
Representing Flexible Temporal Behaviors in the Situation Calculus

Alberto Finzi and Fiora Pirri
DIS- Università di Roma “La Sapienza”

Abstract
In this paper we present an approach to flexible
behaviors implemented in the Situation Calculus,
based on a model of time and concurrent situations.
We define a new hybrid framework combining tem-
poral constraint reasoning and reasoning about ac-
tions. We show that the Constraint Based Interval
Planning approach can be imported into the Situa-
tion Calculus by defining a temporal and concurrent
extension of the basic action theory. We provide a
version of the Golog interpreter suitable for man-
aging flexible plans on multiple timelines.

1 Introduction
A core problem for the executive control of robotic behav-
iors is to correctly manage tasks alternation. In real-world
domains robots have to perform multiple tasks either simulta-
neously or in rapid succession, by using diverse sensing and
actuating tools, like motion, navigation, visual exploration,
mapping, and several layers of perception. To ensure a suit-
able multiple-task performance, some approaches (e.g. [14;
23]) have recommended that executive control processes su-
pervise the selection, initiation, execution, and termination
of actions. From these ideas, a new paradigm has been pro-
posed, called the Constraint Based Interval Planning (CBI),
which essentially amalgamates planning, scheduling and re-
sources optimization for reasoning about all the competing
activities involved in a flexible concurrent plan (see [10; 4;
7]). The CBI approach, and similar approaches emerged
from the planning community, have shown a strong practi-
cal impact when it comes to real world applications (see e.g.
RAX [10], IxTeT [7], INOVA [21], and RMPL [23]). How-
ever, from the standpoint of cognitive robotics it is both im-
portant to ensure optimal performance in practical applica-
tions, but also to provide a logical framework so as to man-
age the preconditions of actions, and to guarantee the coher-
ence of actions effects. Coherence requires also that con-
trol processes, interacting with basic perceptual-motor pro-
cess and with cognitive processes, establish priorities among
individual processes, in order to allocate resources to them
during multiple-task performance (see the discussion in [8;
11; 3]). Therefore different, concurrent, and interleaving be-
haviors, subject to switching-time criteria and current situa-
tion needs, lead to a new integration paradigm. In this paper

we suggest that the reactive aspects that have to cope with
flexible behaviors and the cognitive aspects that reason about
these processes, can be combined in the Temporal Flexible
Situation Calculus. We present a new approach to flexible
behaviors, that exploits the full expressiveness of the Situa-
tion Calculus (SC) [19; 12], where computational concerns
related to time can be monitored by a temporal network, ob-
tained via a transformation of added constraints. To embed
many concepts elaborated in the CBI framework we extend
the SC with concurrency and time (extensions of SC with
time was already explored in [15; 17; 16]), deploying Allen’s
interval relations [1], and further constraining the language
to represent concurrent timelines. In this framework we
can conjugate the advantages of the SC with the expressive
power of the CBI paradigm. Indeed, on the one hand, it
is possible to introduce a separated timeline for each com-
ponent of the dynamic system (each entity which is part of
any autonomous system, e.g. a robot), so that concurrency
and flexibility can be clearly addressed; at the same time the
causal relationships among processes can be dealt with in the
SC language, which provides a clear framework for precon-
ditions and postconditions of actions and a simple solution
to the frame problem. We show that the CBI perspective,
with all its arsenal of specifications in terms of flexible time,
alternation constraints, resources optimization, failure recov-
ering, and tasks scheduling, can be imported into the SC ([19;
12]), defining a temporal and concurrent extension of the ba-
sic action theory (related approaches are [15; 17; 16; 8; 20;
6]). Finally, we provide a version of the Golog language and
interpreter for manipulating flexible plans on multiple time-
lines.

2 Preliminaries
2.1 Situation Calculus and Golog
The Situation Calculus [12; 19] is a sorted first order lan-
guage for representing dynamic domains by means of ac-
tions, situations, and fluents. Actions and situations are first
order terms, and situation-terms stand for history of actions,
compound with the binary symbol do: do(a, s) is the situation
obtained by executing the action a after the sequence s. The
dynamic domain is described by a Basic Action Theory BAT
= (Σ,DS0 ,Dssa,Duna,Dap). We refer the reader to [19] for
a complete introduction to the SC. Temporal Concurrent Sit-
uation Calculus (TCSC) has been earlier introduced in [15;
18; 17]; actions are instantaneous, and their time is selected

by a function time. Durative actions are considered as pro-
cesses [15; 19], represented by fluents, and durationless ac-
tions are to start and terminate these processes. For example,
going(hill, s) is started by the action startGo(hill, t) and it
is ended by endGo(hill, t′).

