
Action Invariants and System Constraints in STRIPS

Norman Foo
Computer Science and Engineering

University of New South Wales
NSW 2052, Australia

e-mail: norman@cse.unsw.edu.au

Pavlos Peppas
Business Administration

University of Patras
26110 Patras, Greece

e-mail: ppeppas@otenet.gr

Yan Zhang
Computing and Information Technology

University of Western Sydney,
NSW 2747, Australia

e-mail: yan@cit.uws.edu.au

Abstract

In [Foo, et.al. 04] we re-visited the problem of
converting action specifications into system con-
straints by re-examining it in the very simple set-
ting of STRIPS, motivated by the simplicity of its
simplicity as an action specification language. We
showed how to extract action invariants, and then
system laws, from STRIPS specifications. This
was the consistency part of our method, and we
deferred its adequacy to a later report. This paper
provides the missing part, thus closing the circle.
Here we show that the invariants extracted by our
method can be tested by using them to complete
partial specifications that may match those which
were used as inputs to the extraction phase. Even
when the match is incomplete there is interesting
ontological information that can be inferred from
it. Fixed point theory is used to account for some
of the proposed algorithms.

Keywords: action specifications, STRIPS, constraints, in-
variants, fixed points, ontology.

1 Introduction
STRIPS[Fikes and Nilsson 71] is possibly the most widely
used method for specifying actions in dynamic domains. It
precedes much more sophisticated languages like the situa-
tion calculus[Shanahan 97], but unlike them its operational
features need no logic. However, it is also amenable to a
simple logical interpretation. Moreover it is easily and ef-
ficiently programmable in Prolog, or procedural languages
like Java. For a large number of applications in areas such
as planning, device specifications, and network protocols that
do not require elaborate (as distinct from large) theories, the
simplicity of STRIPS outweighs the known limitations[Lif-
schitz 86] of its expressiveness that is rectified in, say, the
situation calculus. Deterministic actions are naturally repre-
sented in it, and rapid prototyping of action specifications for
testing and revising is facilitated by its simplicity. AI domains
that arereactiveare particularly suited for STRIPS-like action
specifications because they can be described as domains in
which the action plans are very shallow and action ramifica-
tions[Shanahan 97] are completely known. In such domains

the typical action can be paraphrased as “if the system is in a
state in which condition A holds, do action B so that it gets
to a state in which C holds”. An popular example of a highly
reactive domain is the robot soccer competition.

In this paper, we focus on the kinds of simple domains
that occur widely in practice and re-visit a topic that we had
treated in much greater generality in the past[Foo, et.al. 97]
[Zhang and Foo 96], and which has been addressed again
very recently[Lin 04]. There are several over-lapping mo-
tives for this re-visit, but all stemming from the simplicity at-
tribute of STRIPS. First, its restricted expressiveness for sim-
ple domains enables us to highlight ontological issues with-
out distraction by technicalities. Ontology here is not about
the usual taxonomies of objects, etc., but about choices in the
modelling of “real” systems, and involve issues such as the
correctness of specifications relative to these choices, the ad-
equacy of the language chosen, and the extraction of implicit
systems information from action specifications. Second, the
concepts of system laws, and the consistency and adequacy
of the specifications are easily grasped in this framework. Fi-
nally, there is no need for the relatively heavy logical and
model-theoretic machinery that were used in[Zhang and Foo
96] and Lin [Lin 04] but were necessary there because they
allowed more expressive languages. In particular, both of
these approaches invoked powerful reasoning about minimal
changes and action attribution that were expressible only in
these languages.

To assist intuition, we use the well-worn blocks world do-
main as a running example; other examples are adduced to
discuss ontology.

We begin with a brief and hopefully self-contained review
of STRIPS. Then action constraints, action invariants and sys-
tem constraints (laws) are defined. A case is then made for an
underlying declarative semantics of operationally understood
STRIPS action specifications. Using this argument we pro-
pose a method for generating candidate action constraints and
then invariants from the specifications. The process is then
reversed, using the invariants so derived to complete partial
action specifications. If the cycle does not close we suggest
how that apparent deficiency can be exploited. Finally we
stand back and look at how individual action invariants can
be combined to yield overall system constraints. Figure 5
summarizes the structure of the paper.

Portions of this work appeared in preliminary form[Foo,

et.al. 04], but there we did not close the cycle.

2 Review of STRIPS
The language STRIPS[Fikes and Nilsson 71] was invented
to specifyactions operationallyin the context of discrete-
timestate change. Lifschitz [Lifschitz 86] proposed a declar-
ative semantics of STRIPS, and indeed the semantic descrip-
tions below are similar to his. The states are represented as a
(usually finite) set of logicalground atoms, effectively a Her-
brand model. An action has the effect of changing this set,
by deleting some atoms and adding new ones. Thus thepost-
conditionsof actions consists of specifying adeletelistand an
addlist of atoms. Actions can be parametrized by variables
that are instantiated or bound to particular constants for any
one action instance. Moreover, before an action can be exe-
cuted, it has to satisfy apreconditionwhich is often merely
a test to see if certain ground atoms are in the state. While
STRIPS can be understood procedurally, it is quite natural to
interpret the presence of an atomA in a stateS asA is true in
S, or A holds in S. In this way a propositional semantics can
be given to STRIPS.

