
A General Framework for Expressing Preferences
in Causal Reasoning and Planning

James P. Delgrande
School of Computing Science

Simon Fraser University
Burnaby, B.C.

Canada V5A 1S6
jim@cs.sfu.ca

Torsten Schaub∗

Institut für Informatik
Universität Potsdam
Postfach 90 03 27

D–14439 Potsdam, Germany
torsten@cs.uni-potsdam.de

Hans Tompits
Institut für Informationssysteme

Technische Universität Wien
Favoritenstraße 9–11

A–1040 Vienna, Austria
tompits@kr.tuwien.ac.at

Abstract

We consider the problem of incorporating arbi-
trary preferences in planning systems. A pref-
erence may be seen as a goal or constraint that
is desirable, but not necessary, to satisfy. We
work within the context of transition systems;
however, our results are applicable to general
planning formalisms. To begin, we define a
query language for specifying arbitrary condi-
tions that may be satisfied by a history, or in-
terleaved sequence of world states and actions.
Given this, we specify a second language in
which preferences are defined. A single pref-
erence defines a binary relation on histories, so
that in an ordered pair of histories the second
history is preferred to the first. From this, one
can define global preference orderings on the
set of histories, the maximal elements of which
are the preferred histories. The approach is
very general and flexible; thus it constitutes a
“base” language in terms of which higher-level
operators may be defined. The approach can
be used to express others, and so serves as a
common basis in which such approaches can
be expressed and compared.

1 Introduction
Planning, as traditionally formulated, involves attaining
a particular goal, given an initial state of the world and
a description of actions. A plan succeeds just when it is
executable and attains the goal; otherwise it fails. How-
ever, in realistic situations, things are not quite so simple.
Thus, there may be requirements specifying that a plan
should be as short as possible or that total cost, where
costs are associated with actions, be minimised.

As well, there may be preferred conditions, that are
desirable to attain, but not necessary. For an example,
consider an extension of the monkeys and bananas prob-
lem. In addition to the usual information, where the

∗Affiliated with the School of Computing Science at Simon
Fraser University, Burnaby, Canada.

monkey can push a box and climb on the box to grasp
some bananas, consider where the monkey has a range
of choices for food. Perhaps the monkey prefers to have
an appetizer before the main course, although this prefer-
ence need not be satisfied in attaining the overall goal of
eating a full meal. Perhaps too the monkey prefers soup
to grubs as an appetizer, although either will do. If the
monkey has soup, then it prefers to have a spoon before
it has the soup; and if it does not have a spoon before
having soup, then it prefers to have a spoon as soon as
possible after getting the soup. Clearly, such preferences
can be arbitrarily complex, and range over temporal con-
straints as well as relations among fluents and actions. In
this setting, the goal of a planning problem now shifts to
determining a preferred plan, in which a maximal set of
preferences is satisfied, along with the goal.

Such preferences also make sense outside of planning
domains, and in fact apply to arbitrary sequences of tem-
poral events. Hence it is perfectly rational to prefer that it
rains during the next several work days (since the plants
need the water) but that it be sunny for the weekend.

In this paper, we consider the problem of incorporat-
ing general preferences in temporal histories. While we
focus on histories as they are used in action description
languages [Gelfond and Lifschitz, 1998], our approach is
readily applicable to any planning formalism. We begin
by specifying a query language in which one can deter-
mine if an arbitrary expression is true in a given history.
Given this language, we define a preference-specification
language that enables the definition of preference rela-
tions between histories. We obtain a powerful means of
specifying preferences in temporal, causal, or planning
frameworks. As well, the approach provides a very gen-
eral language in which other “higher-level” constructs
can be encoded, and in which other approaches can be
expressed and so compared.

2 Background
Reasoning with preferences is an active area that is re-
ceiving increasing attention in AI. The literature is ex-
tensive; we mention only Oztürk et al. [2005] as an intro-
duction to preference modelling in general, and a recent
special issue of Computational Intelligence [CI, 2004]

for a selection of papers addressing preferences in Arti-
ficial Intelligence and constraints solving.