Golog. Golog is a situation calculus-based programming
language for denoting complex actions composed of the prim-
itive (simple or concurrent) actions defined in the BAT .
Golog programs are defined by means of standard (and not
so-standard) Algol-like control constructs: i. action se-
quence: p1; p2, ii. test: φ?, iii. nondeterministic action choice
p1|p2, iv. conditionals, while loops, and procedure calls. An
example of a Golog program is:

while ¬at(hill, 3) do
if ¬(∃x)going(x) do π(t, (t < 3)?; startGo(hill, t))

The semantics of a Golog program δ is a SC formula
Do(δ, s, s′) meaning that s′ is a possible situation reached
by δ once executed from s. For example, Do(a;p, s, s′) .=
Do(p, do(a, s), s′) ∧ Poss(a, s) defines the execution of an
action a followed by the program p. For more details on the
SC and Golog we refer the reader to [19].

2.2 Constraint Based Interval Paradigm
The constraint based interval framework (CBI) [10; 4], is a
well known framework for temporal planning systems com-
bining temporal reasoning and scheduling, including, e.g.,
RAX [10], IxTeT [7], and INOVA[21]. The CBI paradigm
accounts for concurrency and time, and action instances and
states are described in terms of temporal intervals linked by
constraints. We refer to the timeline-based version of the CBI
[10] where a domain behavior is seen as the continuous inter-
action of different components, and each component is repre-
sented by state variables; a single state variable is a relevant
feature of the components and represents a concurrent thread.
Both states and activities are uniformly treated as temporal
intervals. The history of states for a state variable over a
period of time is called a timeline. Figure 1 illustrates two
timelines (state variables) repr. the engine and the naviga-
tion processes of a mobile robot: initially, the robot is at(p1)
and stop; when it starts go(p1, p2) the engine is running; the
engine is stop again once the rover arrives at(p2). Some tem-
poral constraints among the activities are: at(x) holds only if
stop holds, go(x, y) is followed by at(y).

Domain Constraints. A CBI model [10] Mcbi=(X, I,R)
is defined by: i. a set X={x1, . . . , xn} of state variables, one
for each components (e.g. xloc and xeng in Fig. 1); ii. a
set I = {I1, . . . , In} s.t. for each xi the set Ii collects the
associated temporal fluents pi,j(~y), e.g. at(x) and go(x, y)
for location state variable in Fig. 1; iii. a set of temporal
constraintsR={ri,j}, usually called compatibilities: for each
temporal fluent property pi,j there is a compatibility relation
ri,j representing all its possible legal relations with the other
temporal fluents, i.e. which temporal property must proceed,
follow, be co-temporal, etc. to pi,j in a legal plan. The latter
are specified in terms of metric version of temporal relations
a la Allen [1]. E.g. the arrows in Fig. 1 illustrate the compat-
ibility associated to the fluent at: at(x) meets go(x, y), and
at(x) during stop.

running

Location

Engine
stop stop

at(p2)go(p1,p2)at(p1)

Figure 1: Timelines and constraints

Planning Problem in CBI. Given the CBI model Mcbi, a
planning problem is defined by Pcbi = (Mcbi, Pc), where Pc

is a candidate plan, representing an incomplete instance of a
plan. The candidate plan defines both the initial situation and
the goals. In particular, Pc consists of : i. a planning horizon
h; ii. a set of temporal properties to be satisfied for each state
variable xi ∈ X (e.g. at(p1) ends before 10 and after 20 in
the timeline of Figure 1); iii. the set of precedence constraints
among fluents pk,1 ≺ pk,2 which are to hold in a timeline,
e.g. at(p1) ≺ at(p2); iv. the set of constraints R={ri,j}
associated with the temporal properties pi,j mentioned in the
timelines. A fluent pi,j(~x) mentioned in a candidate plan is
fully supported [10] if all its associated constraints ri,j are
satisfied. E.g. in Figure 1 at(p1) and at(p1) are fully sup-
ported. A candidate plan is said to be a complete plan if: i.
each temporal property on each timeline is fully supported;
ii. all timelines fully cover the planning horizon. Given the
planning problem (Mcbi, Pc), the planning task is to provide
a sufficient plan [10], i.e. a complete plan with the maximum
flexibility: the planner is to minimally ground the (temporal)
variables to allow for on-line binding of the values.

3 Temporal Flexible Situation Calculus
In this section we present the Temporal Flexible Situa-
tion Calculus framework (TFSC) which integrates the CBI
paradigm introduced above.

