Action Invariants and System Constraints in STRIPS

Norman Foo

University of New South Wales
NSW 2052, Australia

Abstract

In [Foo, et.al. Ok we re-visited the problem of
converting action specifications into system con-
straints by re-examining it in the very simple set-
ting of STRIPS, motivated by the simplicity of its
simplicity as an action specification language. We
showed how to extract action invariants, and then
system laws, from STRIPS specifications. This
was the consistency part of our method, and we
deferred its adequacy to a later report. This paper
provides the missing part, thus closing the circle.
Here we show that the invariants extracted by our
method can be tested by using them to complete
partial specifications that may match those which
were used as inputs to the extraction phase. Even
when the match is incomplete there is interesting
ontological information that can be inferred from
it. Fixed point theory is used to account for some
of the proposed algorithms.

Keywords: action specifications, STRIPS, constraints, in-

variants, fixed points, ontology.

1

Introduction

Pavlos Peppas
Computer Science and EngineeringBusiness AdministratiorComputing and Information Technology
University of Patras
26110 Patras, Greece
e-mail: norman@cse.unsw.edu.ate-mail: ppeppas@otenet.gr

Yan Zhang

University of Western Sydney,
NSW 2747, Australia
e-mail: yan@cit.uws.edu.au

the typical action can be paraphrased as “if the system isin a
state in which condition A holds, do action B so that it gets
to a state in which C holds”. An popular example of a highly
reactive domain is the robot soccer competition.

In this paper, we focus on the kinds of simple domains
that occur widely in practice and re-visit a topic that we had
treated in much greater generality in the d#&sio, et.al. 9¥
[Zhang and Foo 96 and which has been addressed again
very recently[Lin 04]. There are several over-lapping mo-
tives for this re-visit, but all stemming from the simplicity at-
tribute of STRIPS. First, its restricted expressiveness for sim-
ple domains enables us to highlight ontological issues with-
out distraction by technicalities. Ontology here is not about
the usual taxonomies of objects, etc., but about choices in the
modelling of “real” systems, and involve issues such as the
correctness of specifications relative to these choices, the ad-
equacy of the language chosen, and the extraction of implicit
systems information from action specifications. Second, the
concepts of system laws, and the consistency and adequacy
of the specifications are easily grasped in this framework. Fi-
nally, there is no need for the relatively heavy logical and
model-theoretic machinery that were useflzhang and Foo
96] and Lin[Lin 04] but were necessary there because they
allowed more expressive languages. In particular, both of
these approaches invoked powerful reasoning about minimal

STRIPS[Fikes and Nilsson 71is possibly the most widely changes and action attribution that were expressible only in
used method for specifying actions in dynamic domains. Ithese languages.

precedes much more sophisticated languages like the situa- T0 assist intuition, we use the well-worn blocks world do-
tion calculus[Shanahan 97 but unlike them its operational Main as a running example; other examples are adduced to
features need no logic. However, it is also amenable to &liscuss ontology.

simple logical interpretation. Moreover it is easily and ef- We begin with a brief and hopefully self-contained review
ficiently programmable in Prolog, or procedural language®f STRIPS. Then action constraints, action invariants and sys-
like Java. For a large number of applications in areas suckem constraints (laws) are defined. A case is then made for an
as planning, device specifications, and network protocols thatnderlying declarative semantics of operationally understood
do not require elaborate (as distinct from large) theories, th&TRIPS action specifications. Using this argument we pro-
simplicity of STRIPS outweighs the known limitatiofisif- pose a method for generating candidate action constraints and
schitz 86 of its expressiveness that is rectified in, say, thethen invariants from the specifications. The process is then
situation calculus. Deterministic actions are naturally repre¥eversed, using the invariants so derived to complete partial
sented in it, and rapid prototyping of action specifications foraction specifications. If the cycle does not close we suggest
testing and revising is facilitated by its simplicity. Al domains how that apparent deficiency can be exploited. Finally we
that arereactiveare particularly suited for STRIPS-like action stand back and look at how individual action invariants can
specifications because they can be described as domainshe combined to yield overall system constraints. Figure 5
which the action plans are very shallow and action ramificasummarizes the structure of the paper.

tions[Shanahan 97are completely known. In such domains Portions of this work appeared in preliminary foffoo,

et.al. 04, but there we did not close the cycle. addlist : on(X, Z), clear(Y)
deletelist : on(X,Y), clear(Z)

2 Review of STRIPS stack(X,Y)

The language STRIPB-ikes and Nilsson dlwas invented precondition : table(X), clear(X), clear(Y')

to specifyactions operationallyin the context of discrete- addlist : on(X,Y)

time state changeLifschitz [Lifschitz 86 proposed a declar- deletelist : table(X), clear(Y')

ative semantics of STRIPS, and indeed the semantic descrip- In these specifications, multiple predicate occurrences in

tions below are similar to his. The states are represented aSie components signify conjunctions, e.g., the precondition
(usually finite) set of logicaground atomseffectively a Her- for unstack(X) is that bothon(X,) 'and cl'ear(X) must