As an example, consider a blocks world where we adopt
the convention that upper case letters stand for variables and
lower case for constants which name particular blocks. The
number of blocks is finite. The only predicates1 areon(,),
table() andclear(), where, as usual,on(b, c) means theb
is on blockc, table(b) means the blockb is on the table, and
clear(b) means the blockb has nothing on it.

A state of the world is (a Herbrand model) given by a col-
lection of such ground atoms. For instance, let stateS1 be:
on(b, c), on(c, e), table(e), clear(b), on(d, f), table(f),

clear(d).
We use the standard notation thatS |= α to signify that the

propositional formulaα holds (is true) in a stateS; if α hap-
pens to be an atom, equivalently in the setting of STRIPS,
this simply means thatα ∈ S. Thus, for this example
S1 |= on(b, c) andS1 |= table(e) ∨ clear(e). It is con-
ventional to assume unique names (UNA), and also to invoke
the closed world assumption (CWA) which is the formal ana-
log of Prolog negation-as-failure. The UNA says that all con-
stants are distinct, and the CWA (in this simple encoding of
states) says that the negation of a ground atom holds in a
state if that atom is missing from it. For instance, from the
UNA S1 |= b 6= c, and from the CWAS1 |= ¬table(b) and
S1 |= ¬on(b, e). In the presence of the CWA, all states are
effectivelycomplete, i.e., for eachliteral α, eitherS |= α or
S 6|= α.

Here are some standard blocks world actions, to which we
assign names for ease of continuing reference.
unstack(X)

precondition : on(X,Y), clear(X)
addlist : table(X), clear(Y)
deletelist : on(X,Y)

move(X,Z)
precondition : on(X,Y), clear(X), clear(Z)

1For simplicity we omit thein-hand() predicate

addlist : on(X,Z), clear(Y)
deletelist : on(X,Y), clear(Z)

stack(X,Y)
precondition : table(X), clear(X), clear(Y)
addlist : on(X,Y)
deletelist : table(X), clear(Y)

In these specifications, multiple predicate occurrences in
the components signify conjunctions, e.g., the precondition
for unstack(X) is that bothon(X,Y) andclear(X) must
be present, and its addlist says that the atomstable(X) and
clear(Y) are to be added as effects. The presence ofvari-
ableslike X, Y andZ allows the actions to be parametrized
in much the same way that procedures in imperative and
object-oriented languages use variables that have to be in-
stantiated at the time of call. So, while the variables in these
specifications suggest a first-order rather than a propositional
logic, the device ofunificationcan be used to relate the two
in the usual manner. The way that it can be done for STRIPS
is operational— concrete actions are interpreted as follows:
given a stateS (of ground atoms), we can execute an action
φ if (in its specification) there is someunifier σ of its pre-
condition atoms withS, in which case delete fromS those
(unified) atoms in iφ’s deletelist, and add toS those atoms in
φ’s addlist. This is equivalent to applying a Prolog meta-rule
(the|| signifies parallel execution) of the form
assert(addlist) || retract(deletelist)← precondition

if the atoms ofS appear as facts in the program, andaddlist),
deletelist and precondition are lists atoms in those com-
ponents of the actionφ.2 If precondition fails to unify,
the rule (action) cannot be executed. For example, in the
stateS1 above, one unifier yields the actionunstack(d)
with deleteliston(d, f), and addlisttable(d), clear(f). The
resulting stateS2 is on(b, c), on(c, e), table(e), clear(b),
table(f), clear(d), table(d), clear(f).

3 PDL
It is convenient to adopt the language and semantics ofPDL
— propositional dynamic logic[Goldblatt 87], which was in-
troduced to reason about imperative programs. We will only
need the simple features ofPDL, extending it just enough
for our purpose here. While[Goldblatt 87] should be con-
sulted for the details ofPDL it suffices for us to briefly out-
line its features. The syntax and semantics of aPDL sen-
tence are defined exactly as in standard modal logic, except
that there can be as many modal operators as there are “ac-
tions”, where in the context of programs an action is a (se-
quence of) elementary program statements whose execution
can change variable bindings. For example consider the sen-
tenceδ → [A]γ. The semantic relationS |= δ → [A]γ is
is defined in the usual Kripke manner by breaking it down to
meanS 2 δ or S |= [A]γ. So if S |= δ andS |= δ → [A]γ,
thenS |= [A]γ. As in Kripke semanticsS |= [A]γ holds if
for every stateS′ such thatS can accessS′ via the relation
corresponding to actionA, S′ |= γ. It is convenient to use

2In fact, this can be the basis of a simple Prolog program that
realizes STRIPS succinctly.

the notationS[A]S′ to abbreviate this state transition. Thus
if S |= δ thenS |= δ → [A]γ ensures thatγ will hold in
all statesS′ that result from executing the actionA in state
S, or in abbreviated form for all statesS′ such thatS[A]S′.
The advantage ofPDL for us is its brevity, which we rely
on to make our definitions of constraints, invariants and laws
precise.

4 States, Constraints and Invariants
An action constraintis a formula that holds in all states that
result from the action. Thus any state that arises from the
action will satisfy the action constraint. In thePDL notation:

Definition 1 The formulaβ is a constraint of the actionφ if
S |= [φ]β for any stateS.