Actions. We define a partition {αv; v ∈ C} of the set of
actions according to the different components C the system
has to care of. Typization of actions induces also a partition
on the set of situations hence on the set of histories. Histories
become streams of situations over timelines. To this end we
introduce a type operator ν. The SC foundational axioms are
extended with the following definitions. Let H =

⋃n
i=1Hi

be a set specifying the types of actions, we assume this set
finite. For each name of actions the following holds:
Hi(a)∧Hj(a′)→¬(a = a′) for i6=j, and ν(A(~x))=ν(A′(~y))
≡

∨n
i=1Hi(A(~x)) ∧ Hi(A′(~y)), together with the unique

name for actions (here the indices stay only for different
names), were a denotes an action variable while A denotes
the name of an action function.

Situations. Typization is inherited by situations as follows:

∀a. ν(a) = ν(do(a, S0)).
∀a s. ν(a) = ν(s) ≡

∀a′s′.s = do(a′, s′)→ν(a) = ν(a′) ∧ ν(a′) = ν(s′).
(1)

For each component v ∈ C, a possible timeline Tv is
represented by a situation σv = do(ak, . . . , a1, S0), with
ν(σv) = ν(ai), i = 1, . . . , k. Evolution of the set of time-
lines requires the following notation for set of situations:
sc = {sv|v ∈ C}, called situation class, spanning over differ-
ent types. In other words, ∃s.s ∈ sc∧Q is an abbreviation for
∃s1 . . . sn.

∨n
i=1[s = si∧

∧n
j=1 ν(si) 6= ν(sj)] ∧ Q. Where

ν(si) is the type of situation si corresponding to some com-
ponent i ∈ C, n=|C|. Analogously for ∀s.s ∈ sc→Q. A
set of possible timelines is modeled by a set of situations sc,
equipped with the following ≤c relation:

sc′ ≤c sc ≡ ∀s′ s.s ∈ sc ∧ s′ ∈ sc′→s′ ≤ s. (2)
do(ai, sc) denotes the ai execution from a type-compatible

situation mentioned in sc, i.e. {do(ai, si)}∪{sj |sj ∈ sc, j 6=
i}.

Time. Time is part of the sorted domain of TFSC, as
noted in Section 2; we extend the time selection function from
actions to situations (see [16] for a different notation), and
situation classes as follows:

time(S0) = t0. time(do(a, s)) = time(a).
time(s) ≤ time(s′) ≡ ∃a a′ s′′ s′′′.s = do(a, s′)∧
s′ = do(a′, s′′) ∧ time(a) ≤ time(a′).

(3)

We can thus define the time of a situation class as:
time(sc) = t which is a shortcut for ∃s′∀s. s′ ∈ sc ∧ s ∈
sc ∧ time(s) = t ∧ time(s′) = t′→t ≥ t′. We shall use
subscripts, i.e. tk, to denote that t refers to the timeline of
component k.

Consistency of the extension The above axioms concern-
ing types, time and situation classes, are added to the foun-
dational axioms in Σ and are conservative (i.e. obtained by
extending the language), therefore the extended set Σ′ is still
consistent.

Processes. Processes span the subtree of situations, over a
single interval specified by a start and end action. They are
implicitly typed by the actions process: for each process there
are two actions, starting and ending the process, abbreviated
by sP , meaning starts process P and eP , meaning ends pro-
cess P . A process is denoted by a fluent P (~x, t−, s), (here t−
is its start time). Successor state axioms (SSP) for processes
extend the set of SSA for fluents and are defined as follows:

P (~x, t−, do(a, s)) ≡ a = sP (~x, t−)∨
P (~x, t−, s) ∧ ∀t.a 6= eP (~x, t).

(4)

For example, moving towards θ, can be defined as:
move(θ, t−, do(a, s)) ≡ a=smove(h, θ, t

−)∨
move(θ, t−, s) ∧ ∀t′.a 6= emove(θ, t

′).

Action preconditions axioms define the conditions under
which the start and end actions can be executed. Let P be
a process, we say that it is linear if it does not mention any
other process in the right-hand side of the definition. The set
Dssp of successor state axioms for processes is linear if all
processes mentioned in it are linear. LetDSSP be a set of lin-
ear successor state axioms for processes, extending the BAT
D = Σ ∪ DS0 ∪ Duna ∪ Dss ∪ DAP then:
Lemma 1 D ∪DSSP is consistent iff DS0 is.
Proof (sketch). Just note that since the (SSA) for processes
mentions neither fluents nor other processes depending only
on the start and end actions, in the same situation s it is not
possible that sP (~x, t) < sQ(~y, t′) and sP (~x, t) > sQ(~y, t′);
the same argument can be used for end actions.

