extraction problem. Thus,
we assume that observations contain only a limited natural
language component, and we associate this natural language
component with a set of logical sentences that represent the
observations of the agent. We use the text that is associated
with nonlogical symbols in our First-Order Logical language
L as semantic information that allows us to connectL with
the language of any CSKB.

3 Framework Overview
Figure 2 shows how a commonsense retrieval system aug-
ments an agent’s knowledge base with relevant commonsense
axioms. The upper and lower halves of the diagram represent
the two broad tasks being performed. The first task is to create
a mapping from symbols in the AKB to those in the CSKB.
The second task is to use a subset of the AKB (now mapped to
the language of the CSKB) as a query with which to find use-
ful axioms in the CSKB. To determine relevance as generally
as possible given the unstructured nature of some CSKBs,
relevance is only calculated based on distance in a graph rep-
resentation of the CSKB. Every CSKB has ground terms and
axioms over those terms, so a simple graph representation has
a node for each term and an edge between two nodes if and
only if there is an axiom that mentions both of those terms.
The astute reader will note that the algorithms as presented
retrieve concepts rather than axioms. These concepts are are
intended to be used along with the supplied query concepts as
endpoints of a path along which all axioms are retrieved.

3.1 Mapping Agent Language to CSKB Language
To reason with commonsense knowledge, a mapping must be
made from the symbols in the agent’s language to those in the

CSKB. The most important thing to realize when constructing
the mapping is that it won’t be exact, because no formal on-
tology exists that can represent all the information in English
words (even when these words occur in isolation). Worse, it
is not clear that such a formalization is even possible. With
that limitation in mind, we propose the baseline system seen
in Figure 3.

PROCEDURE MapSymbols(AKB,WordNetKB,CSKB)
AKB Agent’s KB (in FOL),WordNetKB WordNet KB
(Ontology and English words),CSKB Commonsense KB
(in FOL)

1. SetMapping ← ∅

2. Loop for every constant symbolsa in AKB:

(a) Search forsa in WordNet, putting the resulting
set of synsetsa in senses

(b) If senses = ∅, then setMapping ←Mapping∪
{〈sa, nil〉}. Else:
i. Setsyn← argmaxs∈sensesP (s|AKB)
ii. Setsc to be a CSKB concept (predicate, func-

tion, or constant) symbol corresponding to
syn’s WordNet ID.

iii. If sc is non-nil, then setMapping ←
Mapping ∪ {〈sa, sc〉}. Otherwise, loop until
syn = TOP :
A. Setsyn ← hypernym(syn), syn’s near-
est hypernymb in WordNet

B. If CSKB has a conceptsc corresponding
to syn’s WordNet ID, then setMapping ←
Mapping ∪ {〈sa, sc〉}, and break

3. ReturnMapping

aA synsetis a basic unit in WordNet - the set of all synonyms
of a meaning.

bA hypernymis a parent concept in the WordNet ontology.

Figure 3: Algorithm for mapping agent’s symbols to CSKB
symbols

MapSymbols maps every constant symbol in the AKB to
a matching entry in WordNet, based on a textual match only.
It performs word sense disambiguation based only on bag-
of-words co-occurrence data, which could be obtained from
a WordNet sense-tagged corpus. Then it attempts to find a
matching concept in the CSKB, requiring an existing map-
ping from CSKB symbols to WordNet synsets. If a match
cannot be found in the CSKB, the next nearest hypernym in
WordNet is checked for a match, and so on until the most
specific match available is found.

Consider the following example, a portion of a belief state
appearing in[Hlubocky and Amir, 2004]:

(AND (AT ME TREE-BRANCHES) (AT TREETRUNK
TREE-BRANCHES))

“ME” refers to the agent itself, and this statement represents
the belief that the agent is at location “TREE-BRANCHES”.
There is an object called “TREETRUNK” in the same lo-
cation. A human player would understand that the agent is

in a tree among the branches, and that there is a tree trunk
there. Assuming dashes and underscores can be parsed eas-
ily and translated to spaces, the agent has to try to translate
“TREE TRUNK” to a symbol in a CSKB. To understand why
our WordNet solution is needed and how it helps, we’ll try to
translate that symbol into Cyc symbols manually.