In the framework of STRIPS with variables in specifica-
tions there is a slight technical difficulty with this defini-
tion. Consider the the precondition for theunstack(X) ac-
tion, viz., {on(X,Y), clear(X)}. In any concrete success-
ful application to a stateS of this action, sayunstack(b)
for a specific blockb, the precondition will be unified
with atoms on(b, c) and clear(b) in S. At the con-
clusion of the action,on(b, c) is deleted andtable(b) is
added toS. In this case all we can infer is thespecific
constraint¬(on(b, c) ∧ table(b)), i.e., [unstack(b)]S |=
¬(on(b, c) ∧ table(b)), with no reference to other blocks
in S. So, in what sense can the constraint with variables,
¬(on(X,Y) ∧ table(X)) be applicable to constants other
thanb andc? One way to generalize the specific constraint
to the general one is as follows. Lettarget(S, table()) =
{table(d) | ∃S′ such that S′[unstack(d)]S}. Hence,
target(S, table()) is the set of atomstable(d) for some con-
stantd which could have been the result (target) of applying
action unstack(d) to some predecessor stateS′. It is not
hard to see thatS |= ¬(on(X,Y) ∧ table(X)) for every uni-
fication of table(X) with atoms intarget(S, table()). It is
this property that suggests¬(on(X,Y) ∧ table(X)) might
be also an invariant of the general actionunstack(X) in the
following sense: if¬(on(X,Y) ∧ table(X)) holds inS and
unstack(X) is performed, then¬(on(X,Y)∧ table(X)) re-
mains true in the resulting state. Formally

Definition 2 The formulaα is an invariant for the actionφ if
S |= α→ [φ]α, for every stateS.

Corollary 1 Every action constraint is an action invariant.

This corollary follows from the definitions of action con-
straint and invariant since an action constraint is necessarily
satisfied in any resulting state. It is exploited in section 5 to
suggest candidates for invariants by producing a set of con-
straints for each action using insights related to the definition
of thetarget predicate.

Our definition of an action invariant should strike a chord
with readers familiar with imperative program development
or proving. Reasoning about segments of programs (loops
being the most common) often involve the discovery of in-
variants that are the core of the operational meaning of the
segments. Trivial invariants abound — any tautology will do
— so the interesting invariants are those that are “tight” or

stringent, and the latter are often arrived at by examining the
preconditions and postconditions of the segment. So it is with
actions in STRIPS where any tautology is a system constraint,
an action constraint and an action invariant. Indeed so is any
contradiction. Hence, are there any guiding principles we can
adopt when searching for invariants?

4.1 Which Invariants?
One way to motivate the heuristics that we propose later is to
examine how an actionφ acts on sets of states.

Let us define a function on sets induced by an actionφ,
with precondition denoted bypre(φ), as follows. Given a set
Γ of states, letφ(Γ) = {S′|S |= pre(φ) and S[φ]S′}. Here
we have overloaded the symbolφ by using it for both the
name of the action and the function it induces, but the context
is clear. In order to match the standard statement of a well-
known result that will shed light on the selection of invariants,
we identify reverse set containment with a lattice order≤, i.e.,
U1 ⊆ U2 iff U2 ≤ U1. Under≤ power set ofΩ (the set of
all the states of a system) form a complete lattice with bottom
elementΩ and top element the empty set∅. We now observe
that that the functionφ : 2Ω → 2Ω is monotonic in≤. The
Knaster-Tarski theorem (see any book on lattice theory, but
the original paper is[Tarski 55]) then says thatφ has a least
fixed pointU0, and furthermore it can be computed as the
limit of repeated applications ofφ starting from the bottom
elementΩ. Figure 1 indicates one such step in the iteration.
The fixed pointU0 is reached when the range ofφ coincides
with its domain, i.e., starting from states in the setU0 we
end up with states that are exactly those inU0, no more and
no less. Ideally, if there is a formulaα that expressesU0, i.e.,
U0 = {S|S |= α} thenα is the invariant we seek for actionφ.
Onceα is found, there are many weakenings ofα that are also
invariants, the weakest being any tautology (it definesΩ). In
fact, any set of the formφk(Ω), the k-th iterate in the repeated
application ofφ leading to the least fixed pointU0, that is
definable by someδ yields an invariant that is a weakening
of α. We may distinguish “loose” invariants such as these
iterates from the fixed points which may be informally called
“tight” invariants.

Γ

φ

(Γ)φ

All states

states

initial states

after action

Figure 1: A stage in the application of functionφ

The upshot of the above remarks can be made more con-
crete by the following observation.

Observation 1 If both α and β are invariants ofφ and
|= α→ β, thenα should be preferred toβ.

The reason for this is that the set defined byα is contained
in that defined byβ, so one may hope that the former set is
“closer” to the fixed point ofφ.

Hence, in looking for interesting invariants we are really
looking for implicates, i.e., the logically strongest formulas
in the lattice of invariants.