Eragdl r?odel. An a;ction ha:js tgs. effect of chan%q_ihng gg; Selhe present, and its addlist says that the atémh&(X) and
y de'te Ing];'sonse atoms "’.mt af Ing new on:ast. i gﬁd clear(Y) are to be added as effects. The presenceac
conditionsof actions consists of specifyingieletelisand an ableslike X, Y andZ allows the actions to be parametrized

addlistof atoms. Actions can be parametrized by variableqn much the same way that procedures in imperative and

iject-oriented languages use variables that have to be in-
ted. it has t Ny dit hich is oft | Stantiated at the time of call. So, while the variables in these
cute t, tl as .? sat|s_fy arecoré |£onw Ich 1S (t)h entmterevxlh.lspecifications suggest a first-order rather than a propositional
a test to see If certain ground atoms are In the state. VWhilg ;- the device ofinificationcan be used to relate the two
STRIPS can be understood procedurally, itis quite natural tg, %o \,5al manner. The way that it can be done for STRIPS
interpret the presence of an atofrin a states asA is true in ¢ qnerational— concrete actions are interpreted as follows:
S or A holds in SIn this way a propositional semantics can given a states (of ground atoms), we can execute an action

be given to STRIPS. P e O . - ;
. if (in its specification) there is somenifier o of its pre-
As an example, consider a blocks world where we adop (i) g P

¢ X ndition atoms withS, in which case delete from§ those
the convention that upper case letters stand for variables ar\%é)

one action instance. Moreover, before an action can be ex

) : nified) atoms in¢g’s deletelist, and add t§ those atoms in
lower case for constants which name particular blocks. Theyq aqgiist. This is equivalent to applying a Prolog meta-rule
number of blocks is finite. The only predicateseon (-,), (the|| signifies parallel execution) of the form
table(.) andclear(.), where, as usuahn(b, c) means the assert(addlist) || retract(deletelist) «— precondition
is on blocke, table(b) means the block is on the table, and if the atoms ofS appear as facts in the program, andlist),
clear(b) means the block has nothing onit. deletelist and precondition are lists atoms in those com-

A state of the world is (a Herbra_nd model) given by a COI'ponents of the actiom.2 If precondition fails to unify,
lection of such ground atoms. For instance, let statée: the rule (action) cannot be executed. For example, in the

on(b, c), on(c, e), table(e), clear(b), on(d, f), table(f), state S1 above, one unifier yields the actiamstack(d)
clear(d). with deleteliston(d, f), and addlistable(d), clear(f). The

We use the standard notation ti$at= o to signify thatthe regyiting stateS?2 is on(b, c), on(c,e), table(e), clear(b),
propositional formulax holds (is true) in a statg; if o hap- table(f), clear(d), table(d), clear (f).

pens to be an atom, equivalently in the setting of STRIPS,

this simply means thatt € S. Thus, for this example 3 PDL

S1 = on(b,c) and S1 | table(e) V clear(e). It is con-

ventional to assume unique names (UNA), and also to invoké is convenient to adopt the language and semanti®Dif

the closed world assumption (CWA) which is the formal ana-— propositional dynamic logitGoldblatt 8, which was in-

log of Prolog negation-as-failure. The UNA says that all con-troduced to reason about imperative programs. We will only
stants are distinct, and the CWA (in this simple encoding ofneed the simple features &tDL, extending it just enough
states) says that the negation of a ground atom holds in for our purpose here. WhilgGoldblatt 87 should be con-
state if that atom is missing from it. For instance, from thesulted for the details aP DL it suffices for us to briefly out-
UNA S1 k= b # ¢, and from the CWAS1 |= —table(b) and line its features. The syntax and semantics dP AL sen-

S1 = —on(b,e). In the presence of the CWA, all states aretence are defined exactly as in standard modal logic, except
effectively completei.e., for eacHiteral o, eitherS |= o or that there can be as many modal operators as there are “ac-

S ¥ a. tions”, where in the context of programs an action is a (se-
Here are some standard blocks world actions, to which wejuence of) elementary program statements whose execution
assign names for ease of continuing reference. can change variable bindings. For example consider the sen-
unstack(X) tenced — [A]y. The semantic relatiod = § — [A]y is
precondition : on(X,Y), clear(X) is defined in the usual Kripke manner by breaking it down to
addlist : table(X), clear(Y) meanS E dor S | [A]ly. SoifS = dandS E 6 — [4]y,
deletelist : on(X,Y) thenS = [A]y. As in Kripke semantics$' |= [A]y holds if
for every stateS’ such thatS can acces$’ via the relation
move(X, Z) corresponding to actiod, S’ | ~. It is convenient to use

precondition : on(X,Y), clear(X), clear(Z)
- 2In fact, this can be the basis of a simple Prolog program that
For simplicity we omit thén-hand() predicate realizes STRIPS succinctly.

the notationS[A]S’ to abbreviate this state transition. Thus
if S = 6thenS = § — [A]y ensures thay will hold in
all statesS’ that result from executing the actiotiin state
S, or in abbreviated form for all state$ such thatS[A]S’.

stringent, and the latter are often arrived at by examining the
preconditions and postconditions of the segment. So itis with
actions in STRIPS where any tautology is a system constraint,
an action constraint and an action invariant. Indeed so is any

The advantage oP DL for us is its brevity, which we rely contradiction. Hence, are there any guiding principles we can
on to make our definitions of constraints, invariants and lawsdopt when searching for invariants?

precise. _ _
4.1 Which Invariants?