Our interests lie with preferences in planning (and
more generally, temporal) formalisms. Here, research is
more recent. One approach to preferences in planning
is given by Son and Pontelli [2004], where a language
for specifying preferences between histories is presented.
This language is an extension of action language B [Gel-
fond and Lifschitz, 1998]. The notion of preference ex-
plored is based on so-called desires, expressed via for-
mulas built by means of propositional as well as tem-
poral connectives such as always, until, etc. From de-
sires, preferences among histories are induced as fol-
lows: Given a desire φ, a history H is preferred to H ′

if H |= φ but H ′ 6|= φ.
Eiter et al. [2003] describe planning in an answer-set

programming framework where action costs are taken
into account. The approach allows the specification of
desiderata such as computing the shortest plan, or the
cheapest plan, or some combination of these criteria.
This is achieved by employing weak constraints, which
filter answer sets, and thus of plans, based on quantita-
tive criteria.

Delgrande et al. [2004] propose two types of domain-
specific preferences, choice and temporal preferences.
For a choice preference ψ <c φ, involving fluent and
action formulas φ and ψ, a history in which φ is true at
some point is preferred over another in which this is not
the case but ψ is true at some point. For a temporal pref-
erences ψ <t φ, a history in which φ becomes true after
ψ is preferred to one where this is not the case. While
these types of preferences are perhaps compelling, it is
clear, as discussed in the introduction, that preferences
can be arbitrarily more complex.

The goal of this research is an approach for addressing
preferences in temporal and planning settings. A pre-
requisite to the success of this endeavour is the devel-
opment of languages for combining preference relations;
for work to this end, see for example, Brewka [2004].

3 The Approach

Our central notion is that of a preference framework, con-
sisting of a pair (H ,P), where H is a set of histories
and P is a set of preferences on histories. A history is a
sequence of states and transitions between states, repre-
senting some evolution of the world. A preference speci-
fies an individual criterion for distinguishing among his-
tories. It defines a binary relation, consisting of pairs of
histories where one is preferred to the other, according to
the preference. The goal is to determine, in a sense to be
established, the most preferred histories according to the
set of preferences.

We use the syntax that a history H ∈ H is a se-
quence (s0, a1, s1, a2, s2, . . . , sn−1, an, sn), where s0 is
an initial state, and the subsequence si, ai+1, si+1 indi-
cates that action ai+1 takes the world from state si to
si+1. This notation is for convenience only; we could

as well have based our approach on, for example, situ-
ations [Levesque et al., 1998] or any other notation that
carries the same information. H can be equated with a
complete description of a planning problem, with mem-
bers of H corresponding to complete plans, but it need
not.

We define a preference among two histories directly in
terms of a formula φ. That is, we define that Hh is not
less preferred than Hl, Hl �φ Hh, just if 〈Hl, Hh〉 |= φ.
The intent is that φ expresses a preference condition be-
tween two histories, and Hl �φ Hh holds if φ is true by
evaluating it with respect to Hl and Hh. This in turn re-
quires that we are able to refer to fluent and action names
at specific time points in histories, and specify their truth
values at time points and in histories. Preferences are
expressed by means of a formula composed of

• Boolean combinations of fluents and actions in-
dexed by time points in a history, and by a history,
and

• quantifications over time points.

Indexing with respect to time points and histories is
achieved via labelled atoms of form ` : b(i). Here, ` is
a label, either l or h, referring to a history which is con-
sidered to be lower or higher ranked, respectively; b is an
action or fluent name; and i is a time point. Semantically,
〈Hl, Hh〉 |= l : b(i) holds if b holds at time point i in his-
tory Hl; and analogously for 〈Hl, Hh〉 |= h : b(i). This
is extended to labelled formulas in the expected fashion.