Some action invariants may be general enough to besystem
constraintsor laws. These are formally defined and discussed
in detail in section 7; here the idea can be summarized as fol-
lows. Suppose there are a finite number of actionsφ1, . . . , φk

with respective action invariantsλ1, . . . , λk. Then anyλi is
also a system constraint if it is an action invariant for allφi

for 1 ≤ i ≤ k. Action constraints are therefore candidates
for action invariants, so ultimately it is action constraints that
will be the candidates for system constraints.

Figure 2 summarizes the relationships among action con-
straints, action invariants and system invariants.

action constraints

action invariants

constrants
system

Figure 2: Relationships between constraints and invariants

5 Possible Constraints

The subsections below examine the components in STRIPS
specifications and show that they contain implicit informa-
tion that can be used to extract action constraints as candi-
dates for action invariants, and also suggest ontological al-
ternatives. In these subsections, by constraint we will mean
action constraint.

5.1 Reasoning about Addlists and Deletelists

The presumed intention of the addlist and the deletelist as
effects of an action is forcorrect state update.

This can be seen in, e.g., theunstack(d) instantiated ac-
tion on stateS1 above. Suppose, contrary to intention, we use
its addlist componentstable(d), clear(f) to add toS1 but ne-
glect to remove its deletelist componenton(d, f). The result-
ing “state”S3 will have a subset of atomstable(d), clear(f),
on(d, f). This is intuitively wrong as now blockd is both on
the table and on blockf ; moreover it says that blockf is
clear, so adding to the confusion. A little reflection will show
that for any action, adding atoms of an addlist but not remov-
ing atoms of a deletelist is the same as permitting both the
atoms of the addlist and deletelist to co-exist in the resulting

“state”, which is an incorrect update. In fact, incorrect up-
dates can also result from co-existence ofpartsof an addlist
and deletelist.

We may reason similarly with the other action specifica-
tions. This leads to a postulate that captures these intuitions.

Postulate 1 (Addlist-Deletelist Consistency Postulate)
If stateS is updated to stateS′ via a STRIPS action with
addlist atom setAdd = {a1, . . . , an} and deletelist atom set
Del = {d1, . . . , dm} then¬(a′1 ∧ . . . ∧ a′j ∧ d′1 ∧ . . . ∧ d′k),
where{a′1, . . . , a′j} ⊆ Add and {d′1, . . . , d′k} ⊆ Del, are
candidates for action constraints.

We can generalize this by lifting the constants to variables
in the obvious manner. For brevity, call the generalized ver-
sion theAdd-Del Postulate.

Besides this intention there is an implicit assumption that
a specification isparsimonious— it does not try to delete an
atom that is not in the state to be updated, nor does it try to
add an atom that is already present. Moreover, any atom in
the deletelist is part of the precondition.

For the opportunity of clarifying the above, we thank a re-
viewer for raising a exemplary objection to the above assump-
tion using an example in which the precondition is simply the
atomtrue, and the addlist is{a, b}. Since this action can ex-
ecute in any state including the one which already hasa in
it, one of the assumptions above is violated. This difficulty
really resides in the limited expressiveness of STRIPS in its
inability to use classical negation in its precondition, addlist
and deletelist. A way to circumvent it in this example is to
introduce atomsneg-aandneg-bto mimic the absence ofa
andb respectively, and to use these to drive the addlist and
deletelist accordingly, e.g., witha in the addlist andneg-ain
the deletelist only whenneg-ais in the precondition. In the fa-
miliar blocks world the atomclear(a) was similarly used to
encode a host of classically negative literals like¬on(b, a),
¬on(c, a), etc. If one did not worry about connections be-
tween STRIPS and logic, the example here would be perfectly
reasonable in the construction ofmulitlists in which multiple
copies ofa andb can exist in the states. Statements likeS |= b
are then no longer meaningful as they cannot distinguish be-
tween one or more copies ofb in S. Admittedly consider-
ations like these place a burden of care on the designers of
STRIPS specifications that can be cumbersome.

For reference we record the above assumptions as:

Postulate 2 (Parsimony Postulate)If an action on stateS
has atomsa1, . . . , an in its addlist and atomsd1, . . . , dm

in its deletelist, then the atomsd1, . . . , dm are all in S but
none ofa1, . . . , an are in it. Moreover,{d1, . . . , dm} ⊆
precondition. Conversely, in the updated stateS′ all of the
atomsa1, . . . , an are in it, but none ofd1, . . . , dm.

Logically, the closed world assumption equates the ab-
sence of an atom to its negation. Hence any of the possible
constraints proposed by the Add-Del postulate is satisfied by
bothS andS′. But the action is only possible ifS also satis-
fies its precondition. Thus we have the following:

Proposition 1 The possible constraints from the Add-Del
Postulate are action invariants.

We observe that this proposition is actually a concrete re-
alization of corollary 1.

In the examples below, distinct variables should (as is the
convention with STRIPS specifications) be interpreted as uni-
fying with distinct constant names, denoting distinct objects.

Applying the above to theunstack(X) action above yields
the following formulas.

¬(on(X,Y) ∧ table(X) ∧ clear(Y))
¬(on(X,Y) ∧ table(X))
¬(on(X,Y) ∧ clear(Y))

The second and third formulas imply the first. The interest-
ing question suggested by the example is this: which (subset)
among the three formulas are thecorrect or truly intended
constraints? Of course in a simple and familiar setting such
as the blocks world we can quickly make a judgement — the
second and third formulas suffice, and are theessentialcor-
rect ones. The first formula is therefore redundant. This is
actually a concrete realization of observation 1 above which
suggested preferring stronger invariants.