One way to motivate the heuristics that we propose later is to
examine how an action acts on sets of states.

4 States, Constraints and Invariants

An action constrainis a formula that holds in all states that : X .
result from the action. Thus any state that arises from the -6t US define a function on sets induced by an action
action will satisfy the action constraint. In tieD L notation; ~ With precondition denoted byre(¢), as follows. Given a set

T of states, letp(T") = {5’|S | pre(¢) and S[¢]S’}. Here
Definition 1 The formulag is a constraint of the actiop if ~ we have overloaded the symbolby using it for both the
S |= [¢]p for any states. name of the action and the function it induces, but the context
In the framework of STRIPS with variables in specifica- is clear. In order to match the standard statement of a well-
tions there is a slight technical difficulty with this defini- kno_wn rgsultthatwillshedIightonthe_selecti(_)n ofinvariants,
tion. Consider the the precondition for thestack(X) ac- W€ identify reverse set containment with a lattice ordere.,
tion, viz., {on(X,Y), clear(X)}. In any concrete success- U1 € U iff Uz < U,. Under< power set of2 (the set of
ful application to a states of this action, sayunstack(b) all the states of a system) form a complete lattice with bottom
for a specific blockb, the precondition will be unified €lement?and toplelemergltthe empty getWe now observe
with atoms on(b,c) and clear(b) in S. At the con- that that the functio : 2 — 2% is monotonic in<. The
clusion of the actionon(b,c) is deleted andtable(b) is Knastgr_—Tarsk| the_orem (_see any book on lattice theory, but
added t0S. In this case all we can infer is thepecific the original paper i§Tarski 59) then says thap has a least
constraint —(on(b, ¢) A table(b)), i.e., [unstack(b)]S = fixed pointUp, and furthermore it can be computed as the
—(on(b,c) A table(b)), with no reference to other blocks limit of repeated applications af starting from the bottom
in S. So, in what sense can the constraint with variablesélément2. Figure 1 indicates one such step in the iteration.
—(on(X,Y) A table(X)) be applicable to constants other The fixed pointl; is reached when the range ofcoincides
thanb andc? One way to generalize the specific constraintWith its domain, i.e., starting from states in the &t we
to the general one is as follows. Letrget(S,table(_)) = end up with states that are exactly those/ij) no more and
{table(d) | 3S" such that S'[unstack(d)]S}. Hence, NO less. Ideally, if there is a formutathat expresses, i.e.,
target(S, table(_)) is the set of atomable(d) for some con- Uo = {S|S = o} thena'is the invariant we seek for actian
stantd which could have been the result (target) of applying©Once« is found, there are many weakeningsthat are also
action unstack(d) to some predecessor sta§é. It is not ~Invariants, the Weakestkbelng any tautology (it defif2gsin
hard to see tha$ = —(on(X,Y) A table(X)) for every uni- fact,_any set of the fo_rr@ (), the k-th iterate in the repea_lted
fication oftable(X) with atoms intarget(S, table(_)). Itis ~ @pplication of¢ leading to the least fixed poirtfy, that is
this property that suggests(on(X,Y) A table(X)) might definable by somé yields an mva’flant that is a weakening
be also an invariant of the general actiomstack(X) inthe ~ Of o We may distinguish “loose” invariants such as these
following sense: if~(on(X,Y) A table(X)) holds inS and !:[(.arat,t’a.s from the fixed points which may be informally called
unstack(X) is performed, them(on(X,Y) Atable(X)) re- ‘tight” invariants.

mains true in the resulting state. Formally Al stat
States

Definition 2 The formulax is an invariant for the actior if
S E a — [¢]a, for every states.

Corollary 1 Every action constraint is an action invariant.
initial statesl”

o () /
states /

after action @
-

This corollary follows from the definitions of action con-
straint and invariant since an action constraint is necessarily
satisfied in any resulting state. It is exploited in section 5 to
suggest candidates for invariants by producing a set of con-
straints for each action using insights related to the definition
of thetarget predicate.

Our definition of an action invariant should strike a chord
with readers familiar with imperative program development
or proving. Reasoning about segments of programs (loops
being the most common) often involve the discovery of in-
variants that are the core of the operational meaning of the
segments. Trivial invariants abound — any tautology will do .
— so the interesting invariants are those that are “tight” or

. J

Figure 1: A stage in the application of functign

The upshot of the above remarks can be made more con-
rete by the following observation.

Observation 1 If both o and g are invariants of¢ and “state”, which is an incorrect update. In fact, incorrect up-
E a — (3, thena should be preferred tg. dates can also result from co-existenceafts of an addlist
and deletelist.