Intervals. Intervals are very well suited for representing
flexible behaviors, as they mention temporal variables which
are always free, and get assigned only according to a speci-
fied set of behaviors; this fact imposes a bookkeeping of time
variables for consistency, as will be explained better in the
next paragraph. In this paragraph we show how embedding
intervals in the SC leads to the construction of a temporal net-
work. All the conditions on actions and situations concerning
the processes involved with time, can be gathered into the
following formula Ψ, simply specifying that the process Pi

holds on the associated timelines from t−i to t+i with arg. x:

Ψi(x, t
−
i , t

+
i , sc) = ∃sis

′
is

′′
i .si ∈ sc∧

si ≥ do(ePi(x, t
+
i), s′i) ≥ do(sPi(x, t

−
i), s

′′
i)∧

¬∃t s.s′i ≥ do(ePi(x, t), s) ≥ s
′′
i

(5)

Note that the above formulas Ψi have explicit free variables
x, t−i , t

+
i , sc (and one implicit variable, namely i, denoting

the type, gathering all the terms with ν, that are not men-
tioned). We shall not repeat such explicit free variables in the
definition below. The macro-definition for interval relations
are now straightforward as follows, where p,m,o,d, s, f , e
are as usual preceeds, meets, overlaps, during, starts, finishes,
equals, with op ranging over all relations:

Pi(x, t
−
i , t

+
i) op Pj(x, t

−
j , t

+
j)

∆
= Ψi→[Ψj ∧ γop]. (6)

here γop is an abbreviation for each of the following:

γp = (t+i < t−j); γm = (t+i = t−j); γs = (t−i = t−j);

γf = (t+i = t+j); γe = (t+i = t+j ∧ t
−
i = t−j);

γo = (t−i < t−j ∧ t
−
j < t+i ∧ t

+
i < t+j);

γd = (t−i > t−j ∧ t
+
j ≥ t+i ∨ t

−
i ≤ t−j ∧ t

+
j < t+i).

Note that the metrical version (like in [10]) including rela-
tions with duration can be analogously defined. Letting each
operator in the macro being not commutative, inverse can be
defined as Pi op−1 Pj = Pj op P1. We denote any set of the
above interval relations I(τ), where τ is an array of time vari-
ables, varying over the + and −, involved with the formulae
in I(τ). For example, given the network in Figure 2 we have:

I(t−1 , t
+
1 , t

−
2 , t

+
2 , t

−
3 , t

+
3 , t

−
4 , t

+
4) =

{P1(t
−
1 , t

+
1) s P2(t

−
2 , t

+
2), P1(t

−
1 , t

+
1) o P2(t

−
2 , t

+
2),

P1(t
−
1 , t

+
1) d P2(t

−
2 , t

+
2), P3(t

−
3 , t

+
3) d P2(t

−
2 , t

+
2),

P3(t
−
3 , t

+
3) s P4(t

−
4 , t

+
4), P4(t

−
4 , t

+
4) d P2(t

−
2 , t

+
2)}.

We assume that the domain theory DT is equipped with tem-
poral relations, as those given in (6), specifying the tem-
poral interaction between processes as constraint patterns;
for example wanting to say that going has always to be
preceded by beingAt we would associate to DT the set
{going([t−g , t+g]) p beingAt([t−b , t

+
b]). We call this set the

temporal compatibilities abbreviated by Tc.
The satisfiability problem we are concerned with is the fol-

lowing. Let DT = D ∪ Dssp ∪ I(τ) be a basic theory of
actions, extended with time specifications (see 3), successor
state axioms for processes and time interval constraints, in
which time variables are free: we seek an assignment set for
time variables which is a feasible solution for the constraints
and such that a substitution of the free variables for this set
induces an interpretation which is a model of DT . To find

Figure 2: A TCN representing a set of interval constraints
on processes P1, P2, P3, P4

such an assignment we appeal to the concept of general tem-
poral constraint networks (TCN) introduced in Meiri [13]
following the one developed for discrete constraint networks
[5]. A TCN involves variables denoting both intervals and
points, together with unary and binary constraints. A TCN
is associated with a direct constraint graph where each node
is labeled by a temporal variable and labeled-directed edges
represent the binary relations I between them (e.g. p, e
etc.). According to the underlying temporal algebra, TCN
express different forms of reasoning (Allen’s interval alge-
bra [1], the Point Algebra [22], metric point algebra [5], and
so on) see in particular [2]. Let X = {X1, . . . , Xn} =
{〈t−1 , t

+
1 〉, . . . 〈t−n , t+n 〉} be a set of time variables, denoting

intervals (i.e. each variable Xi denotes an interval 〈t−1 , t
+
1 〉),

and let I be a set of binary relations; the assignment set
V = {〈s1, e1〉, . . . , 〈sn, en〉 : si, ei ∈ R, si < ei} is called
a solution set for I, if {X1 = 〈s1, e1〉, . . . , Xn = 〈sn, en〉}
satisfies all the constraints defining I. The network is consis-
tent if at least one solution set exists. In the sequel we shall
identify a TCN with its labeled direct graph and denote with
V a solution set. We also say that V satisfies the constraints.