In section 6 we describe a method that test these judge-
ments (assuming that the specification correctly captures the
modelling intention).

The potential for combinatorial explosion is revealed by
considering what the Add-Del postulate suggests for the
move(X,Z) action. It gives the following possible candi-
dates for action constraints:

¬(on(X,Y) ∧ on(X,Z))
¬(on(X,Y) ∧ clear(Y))
¬(clear(Z) ∧ on(X,Z))
¬(clear(Z) ∧ clear(Y))
¬(on(X,Y) ∧ clear(Z) ∧ on(X,Z))
¬(on(X,Y) ∧ clear(Z) ∧ clear(Y))
¬(on(X,Z) ∧ clear(Y) ∧ on(X,Y))
¬(on(X,Z) ∧ clear(Y) ∧ clear(Z))
¬(on(X,Z) ∧ clear(Y) ∧ clear(Z) ∧ on(X,Y))

Which subset among these are the essential correct ones,
and which are redundant? One way to attempt an answer is
to notice that the shorter ones (the first four) imply the longer
ones (the last five), so if any of the the shorter ones can be
established to be correct, some of the longer ones will be
redundant by observation 1. On the other hand, for any of
the longer ones to be essential, it must be the case that the
shorter ones that imply it are incorrect. Because of the famil-
iarity of this domain, we can again easily judge which ones
are essential. The first formula¬(on(X,Y) ∧ on(X,Z)) is
about theuniqueness of block locations. The next twodefine
the meaningof clear(X) as nothing is on blockX; given
that these formulas are satisfied in a stateS only when suit-
able bindings exist, they translate to the equivalent constraint
clear(X) ↔ ¬∃Y on(Y,X). The fourth formula does not
convey any useful information, but (like the rest) is never-
theless an action invariant sinceclear(Z) is true inS but
false inS′, andclear(Y) is false inS but true inS′. Due
to subsumption, we may ignore the remainder. As with the
unstack action, The method in section 6 may be used to pro-
vide suggestions of correct invariants should intuitive ones
not be available.

5.2 Ontology
A merit of the simplicity of STRIPS as an action specification
language is that the simple attendant logic lends itself to revi-
sions and extensions of ontological assumptions about which
the designer may not have been consciously aware. The two
subsections below explain by example some circumstances in
which these may arise.

5.3 Wrong Invariants
In less familiar domains the kind of judgement that we ex-
ercised in the blocks world to select the correct action con-
straints from the possible ones suggested by the Add-Del pos-
tulate may not be so immediate. The next example illustrates
this. Consider a domain in which there are two switches
and in an electric circuit in which there is also a light. The
STRIPS specification of this system uses three propositions
— sw1, sw2 for saying that the respective switches are turned
on, andlightoff for saying that the light is off. Here is an
attempted specification of an action for turning on the light.

TurnOn
precondition : lightoff
deletlist : lightoff
addlist : sw1, sw2

The Add-Del postulate suggests these as possible action
constraints:

¬(sw1 ∧ lightoff)
¬(sw2 ∧ lightoff)
¬(sw1 ∧ sw2 ∧ lightoff)

The first formula is incorrect if there is a stateSS such that
SS |= sw1 ∧ lightoff . Hence we should look for a system
in which this is so. A system in which there is such a state
is shown in figure 3. As this system can also invalidate the
second formula, this leaves only the longer third formula as
the correct constraint. An alternative is a system in which the
first and second formulas are indeed constraints, and the third
is therefore redundant. A system in which this is the case is
shown in figure 4. This example shows how questions about
which among the possible formulas suggested by the Add-
Del postulate are actual action constraints can trigger off a
search for alternativeontologies. This search isextra-logical,
for there is nothing in the implicit logic of STRIPS that can
inform the ultimate choice. However, it is interesting that it
can neverthelesssuggestwhat to look for. For many domains
themodellingenterprise is tentative and iterative, for we may
be guessing at the internal structure of a black box. The use
of the preceding method is to decide which experiments to
run — or what questions to ask the persons who wrote the
action specifications — in a search for possible invalidation of
(short) possible constraints so that an ontological judgement
can be made.

5.4 Action Relaxation
In the move(X,Z)action whose invariants were considered
in section 5 we observe that two of the strongest ones, viz.
¬(on(X,Y) ∧ on(X,Z)) andclear(X) ↔ ¬∃Y on(Y,X)
are independentin the usual sense in logic. The actual in-
variant of themove(X,Z)action is of course aconjunction