We may reason similarly with the other action specifica-
tions. This leads to a postulate that captures these intuitions.

The reason for this is that the set definediig contained
in that defined by3, so one may hope that the former set is
“closer” to the fixed point of.

Hence, in looking for interesting invariants we are really Postulate 1 (Addlist-Deletelist Consistency Postulate)
looking for implicates i.e., the logically strongest formulas If state S is updated to stat&S’ via a STRIPS action with

in the lattice of invariants. addlist atom setddd = {a1, ..., a,} and deletelist atom set
Some action invariants may be general enough ®ysem Del = {d1,...,dn} then—(aj A ... A Ady A ... A dy),
constraintsorlaws These are formally defined and discussedwhere {a1, ...,a}} C Add and {d},...,d;} C Del, are

in detail in section 7; here the idea can be summarized as fokandidates for action constraints.

lows. Suppose there are a finite number of actipns. . , . . - .

with resppepctive action invariants, A Thelﬁ)nany)\ qu,; We can generalize this by lifting the constants to variables
e Ak i)) . X

also a system constraint if it is an action invariant forgall " thehob\ggus rrannerl. For brevity, call the generalized ver-

for 1 < i < k. Action constraints are therefore candidatesS'On theAdd-Del Postulate N .

for action invariants, so ultimately it is action constraints that B€Sides this intention there is an implicit assumption that

will be the candidates for system constraints. a specification iparsimonious— it does not try to delete an

Figure 2 summarizes the relationships among action corftom that is not in_ the state to be updated, nor does it try to
straints, action invariants and system invariants. add an atom that is already present. Moreover, any atom in

the deletelist is part of the precondition.

For the opportunity of clarifying the above, we thank a re-
viewer for raising a exemplary objection to the above assump-
tion using an example in which the precondition is simply the
atomtrue, and the addlist i§a, b}. Since this action can ex-
ecute in any state including the one which already has
it, one of the assumptions above is violated. This difficulty
really resides in the limited expressiveness of STRIPS in its
inability to use classical negation in its precondition, addlist
and deletelist. A way to circumvent it in this example is to
introduce atomsieg-aandneg-bto mimic the absence af
andb respectively, and to use these to drive the addlist and
)))))) deletelist accordingly, e.g., witthin the addlist ancheg-ain
Figure 2: Relationships between constraints and invariantsie deletelist only wheneg-ais in the precondition. In the fa-

miliar blocks world the atonaglear(a) was similarly used to
encode a host of classically negative literals liken(b, a),
i i -on(c,a), etc. If one did not worry about connections be-
5 Possible Constraints tween STRIPS and logic, the example here would be perfectly
The subsections below examine the components in STRIP&asonable in the constructionmiilitlistsin which multiple
specifications and show that they contain implicit informa-copies ofe andb can exist in the states. Statements likg= b
tion that can be used to extract action constraints as candare then no longer meaningful as they cannot distinguish be-
dates for action invariants, and also suggest ontological atween one or more copies éfin S. Admittedly consider-
ternatives. In these subsections, by constraint we will meaations like these place a burden of care on the designers of
action constraint. STRIPS specifications that can be cumbersome.
For reference we record the above assumptions as:

system
constrants

action invariants

action constraints

5.1 Reasoning about Addlists and Deletelists Postulate 2 (Parsimony Postulate)lf an action on stateS

The presumed intention of the addlist and the deletelist ahas atomsay,...,a, in its addlist and atomsl;,...,d,,

effects of an action is fotorrect state update in its deletelist, then the atoms;, ..., d,, are all in S but
This can be seen in, e.g., thestack(d) instantiated ac- none ofay,...,a, are in it. Moreover,{d;,...,d,} C

tion on stateS1 above. Suppose, contrary to intention, we useprecondition. Conversely, in the updated staté all of the

its addlist componentsble(d), clear(f) to add toS1 butne- atomsay,...,a, areinit, but none ofly, ..., dp,.

glect to remove its deletelist component(d, f). The result-

ing “state” 53 will have a subset of atontsble(d), clear(f), Logically, the closed world assumption equates the ab-

S . sence of an atom to its negation. Hence any of the possible
on(d, f). This is intuitively wrong as now bloci is both on constraints proposed by the Add-Del postulate is satisfied by

the table and on bloclf; moreover it says that blocK is y L X ;
clear, so adding to the confusion. A little reflection will show b.OIh.S ands”. But the action is only possible H a!so satis-
fies its precondition. Thus we have the following:

that for any action, adding atoms of an addlist but not remov-
ing atoms of a deletelist is the same as permitting both th&roposition 1 The possible constraints from the Add-Del
atoms of the addlist and deletelist to co-exist in the resulting?ostulate are action invariants.

We observe that this proposition is actually a concrete re5.2 Ontology
alization of corollary 1. A merit of the simplicity of STRIPS as an action specification
In the examples below, distinct variables should (as is th@anguage is that the simple attendant logic lends itself to revi-
convention with STRIPS specifications) be interpreted as unisions and extensions of ontological assumptions about which
fying with distinct constant names, denoting distinct objects.the designer may not have been consciously aware. The two
Applying the above to thenstack(X) action above yields subsections below explain by example some circumstances in
the following formulas. which these may arise.