Temporal Constraint Network Let h : I(τ) 7→ TCN ,
for any set of constraints I(τ), h(I(τ)) is a temporal network
N, with cardinality m, specified by the nodes labeled by the
defined processes {Pi, Pj |PiopPj} are mentioned in I(τ).

By the above definitions the network N is consis-
tent if there exists an assignment V to the tempo-
ral variables, which is a feasible solution, i.e. sat-
isfying all the constraints. For example the set
V={[10, 160], [10, 70], [75, 95], [95, 150]} is a solution set
for the variables X={[t−1 , t

+
1], [t−2 , t

+
2], [t−3 , t

+
3], [t−4 , t

+
4]},

of the network depicted in Figure 2, given the relations
{m,p,d, s, f}. Note that, given the macro definition (6),
while the definiendum Pi(x, t−i , t

+
i) op Pj(x, t−j , t

+
j) is

mapped to a temporal network, the definiens Ψi→[Ψj ∧ γk]
is interpreted into a structure of the SC, where the assign-
ments for the free temporal variables are obtained by the
TCN . We denote with Ψ the set of definiens Ψi→[Ψj ∧ γk].
A semantic correspondence can be established as follows.
Let Mh=〈D, I, h〉 be a structure for the SC-language,
extending M=〈D, I〉 (where M is a structure for SC, with

D a sorted domain and I an interpretation), with h a mapping
as defined above, then Mh is a model for D ∪ I(τ), iff
there is a consistent temporal network h(I(τ)), under some
assignment V , satisfying I(τ) and M, V |=

∧
D ∧

∧
Ψ.

Given the above definitions we can state the following:
Lemma 2 DT ∪ I(τ) is consistent iff there exists a consistent
temporal constraint network h(I(τ)), under the assignment
V , such that M, V |=

∧
D ∧

∧
Ψ.

Proof(sketch). Let h(I(τ)) be a consistent temporal network,
under the assignment V . Consider the set Ψ = {Ψi→Ψj ∧
γk}k∈m, and we let M being a model for DT . M can be
extended to a model for all the γi according to V , as follows.
For each process Pi build a chain of situations of the kind
Γi = {do(sPi

(t′i), σ
′) ≤ σ ≤ do(ePi

(t
′′

i), σ′′) ≤ σi}, with
σ a sequence such that ePi

is not mentioned in σ. Extend
the structure M to one for DT ∪

⋃
i Γi by choosing from

V a suitable assignment to the free variables in each Γi, and
according to the constraints in the γi, corresponding to the
constraints in I(τ), and such that each sequence is satisfied.
This is always possible, because each process is made true of
a situation by a start action, and false by an end action, by the
sequence construction, on a timeline, then (M, V) is a model
for DT ∪

⋃
i Γi. Finally it is enough to show that any model

for DT ∪
⋃

i Γi, is a model for Ψ = {Ψi→[Ψj ∧ γk]}k∈m.
2 Note that by Lemma 1 DT ∪ I(τ) is consistent iff DS0 ∪
I(τ) is consistent. Logical implication can be now defined
as follows, note that time variables are quantified when they
are mentioned in the successor state axioms for processes.
Let Mh = 〈D, I, h〉, and β(τ) be a formula with all its free
temporal variables among τ :

DT ∪ I(τ) |= β(τ) iff for any h, for any V,
Mh, V |= DT ∪ I(τ) implies Mh, V |= β(τ). (7)

TCN construction. Two things are now in order: the
inference mechanism constructing a set Isc(τ) capturing
the temporal network topology associated to a situation
class sc(τ), the mechanism implementing instantiation of
situations. We can explain this with an example. Let
sc[τ] denote situation class sc whose only free variables
are among τ , for example sc[τ] = do([sP1(t

−
1), eP1(t

+
1),

sP2(t
−
2), eP2(t

+
2), sP1(t

−
3), eP1(t

+
3)], S0). Assume also the

following compatibilities specified in the domain theory:
Tc = {P1 m P2}. The three nodes network that would be
constructed as a consequence of the compatibilities together
with the current situation is

Isc(t
−
1 , t

+
1 , t

−
2 , t

+
2 , t

−
3 , t

+
3 , t

′−, t′
+
)=

{P1[t
−
1 , t

+
1] m P2[t2

−, t2
+], P1[t

−
3 , t

+
3] m P2[t

′−, t′
+
]}

(8)
Therefore a situation class sc, through Isc(τ) fully specifies

the interval relations needed to build a temporal network. The
time range of the solutions to the network -given a situation
class sc - is the flexible situation class, which is a set of pairs
of the kind 〈sc[τ], i(τ)〉, where i(τ) is the constraint over τ
variables, e.g. i(τ) = 10 ≤ t1 ∧ t2 > 7.