We look for “tree trunk” but find no matching symbol in
any publicly available version of Cyc. The next term up the
WordNet hierarchy is “stem”. This term matches a symbol in
ResearchCyc. If we were restricted to OpenCyc, we could go
up one level higher to “plant organ”, which matches a term
there. This method works particularly well for restricted ver-
sions of Cyc, in which there is a sparse knowledge base with
a full upper ontology. But it’s not clear that the technique will
still work well for CSKBs without such an ontology, such as
ConceptNet.

For symbols other than constants, there may be more di-
mensions to match than simple textual similarity. In Cyc, for
instance, functions and predicates take typed arguments, and
functions themselves have types. Types and arity represent
syntactic restrictions that must be checked before an agent
symbol can be mapped to a CSKB symbol. To map functions
and predicates using MapSymbols, we can perform unifica-
tion, recursively matching terms textually or - if the termsare
functions - through unification.

3.2 Retrieval Tasks
We want our knowledge retrieval system to work well on each
of the CSKBs, but their differences make this goal difficult
to achieve. To minimize the effects of these differences, we
create a simplified but uniform representation for CSKBs.

The retrieval system is not an algorithm for deciding which
axioms are relevant but a system for facilitating the applica-
tion of such algorithms on different types of CSKBs. Our
aim is to be able to retrieve useful information from any of
them, but their differences make that a difficult task. To mini-
mize the effects of these differences, we simplify the CSKBs,
converting them to a weighted graph. The simple procedure
is given in Figure 4. The following sections describeregion
queriesandpath queries, the two retrieval options allowed in
the framework.

Region Query
This type of search is intended to help the retriever find out
more about its current knowledge. The intent is for an agent
to select a small number of concepts from its KB, and the re-
sult should be the set of axioms most relevant to them. These
axioms are found using spreading activation, a technique de-
veloped in the cognitive science community. Spreading acti-
vation was originally developed to retrieve nodes from a se-
mantic graph in a way believed similar to the human mem-
ory’s own retrieval mechanisms. As such, it is not a well-
founded technique but rather a well-studied standard for se-
mantic information retrieval[Pirolli et al., 1996].

Conceptually, spreading activation starts with a set of
nodes with someactivation weightand proceeds to acti-
vate neighboring nodes recursively over a series of time
steps. The activation weighta(t)

i of a nodei at time t is

f(
∑

j wija
(t−1)
j), where j varies over the neighbors ofi,

PROCEDURE RetrieveFromGraph(CSKB, S, T , q)
CSKB, Commonsense KB (in FOL);S ⊆ CSKB, a rele-
vant subset of the agent’s KB, mapped toCSKB concepts;
T ⊆ CSKB, a set of concepts appearing in the goal state,
mapped toCSKB concepts;q ∈ {region, path}, the type
of query

1. SetA← ∅, the set of retrieved axioms.

2. Construct a weighted graph,G, from CSKB, with a
node for every concept and an edge between two nodes
iff the corresponding concepts are mentioned in any
axioms together. The weight on each edge corresponds
to the number of axioms it represents.

3. SetS′ ← the nodes inG corresponding toS

4. SetT ′ ← the nodes inG corresponding toT

5. if query type = region then set A ←
RegionQuery(G,S′)

6. elseA← PathQuery(G,S′, T ′)

7. ReturnA

Figure 4: Algorithm for retrieving relevant commonsense ax-
ioms

and wij is the edge weight fromj to i. f() is usually a
decay function that has the effect of decreasing activation
as distance increases from the activation sources. Activa-
tion weights are ranked after a halting condition is reached,
based either on time or nearness to some asymptotic dis-
tribution. Spreading activation is only a general procedure,
but the “leaky capacitor” model used in[Pirolli et al., 1996]
has been analyzed parametrically in[Huberman and Hogg,
1987] and can be used on our network with little modifica-
tion. RegionQuery(G,S), then, is a straightforward appli-
cation of the leaky capacitor model, parameterized for a rich,
connected network.

Path Query
This type of search is intended to find paths between two con-
cepts (or sets of concepts). They might represent two regions
of the belief state that the agent wants to connect (e.g., a key
and a locked door), or one of them might represent the goal or
part of the goal. A goal-directed search returns axioms lying
on the shortest paths between the supplied concept sets be-
cause it is assumed that the retrieving agent is trying to find
the shortest path to its goal. The algorithm is given in Figure
5.

After the shortest paths are found from the source to the
destination, each node is given a score based on the number of
those paths on which it lies. Allowing for the possibility that
there is significant variance in the length of the shortest paths,
preference is given to nodes along shorter paths. The source
and destination can be given as sets of nodes, and the sets will
be collapsed into single source and destination nodes.