—(on(X,Y) Atable(X) A clear(Y)) 5.3 Wrong Invariants

=(on(X,Y) Atable(X)) In less familiar domains the kind of judgement that we ex-
=(on(X,Y) A Clear(m . ,) ercised in the blocks world to select the correct action con-
~ The second and third formulas imply the first. The interest-czints from the possible ones suggested by the Add-Del pos-
ing question suggested by the example is this: which (subse)|ate may not be so immediate. The next example illustrates
among the three formulas are therrector truly intended ;s Consider a domain in which there are two switches
constraints? Of course in a simple and familiar setting such,q iy an electric circuit in which there is also a light. The
as the blocks world we can quickly make a judgement — thesTR|pS specification of this system uses three propositions
second and third formulas suffice, and are éseentiakor- __ ;1 52 for saying that the respective switches are turned
rect ones. The first formula is therefore redundant. This ig), andlightof f for saying that the light is off. Here is an

actually a concrete realization of observation 1 above whichyiempted specification of an action for turning on the light.
suggested preferring stronger invariants.

In section 6 we describe a method that test these judge- TurnOn .
ments (assuming that the specification correctly captures theccondition : lightof f
modelling intention). deletlist : lightof f

The potential for combinatorial explosion is revealed byaddlist : swl, sw2
considering what the Add-Del postulate suggests for the The Add-Del postulate suggests these as possible action
move(X, Z) action. It gives the following possible candi- constraints:
dates for action constraints:

—(swl Alightof f)

=(on(X,Y) Aon(X, Z)) —(sw2 A lightof f)

—(on(X,Y) A clear(Y)) =(swl A sw2 A lightof f)

=(cl ZYNon(X, Z

ﬂgiligngg A SZ%T(’Y;)) The first formula is incorrect if there is a staff& such that
—(on(X,Y) Aclear(Z) Non(X, Z)) SS | swl Alightof f. Hence we should look for a system
~(on(X.,Y) A clear(Z) A clear(Y)) in which this is so. A system in which there is such a state
~(on(X, Z) A clear(Y) A on(X.Y)) is shown in figure 3. As this system can also invalidate the
~(on(X, Z) A clear(Y) A clear(Z)) second formula, th.|s leaves only _thellonger thll’d. form_ula as
~(on(X, Z) A clear(Y) A clear(Z) A on(X, Y)) the correct constraint. An alternative is a system in which the

first and second formulas are indeed constraints, and the third
Which subset among these are the essential correct onds,therefore redundant. A system in which this is the case is
and which are redundant? One way to attempt an answer shown in figure 4. This example shows how questions about
to notice that the shorter ones (the first four) imply the longewhich among the possible formulas suggested by the Add-
ones (the last five), so if any of the the shorter ones can bBel postulate are actual action constraints can trigger off a
established to be correct, some of the longer ones will bgearch for alternativentologies This search iextra-logical
redundant by observation 1. On the other hand, for any ofor there is nothing in the implicit logic of STRIPS that can
the longer ones to be essential, it must be the case that theform the ultimate choice. However, it is interesting that it
shorter ones that imply it are incorrect. Because of the familcan neverthelessuggestvhat to look for. For many domains
iarity of this domain, we can again easily judge which onesthemodellingenterprise is tentative and iterative, for we may
are essential. The first formuta(on(X,Y) Aon(X,Z))is be guessing at the internal structure of a black box. The use
about theuniqueness of block location$he next twadefine of the preceding method is to decide which experiments to
the meaningof clear(X) as nothing is on blockX’; given run — or what questions to ask the persons who wrote the
that these formulas are satisfied in a stéitenly when suit- action specifications — in a search for possible invalidation of
able bindings exist, they translate to the equivalent constrainishort) possible constraints so that an ontological judgement
clear(X) < —=3Yon(Y,X). The fourth formula does not can be made.
convey any useful information, but (like the rest) is never- . .
theless an action invariant sineéear(Z) is true in S but 9.4 Action Relaxation
false inS’, andclear(Y) is false inS but true inS’. Due In the move(X,Z)action whose invariants were considered
to subsumption, we may ignore the remainder. As with then section 5 we observe that two of the strongest ones, viz.
unstack action, The method in section 6 may be used to pro—(on(X,Y) A on(X, Z)) andclear(X) < —3Yon(Y, X)
vide suggestions of correct invariants should intuitive onesare independentn the usual sense in logic. The actual in-
not be available. variant of themove(X,Z)action is of course &onjunction