For example, we would express that history Hh is pre-
ferred to historyHl if fluent f is true at some point inHh

but never true in Hl by the formula

φ = (h : ∃if(i)) ∧ (l : ∀i¬f(i)), (1)

providing 〈Hl, Hh〉 |= φ holds.
We remark that labels, as employed here, serve a sim-

ilar purpose as labels used in tableau systems [Fitting,
1990] or in labelled deduction [Gabbay, 1996].

Each preference φ ∈ P induces a binary relation �φ

on H . This binary relation of course has no properties
(such as transitivity) since any such properties will de-
pend on the formula φ. Depending on the type of pref-
erence encoded in P , one would supply a strategy from
which a maximally preferred history is selected. Thus for
preferences only of the form (1), indicating which fluents
are desirable, the maximally preferred history might be
the one which was ranked as “preferred” by the greatest
number of preferences in P .

4 Expressing Preferences on Histories
4.1 Histories and Queries on Histories
In specifying histories, we begin with notation adapted
from Gelfond and Lifschitz [1998] in their discussion of
transition systems. As described, virtually any general
planning system (or indeed causal-reasoning formalism)
could be used to provide a setting for our approach; as
well, the approach is more broadly applicable than just
to planning problems.

Definition 1 An action signature Σ is a triple 〈V, F,A〉,
where V is a set of value names, F is a set of fluent
names, and A is a set of action names.

If V = {1, 0}, then Σ is called propositional. If V , F ,
and A are finite, then Σ is called finite.

For simplicity we will assume throughout that action sig-
natures are finite and propositional.

Definition 2 Let Σ = 〈V, F,A〉 be an action signature.
A history, H , over Σ is a sequence

(s0, a1, s1, a2, s2, . . . , sn−1, an, sn),

where

• n ≥ 0,

• each si, 0 ≤ i ≤ n, is a mapping assigning each
fluent f ∈ F a value v ∈ V , and

• a1, . . . , an ∈ A.

The functions s0, . . . , sn are called states, and n is the
length of history H , symbolically |H|.

The states of a history may be thought of as pos-
sible worlds, and the actions take one possible world
into another. For a propositional action signature Σ =
〈V, F,A〉, fluent f ∈ F is said to be true at state s iff
s(f) = 1, otherwise f is false at s.

We need to be able to refer to fluent and action names
in a history. We also need to be able to refer to time
points and their relations, as well as to the truth value of
a fluent at a time point. Further, we need to be able to re-
fer to histories, since fluents at the same time point may
have different values depending on which history is un-
der consideration. For simplicity, we first define a query
language on histories of maximum length n over an ac-
tion signature Σ, named QΣ,n. In the next subsection,
we extend this language to deal with formulas that refer
to more than one history.

Definition 3 Let Σ = 〈V, F,A〉 be an action signature
and n ≥ 0 a natural number. We define the query lan-
guage QΣ,n as follows:

1. The alphabet of QΣ,n consists of

(a) a set V of time-stamp variables, or simply vari-
ables,

(b) the set {0, . . . , n} of natural numbers,
(c) the primitive sentential connectives ‘¬’ and

‘⊃‘,
(d) the primitive quantifier symbol ‘∃‘,
(e) the set A ∪ F of action and fluent names,
(f) the arithmetic function symbols ‘+’ and ‘·’,
(g) the primitive arithmetic relation symbol ‘<’,
(h) the equality symbol ‘=’, and
(i) the parentheses ‘(’ and ‘)’.

2. A time term is an arithmetic term recursively built
from variables and numbers in V ∪ {0, . . . , n}, em-
ploying + and · (as well as parentheses) in the usual
manner. A time atom is an arithmetic expression of

the form (t1 < t2) or (t1 = t2), where t1, t2 are
time terms. We use TTn and TAn to refer to the set
of time terms and time atoms, respectively.

3. An atom is either a time atom, or an expression of
form b(t), where b ∈ A ∪ F and t ∈ TTn. If b is
an action name, then b(t) is called an action atom,
and if b is a fluent name, then b(t) is called a fluent
atom. An atom containing no variable is ground.