Figure 6 gives the top ten results returned by the path
heuristic on ResearchCyc between the terms “MovieThe-
aterSpace” and “ActorActress”. These results are clearly not
what we want. Restricting the result set to actions doesn’t

help, because no actions even receive any score. Clearly by
ignoring the semantics of the KB we lose too much informa-
tion and get useless results. It seems likely that this heuristic
will work better in ConceptNet since it lacks an upper ontol-
ogy, but we have not yet applied the heuristic to that KB.

PROCEDURE PathQuery(G, S, T)
G, a weighted graph;S, the set of source nodes;T , the set
of destination nodes

1. Remove all edges between nodes inS.

2. Create a new node,s.

3. For each edge(p, q) wherep ∈ S, create an edge(s, q)
of equal weight and remove(p, q). if (s, q) already
exists, add to its weight the weight of(p, q).

4. Remove all nodes inS.

5. Repeat this procedure forT , to produce a nodet.

6. Assign a score of 0 to each node in the graph.

7. Find thek shortest paths betweens andt, wherek is a
parameter.

8. for each pathpi (i = 1, ..., k)

(a) for each nodenj onpi (not includings andt)

i. nj .score+ = 1
length(pi)

9. Return theα (another parameter) nodes with the high-
est scores

Figure 5: Algorithm for returning nodes on paths between
two regions

Rank Concept Returned Score (sum ofpathi

lengthi

)
1 mtVisible 263.5
2 Genls 125.3
3 Individual 94.64
4 ResearchCycConstant-

NotFullyReviewed 57.4
5 termOfUnit 57.4
6 CycSecureFORT 52
7 definingMt 37.6
8 posForms 32.2
9 LexicalWord 4.54
10 arg1Isa 4.53

Figure 6: Top ten results for path query between terms “Movi-
eTheaterSpace” and “ActorActress” in Cyc

4 Region Query with ConceptNet
We have implemented a limited, simplified version of the re-
trieval system for ConceptNet. This version approximates
spreading activation inRegionQuery with ConceptNet’s
own GetContext function. This function measures two
nodes’ relatedness as the number of paths between them,
weighted to favor shorter paths. As mentioned previously,

all axioms on the paths between query concepts and retrieved
concepts are returned.

We did not use the retrieved axioms for reasoning yet, but
we can already make a few observations about the results of
these first retrieval experiments. First, only the top few (e.g.,
5) retrieved concepts appear related enough to help an agent
select a correct next action. For example, querying the terms
“door” and “key” (manually selected and translated from an
agent KB) returns the top ten concepts found in Figure 7.
Note that the top result, “metal”, is very unlikely to be impor-
tant in unlocking a door, but the terms “unlock door”, “open
lock”, and “open door” may actually suggest the correct next
action for the agent.

We do not yet have a good method for selecting which
axioms to return based on the retrieved concepts. Figure 8
shows how many axioms are returned for the query in figure 7
according to one simple procedure. This procedure identifies
all axioms lying on paths among query concepts, among re-
trieved concepts, and between query and retrieved concepts.
As the figure shows, even if only the top result is used to
select axioms by this method, over two hundred axioms are
returned. What’s worse, our top concept, “metal”, is irrele-
vant. We would have found much more relevance in the top
five concepts, but this would have retrieved around seven hun-
dred axioms. Furthermore, the procedure defines no ranking
over axioms. The number of axioms can be reduced by an
automatic pruning of axioms that cannot be used in inference
(e.g., identifying and removing actions that are not part ofour
action model). We plan to perform such refinements when we
have a set of test cases over which we can try to reason with
the retrieved axioms. This is our current work.

1. metal

2. handle

3. unlock door

4. open lock

5. open door

6. keyboard

7. lock

8. doorway

9. room access

10. knob

Figure 7: Top ten results for region query on terms “door”
and “key” usingGetContextranking function

5 Related Work
Background knowledge is increasingly important for deci-
sion making. Work on reinforcement learning[Kaelbling et
al., 1996; Andre and Russell, 2000; Ng and Russell, 2000;
Ng et al., 1999] uses background knowledge to structure
the state space, update the reward function, and approxi-
mate the value function. Also, work on planning uses back-
ground knowledge to guide the search for a plan[Levesqueet

1400

1200

1000

800

600

400

200

0

0 1 2 3 4 5 6 7 8 9 10

Retrieved Concepts

A
x
i
o
m
s

Axioms per Concept

Total A
xioms

Figure 8: Number of axioms retrieved versus number of con-
cepts kept from the top ten

al., 1997; Bacchus and Kabanza, 2000; Doherty and Kvarn-
ström, 2001]. Finally, there has been some work on discov-
ering knowledge to aid planning , and also about using non-
monotonic reasoning to speed up reasoning[Ginsberg, 1991].
However, no work known to us has approached the problem
of retrieving the right knowledge for a specific task.