Progression. Let κ = 〈ssc, τ〉 denote a set of ground situa-
tions (for example the histories along specified timelines) and
a set of (ground) time points along these situations, and let φ
be a sentence mentioning this set κ. We want to determine if,
according to the timing and advancements of the current state

of affair we can forget about the past and think of the future.
This is the well known progression problem [19] in the SC.
We face here a simplified version of the progression problem,
and with regressable formulas, which is all we need. Let us
state the problem as follows. Let ϕ be a sentence, order the
situation terms in ϕ according to the relation ≤sc introduced
in (2). Consider the set of smallest situations (the ordering is
partial) with min = 〈σsc, τ〉, and the smallest time point (i.e.
with respect to some t, mentioned in min). We now consider
the domain theory Ds

T which is equal to DT but with DS0

replaced by a set W s = {ϕ|DT |= ϕ where ϕ mentions only
ground situations σ, with {σi}=scmin, and no free variables
of sort time }. Let Φ(t1, . . . tn) be a SC sentence mention-
ing only ground situations {σi} ≥sc min, and possibly free
variable of sort time all among t1, . . . , tn. Then
Lemma 3 DT ∪ I(τ) |=

∧
(Ds

T ∪ I(τ) ∪W s).
Theorem 1 DT ∪I(τ) |= Φ(t1, . . . , tn) iff Ds

T ∪W s∪Iτ |=
Φ(t1, . . . , tn)
Proof. (sketch) One direction follows by cut. For the other
direction, suppose DT ∪ I(τ) |= Φ(t1, . . . , tn), let us regress
Φ(t1, . . . , tn) along the different timelines, this can be done
by separating Φ into a DNF, and considering each conjunct
separately, we regress it with respect to min, and let G be the
regressed formula – note that there need no change in regres-
sion to account for regressed sentences as time variable will
be kept as they are, without turning to quantified variables
through successor state axioms. Then by definition of W s,
G ∈W s hence, by the previous lemma, the claim follows.

4 Flexible High Level Programming in Golog
Golog Syntax. Given the extended action theory presented
above, the following constructs inductively build Golog pro-
grams:
1. Primitive action: α.
2. Nondeterministic choice: α|β. Do α or β.
3. Test action: φ?. Test is φ is true in the current sit. class.
4. Nondet. arg. choice: choice ~x for prog(~x).
5. Action sequence: p1; p2. Do p1 followed by p2.
6. Partial order act. choice: p1 ≺ p2. Do p1 before p2.
7. Parallel execution: p1‖p2. Do p1 concurrently with p2.
8. Conditionals: if φ then p1 else p2.
9. While loops: while φ do p1.

10. Procedures, including recursion.

Golog Semantics. The macro Do(p, sc, sc′, h) gives the
semantics for the above constructs; where p is a program, sc
and sc′ are situation classes, and h specifies the finite horizon.
• Null program:

Do(Nil, sc, sc′, h)
∆
= time(sc) ≤ h ∧ [s ∈ sc ≡ s ∈ sc′]

• Primitive first program action with horizon:

Do(ai; prog, sc, sc
′, h)

∆
= si ∈ sc ∧ Poss(ai, si)∧

time(si) ≤ h ∧ [time(ai) ≤ h ∧Do(prog, do(ai, sc), sc
′, h)∨

time(ai) > h ∧Do(prog, sc, sc′, h)]
Here, if the first program action is applicable to si ∈ sc,

and ai can be scheduled after the horizon then it is neglected
(i.e. each action which can be started after the horizon can be
postponed).

• Partial order action choice:

Do(prog1 ≺ prog2, sc, sc
′, h)

∆
= Do(prog1 : prog2, sc, sc

′, h)∨
∃a.select(a, sc) ∧Do(prog1 ≺ a ≺ prog2, sc, sc

′, h)

Here, either the second program can be directly executed, or
it is possible to insert a primitive action a, selected by a suit-
able fluent predicate select(a, s) representing the selection
criterion (set to true if no selection holds).
• Parallel execution:

Do(prog1 ‖ prog2, sc, sc′, h)
∆
=

Do(prog1, sc, sc
′, h) ∧Do(prog2, sc, sc′, h)

• Test action:

Do(φ?; prog, sc, sc′, h)
∆
= φ[sc] ∧Do(prog, sc, sc′, h)

Here φ[sc] stands for generalization of the standard φ[s] in
the SC extended to situation classes, e.g. P1[sc] ∧ P2[sc] is
for P1(s1) ∧ P2(s2) with s1, s2 ∈ sc.
• The semantics of nondet. action choice, nondet. argument
selection, conditionals, while loops, and procedures is defined
in the usual way.