lightoff

sw2sw1

Figure 3: Switches in series

sw2

sw1

lightoff

Figure 4: Switches in parallel

of the two. However, whenever an invariant comprises in-
dependent conjuncts, it suggests that there aremore relaxed
actions that can be used as the bases of the action, albeit each
such action is associated with unintended ontologies. The re-
laxed action (call itmove-1(X,Z)) corresponding to the com-
ponent invariant¬(on(X,Y) ∧ on(X,Z)) is one in which
the clear(X) atom is not in the ontology, i.e., with precon-
dition on(X,Y), addliston(X,Z) and deleteliston(X,Y).
Curiously,move-1(X)may be performed even when atower
of blocks sit on blockX, so the effect is to move the en-
tire tower which has blockX at its base to the top of block
Z. Moreover, it does not worry that blockZ may already
have other blocks on it. On the other hand the relaxed ac-
tion (call it move-2(X,Z)) corresponding to the component
clear(X)↔ ¬∃Y on(Y,X) is one that permits blockX to be
moved to blockZ when there is no block on either of them,
i.e., with preconditionon(X,Y),clear(X), clear(Z), addlist
on(X,Z) and deleteliston(X,Y), clear(Z). It is not wor-
ried about the possibility that a block may be in two or more
blocks at the same time. These are unintended ontologies in
the same sense as non-standard interpretations.

There is a way to think about such relaxed actions rela-
tive to the originally specified action from the perspective of
the Knaster-Tarski function iterates to the least fixed point.
From this perspective the invariant ofmove-1expresses its
least fixed pointU1, and that ofmove-2expresses its least
fixed pointU2. BothU1 andU2 are weaker thanU0, the least
fixed point ofmove, hence in the lattice ordering of section
4.1 we haveU1 ≤ U0 andU2 ≤ U0. Further, it can be
seen informally that the fixed pointU0 is also a fixed point
of bothmove-1andmove-2, but of course not their least fixed
point. This observation is consistent, and in fact suggested
by, a corollary of the Knaster-Tarski theorem (op.cit.) which
says that the fixed points of a monotonic function are them-
selves are a complete (sub-) lattice. Hence we can describe
the “decomposition” of an action into more relaxed compo-
nents as one which searches for actions that have larger state
sets as their “tight” invariants.

5.5 Reasoning about Preconditions

Analogous to our dissection of the intended meaning of ad-
dlists and deletelists, we now examine the precondition com-
ponent of an action specification. For an actionφ(X) con-
sider why its (non-trivial) preconditionπ(X) might be writ-
ten. The intention appears to be that the action a stateS satis-
fying π(c) the actionφ(c) can be safely executed by updating
S with the addlist and deletelist accordingly. Importantly, if
S does not satisfyπ(c), thenφ(c) mustnotbe executed. This
suggests that wheneverS does not satisfyπ(c) but (parts of)
the addlist and deletelist are nevertheless used to updateS,
the resulting state is incorrect. This looks rather formidable
except that in fact much of its apparent complexity is already
accounted for by the Add-Del postulate. Let the set of atoms
in the precondition bePre. Then the possible constraints can
be expressed as:
¬(¬(p1 ∧ . . . ∧ pk) ∧ C)
where{p1, . . . , pk} ⊆ Pre andC is one of the candidate

action constraints from the Add-Del postulate.
An example of this is the precondition for thestack(X,Y)

action. Assume that the componentclear(Y) does not hold.
By the constraint above this is equivalent to the existence of
someZ (distinct fromX) such thaton(Z, Y) holds. Then one
possible constraint is¬(¬clear(Y) ∧ on(X,Y)) where the
on(X,Y) is from the addlist, and this formula is equivalent
to¬(on(Z, Y) ∧ on(X,Y)), another familiar constraint.

Since an action invariant is of the form “ifS |= α, then
after actionφ S′ |= α”, the possible constraints that arise
from considering preconditions are trivially action invariants
because the preconditionα is false in each of them.

6 Testing the Invariants

The method described in this section is similar to a well-
known technique used in databases (see e.g.,[Lawley, Topor
and Wallace 93]) for doing the reverse of invariant discov-
ery. However we consider the case where the invariants may
not suffice to recover all facets of the original specification.
The formal rendition of that work in our vocabulary would
be this: Start with invariants; then given the add-list of ac-
tions, derive appropriate preconditions and delete-lists.As
is well-known from standard work in programming language
semantics, there is a trade-off among these entities but it is the
weakest preconditions that are sought (presumably to make
the scope of action application as wide as possible). Relative
to that work our approach here is therefore a kind of reverse-
engineering. It treats the action specifications as primary en-
tities, hypothesizing that they express an intended, underly-
ing and implicit semantics that are action constraints, action
invariants and system constraints. A remark made by one
reviewer of an earlier version of this paper is helpful: both
action and system constraints can be viewed as static, the for-
mer being local and the latter being global; on the other hand
action invariants are dynamic.

To test the invariants proposed by the methods of section
5 above we use the latter and attempt to recover the original
specification. A schematic diagram of the overall method is
shown in figure 5. The method is informally explained by

STRIPS action specification

Action Invariants

extracting invariantsverifying invariants

Figure 5: From specifications to invariants and back

an example. Consider theunstack(X)action that we saw ear-
lier. Below is a partial version of it with the precondition and
deletelist unspecified. The aim is to complete this precondi-
tion and deletelist so that they match the original specification
from which the invariant was extracted.

unstack(X)
precondition :? (1)

addlist : table(X), clear(Y) (2)

deletelist :?? (3)

The invariants for theunstack(X)actions are:

¬(on(X,Y) ∧ table(X)) (4)

¬(on(X,Y) ∧ clear(Y)) (5)