5.5 Reasoning about Preconditions

swl sw2
Analogous to our dissection of the intended meaning of ad-

L @ lightoff dlists and deletelists, we now examine the precondition com-
ponent of an action specification. For an actig(X) con-
sider why its (non-trivial) precondition (X)) might be writ-
ten. The intention appears to be that the action a Stasis-
Figure 3: Switches in series fying 7(c) the actionp(c) can be safely executed by updating
S with the addlist and deletelist accordingly. Importantly, if
swl S does not satisfyt(c), theng(c) mustnotbe executed. This
suggests that whenevsrdoes not satisfyr(c) but (parts of)
the addlist and deletelist are nevertheless used to ugtjate
the resulting state is incorrect. This looks rather formidable
except that in fact much of its apparent complexity is already
- @ lightoff accounted for by the Add-Del postulate. Let the set of atoms
in the precondition bére. Then the possible constraints can
be expressed as:
“(=(pr Ao APE) AC)
where{p1,...,pr} C Pre andC is one of the candidate
action constraints from the Add-Del postulate.
An example of this is the precondition for th&ick(X,Y)

of the two. However, whenever an invariant comprises in-2ction. Assume that the componetar(Y') does not hold.
dependent conjuncts, it suggests that therenzoee relaxed By the constraint above this is equivalent to the existence of
actions that can be used as the bases of the action, albeit ea®@MeZ (distinct fromX) such thabn(Z,Y) holds. Then one
such action is associated with unintended ontologies. The rd0ssible constraint is:(~clear(Y) A on(X,Y)) where the
laxed action (call itmove-1(X,2) corresponding to the com- on(X,Y) is from the addlist, and this fqr_mula is equwalent
ponent invariant-(on(X,Y) A on(X, Z)) is one in which 0 =(on(Z,Y) A on(X,Y')), another familiar constraint.
the clear(X) atom is not in the ontology, i.e., with precon- ~ Since an action invariant is of the form *§ = «, then
dition on(X,Y), addliston(X, Z) and deletelisbn(X,Y). after actiong S” |= «”, the possible constraints that arise
Curiously, move-1(X)may be performed even whent@aver ~ from considering preconditions are trivially action invariants
of blocks sit on blockX, so the effect is to move the en- because the preconditienis false in each of them.
tire tower which has block at its base to the top of block
Z. Moreover, it does not worry that block may already i i
have other blocks on it. On the other hand the relaxed ac(—3 Testing the Invariants
tion (call it move-2(X,2) corresponding to the component The method described in this section is similar to a well-
clear(X) < —3Yon(Y, X) is one that permits block tobe known technique used in databases (see B.gwley, Topor
moved to blockZ when there is no block on either of them, and Wallace 9B for doing the reverse of invariant discov-
i.e., with precondition (X, Y),clear(X), clear(Z), addlist ery. However we consider the case where the invariants may
on(X, Z) and deletelison(X,Y), clear(Z). It is not wor- not suffice to recover all facets of the original specification.
ried about the possibility that a block may be in two or moreThe formal rendition of that work in our vocabulary would
blocks at the same time. These are unintended ontologies Ipe this: Start with invariants; then given the add-list of ac-
the same sense as non-standard interpretations. tions, derive appropriate preconditions and delete-lists
There is a way to think about such relaxed actions relais well-known from standard work in programming language
tive to the originally specified action from the perspective ofsemantics, there is a trade-off among these entities butitis the
the Knaster-Tarski function iterates to the least fixed pointweakest preconditions that are sought (presumably to make
From this perspective the invariant ofove-lexpresses its the scope of action application as wide as possible). Relative
least fixed point/;, and that ofmove-2expresses its least to that work our approach here is therefore a kind of reverse-
fixed pointUs,. BothU; andU, are weaker thab/y, the least ~ engineering. It treats the action specifications as primary en-
fixed point ofmove hence in the lattice ordering of section tities, hypothesizing that they express an intended, underly-
4.1 we havell; < U, andU, < U,. Further, it can be ing and implicit semantics that are action constraints, action
seen informally that the fixed poirtf; is also a fixed point invariants and system constraints. A remark made by one
of bothmove-landmove-2 but of course not their least fixed reviewer of an earlier version of this paper is helpful: both
point. This observation is consistent, and in fact suggestedction and system constraints can be viewed as static, the for-
by, a corollary of the Knaster-Tarski theorem (op.cit.) whichmer being local and the latter being global; on the other hand
says that the fixed points of a monotonic function are themaction invariants are dynamic.
selves are a complete (sub-) lattice. Hence we can describe To test the invariants proposed by the methods of section
the “decomposition” of an action into more relaxed compo-5 above we use the latter and attempt to recover the original
nents as one which searches for actions that have larger statpecification. A schematic diagram of the overall method is
sets as their “tight” invariants. shown in figure 5. The method is informally explained by

sw2

Figure 4: Switches in parallel

STRIPS action specification Definition 3 An atomy such thatS = § — [¢]6 for all states
S is ¢-persistent.

verifying invariants extracting invariants In theunstack(X) action theclear(X) atom is persistent.
Corollary 2 A ¢-persistent atom cannot be in its deletelist.

)) As in sub-section 5.5, let(¢) denote the precondition of ac-
Action Invariants tion ¢. Also, call the invariants obtained via the Add-Del
postulate the Add-Del invariants.