The topic of matching symbols between KBs has attracted
much attention in recent years. There have been some suc-
cesses in the case of matching database schemas that have
common underlying instances and language[Doan, 2002;
Doanet al., 2003], and some investigation was made in the
case of more general AI knowledge bases . However, work on
merging KBs and matching ontologies between KBs remains
manually driven[Noy et al., 2001].

6 Discussion
Ideally, we would like a CSKB to contain every action pre-
condition and effect relevant to our agent’s world, along with
any axioms necessary for inference. Of course, if such a com-
plete and correct KB existed in a format we knew how to rea-
son with, we would simply merge the agent’s KB with the
CSKB.

The spirit of our current approach to commonsense knowl-
edge retrieval, then, is to find ways to use what knowledge is
available to us now. Retrieving relevant and consistently cor-
rect axioms from ConceptNet might not be possible now, but
it is possible to get recommendations of which actions will be
the most interesting.

So, we take advantage of such a recommendation by pair-
ing it with an agent that can learn from failed actions and
placing it in a world in which the goal state is always reach-
able. ConceptNet appears to be the KB best suited to provid-

ing these recommendations because it contains many simple
assertions stating direct relationships between truly common-
sense concepts.

Trying to extract similar recommendations from Cyc has
been difficult because of its formal upper ontology, and the
overly simple heuristic that we took. We hope to overcome
those problems soon by using more semantics of the Cyc
KB. But, by characterizing these KBs as ways of finding
some kind of mutual information between actions, we open
up the possibility of finding that knowledge from less struc-
tured sources, like Google. If evaluations show that our rec-
ommendation heuristics help, then broadening our informa-
tion sources could be a fruitful avenue to pursue.

7 Acknowledgements
We wish to acknowledge help from Pace Reagan, Keith
Goolsbey, and others at CYCorp for help with furnishing a
graph representation of the ResearchCYC knowledge base.
We also wish to thank Push Singh and Adam Pease for help
with answers about ConceptNet and SUMO, respectively. We
also thank Deepak Ramachandran for help with working with
and installing ResearchCYC.

References
[Amir and Doyle, 2002] Eyal Amir and Patrick Doyle. Ad-

venture games: A challenge for cognitive robotics
(full version). AAAI’02 workshop on Cognitive
Robotics. Also, available at the author’s website
(http://www.cs.uiuc.edu/˜eyal/papers), 2002.

[Andre and Russell, 2000] David Andre and Stuart J. Rus-
sell. Programmable reinforcement learning agents. InPro-
ceedings of the 13th Conference on Neural Information
Processing Systems (NIPS’00), pages 1019–1025. MIT
Press, 2000.

[Bacchus and Kabanza, 2000] Fahiem Bacchus and Frodu-
ald Kabanza. Using temporal logics to express search con-
trol knowledge for planning.Artificial Intelligence, 116(1-
2):123–191, 2000.

[Bertoli and Pistore, 2004] Piergiorgio Bertoli and Marco Pi-
store. Planning with extended goals and partial observabil-
ity. In Proceedings of the 14th Int’l Conf. on Automated
Planning and Scheduling (ICAPS’04), 2004.

[Cohenet al., 1998] Paul Cohen, Robert Schrag, Eric Jones,
Adam Pease, Albert Lin, Barbara Starr, David Gunning,
and Murray Burke. The darpa high-performance knowl-
edge bases project.AI Magazine, 19(4):25–49, 1998.

[Doanet al., 2003] AnHai Doan, Pedro Domingo, and Alon
Halevi. Learning to match the schemas of databases: A
multistrategy approach.Machine Learning, 50:279–301,
2003.

[Doan, 2002] AnHai Doan.Learning to map between struc-
tured representations of data. PhD thesis, University of
Washington, Seatle, 2002.

[Doherty and Kvarnstr̈om, 2001] Patrick Doherty and Jonas
Kvarnstr̈om. Talplanner: A temporal logic based planner.
AI Magazine, 2001. Accepted for publication.