From the atomtable(X) in the addlist we know that af-
ter the action, in the new stateS′ table(X) must hold, i.e.,
is true. This, together with the fact that¬(on(X,Y) ∧
table(X)) is an invariant for the action, leads to the con-
clusion that inS′ the atomon(X,Y) is false, i.e., it has
to be in the deletelist, which is indeed the case in the original
specification for theunstack(X)action. The other invariant
yields the same conclusion for the deletelist, so it has only
one atom, viz,on(X,Y). From the Parsimony Postulate we
may also conclude thaton(X,Y) is in the precondition. What
then about the other atomclear(X) in the original precondi-
tion? There is nothing in our method that says anything about
it, and for good reason. Consider a slightly different action
unstack′(X) defined by:

unstack′(X)
precondition : on(X,Y) (6)

addlist : table(X), clear(Y) (7)

deletelist : on(X,Y) (8)

It can be intuitively seen that the effect ofunstack′(X) is
to pick up thetower of blocks withX as its base and then
place this tower on the table. Thus, the invariants for the
unstack(X) action are not strong enough to exclude thisun-
intended interpretationof the action. In fact we can exploit
this in the following manner. If the method of completing
the precondition and deletelist yields a precondition (list) that
is smaller than the original specification, then there is an al-
ternative unintended action specification consistent with the
invariants.

We can generalize these observations as follows. Any atom
δ in stateS that is not in the deletelist will not change as a
result of the action.

Definition 3 An atomδ such thatS |= δ → [φ]δ for all states
S is φ-persistent.

In theunstack(X) action theclear(X) atom is persistent.

Corollary 2 A φ-persistent atom cannot be in its deletelist.

As in sub-section 5.5, letπ(φ) denote the precondition of ac-
tion φ. Also, call the invariants obtained via the Add-Del
postulate the Add-Del invariants.

Proposition 2 If δ is φ-persistent andδ ∈ π(φ) there is an
alternative actionφ′ with specification the same as that ofφ
except thatπ(φ′) = π(φ) \ {δ}, and the Add-Del invariants
of φ′ are the same as that ofφ.

Because the alternative action precondition is weaker than
that in the original specification it may be regarded as a sug-
gestion to the designer to consider a more general action.

The remaining possibility is that this method may also
yield a deletelist that is smaller than the original. This is an
indication that the user selection of invariants is incorrect be-
cause they admit resulting states that violate the Add-Del or
Parsimony postulates. It is a suggestion to re-examine the
candidate list of invariants to select stronger ones.

There is another aspect that we are currently investigating,
viz., the interaction of invariants from different actions, as in
system constraints below, that can be used also as inputs into
specification completion. We expect to report on this in the
near future.

7 System Constraints
We now examine how action invariants can be elevated to
system constraints. In preparation for this we need some
concepts that are analogous to well-known ones in dynam-
ical systems theory. By the notationSφS′ we mean that
applying actionφ to stateS yields the stateS′. This nota-
tion extends naturally to a sequence of actionsφ1, . . . , φn

whereS0φ
1S1 . . . φ

nSn has the obvious meaning, and we
say thatSn is reachable fromS0 (via that action sequence).
The actionsφi will be from a setΦ = {φ1, . . . , φm} of ac-
tions, so to describe arbitrary sequences of actions on states
using such actions we may say that the previous sequence
S0, S1, . . . , Sn is aΦ-trajectory. ThusS′ is reachable from
S if there is aΦ-trajectory that begins withS and ends with
S′. Reach(S,Φ) is the set of states reachable fromS via the
setΦ of actions; ifΣ is a set of states,Reach(Σ,Φ) is the set⋃

S∈ΣReach(S,Φ). Thus,Reach(,Φ) may be viewed as a
map from sets of states to sets of states, i.e, ifΓ is the set of
all states,Reach(,Φ) : Γ→ Γ.

Given an actionφ let Σ(φ) denotes the states that sat-
isfy the action invariants ofφ, i.e. Σ(φ) = {S|S |=
ψ and ψ is an invariant of φ}.
Proposition 3 Σ(φ) is a fixed point ofReach(, {φ})
Proof: If S ∈ Σ(φ) then by definition ofΣ(φ), if S′ is
the result of actionφ on S, S′ ∈ Σ(φ). Hence, by in-
duction, Σ(φ) is closed under any number of applications
of φ, and thereforeΣ(φ) ⊆ Reach(Σ(φ), {φ}). On the
other hand, ifS ∈ Reach(Σ(φ), {φ}), there is a sequence
S0, S1, . . . , Sn = S such thatS0φS1, S1φS2, . . . , Sn−1φS

andS0 ∈ Σ(φ). By closure ofΣ(φ) under repeated applica-
tion of φ, S ∈ Σ(φ), soReach(Σ(φ), {φ}) ⊆ Σ(φ).