Figure 5: From specifications to invariants and back ~ Proposition 2 If ¢ is ¢-persistent and € w(¢) there is an
alternative actionp’ with specification the same as thatd@f

. . except thatr(¢') = 7(¢) \ {6}, and the Add-Del invariants
an example. Consider thstack(X)action that we saw ear- of ¢/ are the same as that gf
lier. Below is a partial version of it with the precondition and B he al . . dition i ker th
deletelist unspecified. The aim is to complete this precondiB€cause the alternative action precondition Is weaker than

tion and deletelist so that they match the original specificatiorj @t In the original specification it may be regarded as a sug-
from which the invariant was extracted. gestion to the designer to consider a more general action.

The remaining possibility is that this method may also

~ unstack(X) yield a deletelist that is smaller than the original. This is an
precondition :? (1) indication that the user selection of invariants is incorrect be-
addlist : table(X), clear(Y) (2) cause they admit resulting states that violate the Add-Del or
deletelist =77 (3) Parsimony postulates. It is a suggestion to re-examine the
]]] candidate list of invariants to select stronger ones.
The invariants for thenstack(Xjactions are: There is another aspect that we are currently investigating,
—(on(X,Y) A table(X)) (4) viz., the interaction of invariants from different actions, as in

system constraints below, that can be used also as inputs into

~(on(X,Y) Aclear(Y)) (5) specification completion. We expect to report on this in the
From the atomtable(X) in the addlist we know that af- near future.

ter the action, in the new stat¥ table(X) must hold, i.e.,

is true. ThiS, tpgether with the fac;t that(on(X,Y) A 7 System Constraints

table(X)) is an invariant for the action, leads to the con-) .)

clusion that inS’ the atomon(X,Y) is false, i.€., it has We now examine how action invariants can be elevated to

to be in the deletelist, which is indeed the case in the originaPyStém constraints. In preparation for this we need some

specification for theunstack(X)action. The other invariant concepts that are analogous to well-known ones in dynam-

yields the same conclusion for the deletelist, so it has onI)}Cal systems theory. By the notatiofs’ We mean that

one atom, vizpn(X,Y). From the Parsimony Postulate we apPpPlying actions to statesS' yields the states”. This nota-

may also conclude that(X, Y) is in the precondition. What 110N exten?s naturally to a sequence of actigns. ..., ¢"

then about the other atoatear(X) in the original precondi- where So¢" Sy ... ¢"S,, has the obvious meaning, and we

tion? There is nothing in our method that says anything about@y thatSy is reachable fromS, (via that action sequence).

it, and for good reason. Consider a slightly different action! he actionsy® will be from a set® = {¢1, ..., ¢n } of ac-
unstack'(X) defined by: tions, so to describe arbitrary sequences of actions on states
, using such actions we may say that the previous sequence
unstack’(X) So,51,...,8, is ad-trajectory. ThusS’ is reachable from
precondition : on(X,Y) (6) S if there is a®-trajectory that begins witly and ends with
addlist : table(X), clear(Y) (7) S Reach(S, ®) s the set of states reachable fréhvia the

. set® of actions; ifX is a set of statedzeach (X, @) is the set
deletelist : on(X,Y) (8) Uses, Reach(S, ®). Thus,Reach(_,) may(/ be v)iewed asa

It can be intuitively seen that the effectofistack’(X)is map from sets of states to sets of states, i.€,id the set of

to pick up thetower of blocks with X as its base and then all statesReach(_,®):T" —T.

place this tower on the table. Thus, the invariants for the Given an actiong let ¥(¢) denotes the states that sat-

unstack(X) action are not strong enough to exclude tis isfy the action invariants of, i.e. 3(¢) = {S|S k=

intended interpretatiomf the action. In fact we can exploit ¢ and ¢ is an invariant of ¢}.

this in the following manner. If the method of completing . : ' :

the precondition and deletelist yields a precondition (list) thatProDOSItIon 3 3(¢) is afixed point ofteach (-, {¢})

is smaller than the original specification, then there is an alProof. If S € X(¢) then by definition ofX(¢), if S’ is

ternative unintended action specification consistent with thehe result of actionp on S, S’ € 3(¢). Hence, by in-

invariants. duction, X(¢) is closed under any number of applications
We can generalize these observations as follows. Any atorof ¢, and thereforeX(¢) C Reach(X(¢),{#}). On the

d in stateS that is not in the deletelist will not change as a other hand, ifS € Reach(X(¢),{¢}), there is a sequence

result of the action. So0,51,...,5, = S such thatSy¢Sy, S1652,...,5,-10S

andS, € X(¢). By closure of£(¢) under repeated applica- 8 Conclusion

tion of ¢, 5 € %(¢), soReach(%(¢), {#}) < 2(0). A method was proposed to extract implicit constraints from
What is the largest collection of such fixed points acrossSTRIPS action specifications, and another method to test

all actions? To answer this question, let us consider two acthese constraints by attempting to re-generate action spec-

tions ¢; and ¢, and the set&(¢;) and X(¢,). Also, for ifications from them. Specification design issues were ad-

brevity we write ¢(S) to mean the staté’ that results af- dressed as a bonus of these methods. The roles and connec-

ter applying actiony to stateS. Recall that if the invariants tions between action constraints, invariants and system con-

of ¢ are also invariants for all other actions then these in-Straints were elucidated.