[Even-Daret al., 2004] Eyal Even-Dar, Sham M. Kakade,
and Yishay Mansour. Reinforcement learning in
POMDPs. InProceedings of the 17th Conference on Neu-
ral Information Processing Systems (NIPS’04), 2004.

[Fikes and Farquhar, 1999] Richard Fikes and Adam Far-
quhar. Large-scale repositories of highly expressive
reusable knowledge. IEEE Intelligent Systems, 14(2),
1999.

[Ginsberg, 1991] Matthew L. Ginsberg. The computational
value of nonmonotonic reasoning. In James Allen, Richard
Fikes, and Erik Sandewall, editors,Proceedings of the
2nd International Conference on Principles of Knowledge
Representation and Reasoning, pages 262–268, San Ma-
teo, CA, USA, April 1991. Morgan Kaufmann Publishers.

[Hlubocky and Amir, 2004] Brian Hlubocky and Eyal Amir.
Knowledge-gathering agents in adventure games. In
AAAI-04 Workshop on Challenges in Game AI. AAAI
Press, 2004.

[Hoffmann and Nebel, 2001] J.̈org Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search.Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Huberman and Hogg, 1987] B.A. Huberman and T. Hogg.
Phase transitions in artificial intelligence systems.Artifi-
cial Intelligences, 1987.

[Kaelblinget al., 1996] Leslie Pack Kaelbling, Michael L.
Littman, and Andrew W. Moore. Reinforcement learn-
ing: a survey.Journal of Artificial Intelligence Research,
4:237–285, 1996.

[Lenat, 1995] Douglas B. Lenat. Cyc: A large-scale invest-
ment in knowledge infrastructure.Communications of the
ACM, 38(11):33–38, 1995.

[Levesqueet al., 1997] H.J. Levesque, R. Reiter,
Y. Lesprance, F. Lin, and R. Scherl. GOLOG: A
logic programming language for dynamic domains.
Journal of Logic Programming, 31:59–84, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some Philosophical Problems from the Standpoint
of Artificial Intelligence. In B. Meltzer and D. Michie, ed-
itors, Machine Intelligence 4, pages 463–502. Edinburgh
University Press, 1969.

[Miller, 1995] George A. Miller. Wordnet: a lexical database
for english. Communications of the ACM, 38(11):39–41,
1995.

[Mitchell, 1997] Tom Mitchell. Machine Learning.
McGraw-Hill, 1997.

[Ng and Russell, 2000] Andrew Y. Ng and Stuart Russell.
Algorithms for inverse reinforcement learning. InProc.
17th International Conf. on Machine Learning, pages
663–670. Morgan Kaufmann, 2000.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart
Russell. Policy invariance under reward transformations:
theory and application to reward shaping. InProc. 16th
International Conf. on Machine Learning, pages 278–287.
Morgan Kaufmann, 1999.

[Niles and Pease, 2001] Ian Niles and Adam Pease. Towards
a standard upper ontology. InInternational conference on
Formal Ontology in Information Systems, pages 2–9. ACM
Press, 2001.

[Noy et al., 2001] Natalya F. Noy, Michael Sintek, Stefan
Decker, Monica Crubzy, Ray W. Fergerson, and Mark A.
Musen. Creating semantic web contents with protege-
2000. IEEE Intelligent Systems special issue on Semantic
Web Teconology, 16(2):60–71, 2001.

[Pirolli et al., 1996] Peter Pirolli, James Pitkow, and Ramana
Rao. Silk from a sow’s ear: Extracting usable structures
from the web. InProc. ACM Conf. Human Factors in Com-
puting Systems, CHI. ACM Press, 1996.

[Reiter, 2001] Raymod Reiter.Knowledge In Action: Logi-
cal Foundations for Describing and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Salton and Buckley, 1988] Gerard Salton and Chris Buck-
ley. On the use of spreading activation methods in auto-
matic information retrieval. InSIGIR ’88: Proceedings of
the 11th annual international ACM SIGIR conference on
Research and development in information retrieval, pages
147–160. ACM Press, 1988.

[Singhet al., 2002] Push Singh, Thomas Lin, Erik T.
Mueller, Grace Lim, Travell Perkins, and Wan Li Zhu.
Open mind common sense: Knowledge acquisition from
the general public. InProceedings of the First Interna-
tional Conference on Ontologies, Databases, and Appli-
cations of Semantics for Large Scale Information Systems,
LNCS. Springer-Verlag, 2002.