What is the largest collection of such fixed points across
all actions? To answer this question, let us consider two ac-
tions φ1 andφ2, and the setsΣ(φ1) andΣ(φ2). Also, for
brevity we writeφ(S) to mean the stateS′ that results af-
ter applying actionφ to stateS. Recall that if the invariants
of φ are also invariants for all other actions then these in-
variants are system constraints. So ifφ1 andφ2 were the
only actions, a guess at the generalization of proposition 3
might be the following:Σ(φ1) ∩ Σ(φ2) is a fixed point of
Reach(, {φ1, φ2}). There is a slight problem with this.
While certainlyS ∈ Σ(φ1) ∩ Σ(φ2) implies φ1(S) |= ψ1

andφ2(S) |= ψ2 for invariantsψ1 of φ1 andψ2 of φ2, it may
not be the case thatφ1(S) |= ψ2 or φ2(S) |= ψ1. If we want
ψ1 andψ2 to be system invariants, what we really need is for
each of them to be invariants also for the other action. In ef-
fect we need to haveψ1 ∧ ψ2 be an action invariant for both
actions. This motivates the generalization below.

Let Σ(Φ) denote the states that satisfy the action in-
variants of everyφ in Φ, i.e. Σ(Φ) = {S|S |=
ψ, ψ is an invariant of φ, and φ ∈ Φ}. The following
proposition has a proof which is a generalization of that of
proposition 3.

Proposition 4 Σ(Φ) is a fixed point ofReach(,Φ).
As an example, the action constraints in the blocks world

domain above are also system constraints.
We conclude with some observations about anomalous

components of states in the blocks world that exemplify sim-
ilar situations in other domains. Alocal anomalyis a part of
a state that violates system constraints. In the STRIPS con-
vention of ground atoms representing state, this is simply a
collection of atoms (subset of the state) that do not satisfy a
system constraint. We can summarize the observations below
by saying that local anomalies can bequarantined.

Consider a state that has an atomon(b, b). Ontologically
this is nonsense, but nothing in the object-level STRIPS ex-
cludes it. It formally fails the precondition for all actions
(block b is neverclear!) that either tries to delete or move
it, or to stack on it. So, if we begin with a state that has this
we are stuck with it forever. But if we start with “normal”
states we can never reach one that has such a local anomaly.
What some people may find disturbing is this: unless we write
a constraint that precludes such atoms, none of the action
(and therefore, systems) constraints can exclude states from
containing anomalous atoms. However, we may console our-
selves with two facts. If we begin with non-anomalous states,
then all trajectories will remain non-anomalous. And, if we
had such anomalous atoms, in a sense they will beirrelevant
as they can never participate in any action.

Now consider another kind of local anomaly for which
there is provably no first-order constraint that excludes it.
This example suffices to highlight the problem: let there be
a chain of atomson(a1, a2), on(a2, a3), . . . , on(ak−1, a1).
This is just an elaboration of the pervious one, but to exclude
it requires a formula for transitive closure — none exists if the
chain length is not known. But the same consoling remarks
apply to such chains.

8 Conclusion
A method was proposed to extract implicit constraints from
STRIPS action specifications, and another method to test
these constraints by attempting to re-generate action spec-
ifications from them. Specification design issues were ad-
dressed as a bonus of these methods. The roles and connec-
tions between action constraints, invariants and system con-
straints were elucidated.

References
[Fikes and Nilsson 71] Fikes, R. E. and Nilsson, N. J., “

STRIPS: A New Approach to the Application of The-
orem Proving to Problem Solving”,Artificial Intelli-
gence, 2, 1971, 189-208.

[Foo, et.al. 97] Foo, N., Nayak, A., Pagnucco, M., Peppas,
P., and Zhang, Y., “Action Localness, Genericity and
Invariants in STRIPS”, Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI’97, pp. 549-554, Nagoya, August 1997, Morgan
Kaufmann.

[Foo, et.al. 04] Foo, N., Peppas, P., and Zhang, Y., “Con-
straints from STRIPS — Preliminary Report”, Proceed-
ings of the 17th Australian Joint Conference on Ar-
tificial Intelligence, AI’04, Eds. G. Webb and X. Yu,
Springer LNAI no. 3339, pp 670-680. , Cairns, Decem-
ber 2004.

[Goldblatt 87] Goldblatt, R.,Logics of Time and Computa-
tion, Lecture Notes 7, CSLI Publications, 1987.

[Lawley, Topor and Wallace 93] Lawley, M., Topor, R. and
Wallace, M., “Using Weakest Preconditions to Simplify
Integrity Constraint Checking”, Proceedings of the Aus-
tralian Database Conference, 1993.

[Lifschitz 86] Lifschitz, V., “On the Semantics of STRIPS”,
in Reasoning about Actions and Plans, ed. M. Georgeff
and A. Lansky, Morgan Kaufmann Publishers, 1986, 1-
9.

[Lin 04] Lin, F., “Discovering State Invariants”, Proceed-
ings of the Ninth International Conference on Principles
of Knowledge Representation and Reasoning, KR’04,
536-544, Whistler, 2004.

[Shanahan 97] Shanahan, M.,Solving the Frame Problem: A
Mathematical Investigation of the Common Sense Law
of Inertia, MIT Press, 1997.

[Tarski 55] Tarski, A., “A lattice-theoretical theorem and its
applications”, Pacific Journal of Mathematics, vol. 5
(1955), pp 285-309.

[Zhang and Foo 96] Zhang, Y. and Foo, N., “Deriving In-
variants and Constraints from Action Theories” , Fun-
damenta Informaticea, vol. 30, 23-41, 1996.