variants are system constraints. Sapif and ¢, were the

only actions, a guess at the generalization of proposition :References

might be the following:X(¢1) N X(¢2) is a fixed point of rjkes and Nilsson ALFikes, R. E. and Nilsson, N. J., *

Reach(-, {¢1,¢2}). There is a slight problem with this. [STRIPS: A Ne7\]/v Approach to the Application of The-

While certainly S € X(¢1) N 3(¢2) implies ¢, (5) = ¢ orem Proving to Problem Solving’Artificial Intelli-

andg,(S) | 49 for invariantsy; of ¢; andys of ¢, it may ence 2. 1971, 189-208

not be the case that (S) |= 12 or ¢2(S) |= 1. If we want g ’ ' '

1 andys, to be system invariants, what we really need is forlF00, et.al. 9 Foo, N., Nayak, A., Pagnucco, M., Peppas,

each of them to be invariants also for the other action. Inef- P and Zhang, Y., “Action Localness, Genericity and
fect we need to have; A v, be an action invariant for both Invariants in STRIPS”, Proceedings of the Fifteenth In-
actions. This motivates the generalization below. ternational Joint Conference on Atrtificial Intelligence,

Let X(®) denote the states that satisfy the action in- NCAI'97, pp. 549-554, Nagoya, August 1997, Morgan
variants of every¢ in @, ie. XN(®) = {S|S E Kaufmann.

Y, v is an invariant of ¢, and ¢ € ®}. The following [Foo, et.al. 0% Foo, N., Peppas, P., and Zhang, Y., “Con-
proposition has a proof which is a generalization of that of straints from STRIPS — Preliminary Report”, Proceed-
proposition 3. ings of the 17th Australian Joint Conference on Ar-

Proposition 4 () is a fixed point ofReach(_,). tificial Intelligence, AI'04, Eds. G. Webb and X. Yu,

As an example, the action constraints in the blocks world Sgr”ggg; LNAI no. 3339, pp 670-680., Caims, Decem-
domain above are also system constraints. '

We conclude with some observations about anomaloufGoldblatt 87 Goldblatt, R.,Logics of Time and Computa-
components of states in the blocks world that exemplify sim- tion, Lecture Notes 7, CSLI Publications, 1987.

ilar situations in other domains. lacal anomalyis a part of [} awley, Topor and Wallace 93Lawley, M., Topor, R. and
a state that ViOlates SyStem COhStraintS. In the STRIPS con- Wa”ace’ M_, “Using Weakest Preconditions to S|mp||fy

vention of ground atoms representing state, this is simply & |ntegrity Constraint Checking”, Proceedings of the Aus-
collection of atoms (subset of the state) that do not satisfy a tralian Database Conference, 1993.

ts)))llsstzg?nc; Pﬁ;ﬁgg&?’:ﬁgﬁgﬁggﬂ Cgﬁ?;;:gﬁtﬁ]%sg rvations belo[’l\iifsghitz 84 Lifschitz, V., On the Semantics of STRIPS”,
Consider a state that has an aton(b, b). Ontologically in Reasoning about Actions and Plaesl. M. Georgeff
this is nonsense, but nothing in the object-level STRIPS ex- and A. Lansky, Morgan Kaufmann Publishers, 1986, 1-
cludes it. It formally fails the precondition for all actions
(block b is neverclear!) that either tries to delete or move [Lin 04] Lin, F., “Discovering State Invariants”, Proceed-
it, or to stack on it. So, if we begin with a state that has this ings of the Ninth International Conference on Principles
we are stuck with it forever. But if we start with “normal” of Knowledge Representation and Reasoning, KR’'04,
states we can never reach one that has such a local anomaly. 536-544, Whistler, 2004.

What some people may find disturbing is this: unless we Wri_tE{Shanahan d7Shanahan, MSolving the Frame Problem: A
a constraint that precludes such atoms, none of the action \15thematical Investigation of the Common Sense Law
(and therefore, systems) constraints can exclude states from ¢ Inertia, MIT Press, 1997.

containing anomalous atoms. However, we may console OUT)
selves with two facts. If we begin with non-anomalous statesl Tarski 53 Tarski, A., *A lattice-theoretical theorem and its

then all trajectories will remain non-anomalous. And, if we applications”, Pacific Journal of Mathematics, vol. 5

had such anomalous atoms, in a sense they willrbkevant (1955), pp 285-309.

as they can never participate in any action. [Zhang and Foo 96Zhang, Y. and Foo, N., “Deriving In-
Now consider another kind of local anomaly for which variants and Constraints from Action Theories” , Fun-

there is provably no first-order constraint that excludes it. damenta Informaticea, vol. 30, 23-41, 1996.

This example suffices to highlight the problem: let there be

a chain of atomsmn(ay,as),on(az,as),...,on(ag_1,a1).

This is just an elaboration of the pervious one, but to exclude
it requires a formula for transitive closure — none exists if the
chain length is not known. But the same consoling remarks
apply to such chains.