Flexible Temporal Behaviors in Golog. The CBI planning
problem (Mcbi, Pc) introduced in Section 2.2 can be easily
coded and solved in the TFSC framework. Given aDT repre-
senting the timelines and processes in Mcbi, a candidate plan
Pc can be encoded by a Golog program progc. This is possi-
ble once we introduce, for each interval constraint for pi,j(~r)
in Pc, a Golog procedure of the kind:

proc(πi,j , (ψi,j(~r, t
−, t+) ∧ γ(t−, t+))?) ,

where ψi,j is the macro (5) associated with the process Pi,j ,
and γ any temporal constraint. For example, go(d, e) ends in
[6, 10] can be represented as

proc(π1, (ψgo(d, e, t−, t+) ∧ 6 ≤ t+ ≤ 10)?).

Given the πi,j procedures, a partial specification of a single
timeline Tj can be easily defined using the ≺ operator:

proc(plan Tj , π0,j ≺ π1,j ≺ π2,j ≺ . . . ≺ πk,j),

Given a set of timelines {Ti}, a candidate plan Pc can be
represented as a parallel execution of the plan Ti:

proc(progc, plan T1 : Nil ‖ . . . ‖ plan Tk : Nil).

Since a CBI complete plan P is associated with a fully sup-
ported set of timelines {T i} and a set of constraints i(~t) (see
Section 2.2), we can introduce a mapping g transforming a
CBI plan P into a flexible situation 〈sc, i(τ)〉. The following
holds.
Proposition 1 Given a CBI planning problem (Mcbi, Pc),
where Pc is a candidate plan [10], for any complete plan
P of (Mcbi, Pc), maximally flexible in the time variables τ ,
there exists a DT , a Golog program progc, where

DT ∪ Isc(τ) |= Do(progc, ini, sc[τ], h).

with 〈sc, i[τ]〉 a flexible situation, and such that:

g(P) = 〈sc, i[τ]〉
The proof is omitted.

Example. We assume an autonomous rover which has to
explore the environment and perform observations. While
the robot is moving the pant-tilt unit must be pointing
ahead ptIdle. To point to a location x the rover must
be stopped there, at(x), while the pan-tilt scans in direc-
tion z: ptScan(x, z). Hence, we consider two compo-
nents: pant-tilt, navigation. Each component has a set
of processes: Ipt={ptIdle, ptScan(z, x)}; Inav={at(x),
go(x, y)}. Each of these is to be encoded in the DT as
in (4), e.g. ptScan(t, z, x, do(a, s)) ≡ a = spts(z, x, t)
∨ptScan(t, z, x, s) ∧ ¬∃t′.a = epts(z, x, t′). The temporal
compatibilities Tc among the activities are defined by a set of
temporal constraints patterns, defined by macros (6), e.g.:

go(x, y, t1, t2) m at(y, t3, t4); at(x, t1, t2) m go(x, y, t3, t4);
go(x, y, t1, t2) d ptScan(z, x, t3, t4);
ptScan(z, x, t1, t2) d at(x, t3, t4).

Consider a partial specification for the rover behavior: from
time 0 to 3 it must remain at(p1), and at time 0 the pant-tilt
is ptIdle; the rover mission is to observe p3, in direction θ
before 30 and after 20, and be back at p1 before 50. This can-
didate plan, can be encoded in the following Golog program:

proc(mission,
ψat(p1, 0, 3)? ≺ (ψat(p1, t

1
1, t

1
2) ∧ t12 ≤ 50)? : Nil‖

ψpti(0, t
2
1)? ≺ (ψpts(θ, p3, t

2
2, t

3
3) ∧ [t22, t

2
3] ⊆ [20, 30])? ≺ Nil).

Given the horizon h = 50, and an initial situation
class ini, a possible complete plan is a flexible situation
〈sc[τ], i(τ)〉, with sc[τ]={σnav[τ1], σpt[τ2]}, s.t. DT ∪
Isc(τ) |= Do(mission, ini, sc[τ], 50), e.g.

σnav=do([sat(p1, 0), eat(p1, 3), sgo(p3, t
1
1), ego(p3, t

1
2),

sat(p3, t
1
3), eat(p3, t

1
4), sgo(p1, t

1
5), ego(p1, t

1
6)], S0);

σpt=do([spti(0), epti(t
2
1), spts(t

2
2), epts(t

2
3), spti(t

2
4), epti(t

2
5), s]S0).

and i(τ) is the minimal set of constraints solving the h(Isc)
temporal network, i.e. {t12 = t13 < t14 = t15 < t16 < 50; t21 = t22 <
t23 = t24 < t25; t

2
2 > t13, t

2
3 < t14 }.

Implementation We provided a constraint logic program-
ming (CLP) [9] implementation of the Golog interpreter.
Since the Golog interpreter is to generate flexible temporal
plans, it must be endowed with a constraint problem solver.
Analogous to [17] we rely on a logic programming language
with a built-in solver for linear constraints over the reals
(CLP(R)). We appeal to the ECRC Common Logic Program-
ming System ECLIPSE 5.7. Currently, we are deploying the
Golog interpreter as the control engine of a monitoring sys-
tems for robotics applications.

References
[1] James F. Allen. Maintaining knowledge about temporal inter-

vals. Commun. ACM, 26(11):832–843, 1983.

[2] Federico Barber. Reasoning on interval and point-based dis-
junctive metric constraints in temporal contexts. J. Artif. Intell.
Res. (JAIR), 12:35–86, 2000.

[3] Giuseppe de Giacomo, Yves Lesperance, and Hector J.
Levesque. Congolog, a concurrent programming language
based on the situation calculus. Artif. Intell., 121(1-2):109–
169, 2000.

[4] A.K. Jonsson D.E. Smith, J. Frank. Bridging the gap between
planning and scheduling. Knowledge Engineering Review,
15(1), 2000.

[5] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artif. Intell., 49(1-3):61–95, 1991.

[6] Alfredo Gabaldon. Programming hierarchical task networks in
the situation calculus. In AIPS’02, 2002.

[7] Malik Ghallab and Herv Laruelle. Representation and control
in ixtet, a temporal planner. In AIPS 1994, pages 61–67.

[8] H. Grosskreutz and G. Lakemeyer. ccgolog – a logical lan-
guage dealing with continuous change. Logic Journal of the
IGPL, 11(2):179–221, 2003.

[9] Joxan Jaffar and Michael J. Maher. Constraint logic program-
ming: A survey. Journal of Logic Programming, 19/20:503–
581, 1994.

[10] Ari K. Jonsson, Paul H. Morris, Nicola Muscettola, Kanna Ra-
jan, and Benjamin D. Smith. Planning in interplanetary space:
Theory and practice. In Artificial Intelligence Planning Sys-
tems, pages 177–186, 2000.

[11] J. Kvarnstrom, P. Doherty, and P. Haslum. Extending talplan-
ner with concurrency and resources. In Proc. ECAI-00, pages
501–505, 2000.

[12] J. McCarthy. Situations, actions and causal laws. Technical
report, Stanford University, 1963. Reprinted in Semantic In-
formation Processing (M. Minsky ed.), MIT Press, Cambridge,
Mass., 1968, pp. 410-417.

[13] Itay Meiri. Combining qualitative and quantitative constraints
in temporal reasoning. Artif. Intell., 87(1-2):343–385, 1996.

[14] Nicola Muscettola, P. Pandurang Nayak, Barney Pell, and
Brian C. Williams. Remote agent: To boldly go where no AI
system has gone before. Artificial Intelligence, 103(1-2):5–47,
1998.

[15] J.A. Pinto and R. Reiter. Reasoning about time in the situation
calculus. Annals of Mathematics and Artificial Intelligence,
14(2-4):251–268, September 1995.

[16] Javier Pinto. Occurrences and narratives as constraints in the
branching structure of the situation calculus. Journal of Logic
and Computation, 8(6):777–808, 1998.

[17] Fiora Pirri and Raymond Reiter. Planning with natural actions
in the situation calculus. pages 213–231, 2000.

[18] R. Reiter. Natural actions, concurrency and continuous time in
the situation calculus. In Proceedings of KR’96, pages 2–13,
1996.

[19] Raymond Reiter. Knowledge in action : logical foundations
for specifying and implementing dynamical systems. MIT
Press, 2001.

[20] Tran Cao Son, Chitta Baral, and Le-Chi Tuan. Adding time and
intervals to procedural and hierarchical control specifications.
In AAAI 2004, pages 92–97, 2004.

[21] Austin Tate. I-n-ova and i-n-ca - representing plans and other
synthesised artifacts as a set of constraints.

[22] Marc B. Vilain and Henry A. Kautz. Constraint propagation
algorithms for temporal reasoning. In AAAI, pages 377–382,
1986.

[23] B. Williams, M. Ingham, S. Chung, P. Elliott, M. Hofbaur, and
G. Sullivan. Model-based programming of fault-aware sys-
tems. AI Magazine, Winter 2003.