4. A literal is an atom possibly preceded by the sign ¬.

5. A formula is a Boolean combination of atoms, along
with quantifier expressions of form ∃v, for v ∈ V ,
formed in the usual recursive fashion.

6. A query is a closed formula, i.e., containing no free
time-stamp variables.

We define the operators ∧ , ∨ , and ≤, and the univer-
sal quantifier ∀, in the usual way. We allow to drop paren-
theses in formulas if no ambiguity arises, and we may
write quantified formulas like Qv1Qv2 α as Qv1, v2 α,
for Q ∈ {∀,∃}. For formula α, variables v1, . . . , vk,
and numbers i1, . . . , ik, α[v1/i1, . . . , vk/ik] is the re-
sult of uniformly substituting vj by ij in α, for each
j ∈ {1, . . . , k}. Thus, if v1, . . . , vk are the free vari-
ables in α, then α[v1/i1, . . . , vk/ik] is a closed formula.
For ground time term t, val(t) is the value of t according
to standard integer arithmetic.

Variables range over time points, and so quantifica-
tion applies to time points only. Atoms consist of actions
or fluents indexed by a time point, or of a predicate on
arithmetic (time point) expressions. Atoms are used to
compose formulas in the standard fashion, and queries
consist of closed formulas. This means that we remain
within the realm of propositional logic, since quantified
expressions ∀v and ∃v can be replaced by the conjunc-
tion or disjunction (respectively) of their instances.

As an example, let pickup ∈ A, red ∈ F , and i, j ∈
V . Then pickup(4), red(i+ j), i < j + 2 are atoms. As
well,

red(j) ∧ (∀k (k < j) ⊃ ¬red(k))

is a formula, and

∃i, j((i+ 2 < j) ∧ pickup(i) ∧ ¬red(j))

is a closed formula and so a query. The intent of this
last formula is that it be true in a history in which pickup
is true at some time point and three or more time points
later red is false.

The definition of truth of a query is as follows.

Definition 4 Let H = (s0, a1, s1, . . . , ak, sk) be a his-
tory over Σ of length k ≤ n, and let Q be a query of
QΣ,n.

We define H |=QΣ,n
Q recursively as follows:

1. IfQ = a(t) is a ground action atom, thenH |=QΣ,n

Q iff a = aj , where j = min(val(t), n).

2. If Q = f(t) is a ground fluent atom, then H |=QΣ,n

Q iff sj(f) = 1, where j = min(val(t), n).

3. If Q is a ground time atom, then H |=QΣ,n
Q iff Q

is true according to the rules of integer arithmetic.

4. If Q = ¬α, then H |=QΣ,n
Q iff H 6|=QΣ,n

α.

5. If Q = α ⊃ β, then H |=QΣ,n
Q iff H 6|=QΣ,n

α or
H |=QΣ,n

β.

6. If Q = ∃vα, then H |=QΣ,n
Q iff, for some 0 ≤ i ≤

n, H |=QΣ,n
α[v/i].

If H |=QΣ,n
Q holds, then H satisfies Q. For sim-

plicity, if QΣ,n is unambiguously fixed, we also write |=
instead of |=QΣ,n

.
Note that the rationale of taking j = min(val(t), n) in

Items 1 and 2 of Definition 4 is to take into account that
a time term may refer to a time point which lies outside
the interval determined by the length n of a given history.
Intuitively, if val(t) is greater than the length n of history
H , then a ground atomic query b(t), where b is either an
action name or a fluent name, is satisfied by H if it is
satisfied at the last state of H .

It is convenient to define certain additional operators
in our languages. For instance, we define the following
abbreviations, which basically correspond to well-known
operators from linear temporal logic (LTL):
• �b = ∀i b(i);

• ♦b = ∃i b(i); and

• (bU g) = ∃i
(

g(i) ∧ ∀j((j < i) ⊃ b(j))
)

.
Here, b and g are fluent or action names. Informally, �b
expresses that b always holds, ♦b that b holds eventually,
and bU g that b holds continually until g holds. Other
LTL operators are likewise expressible.

4.2 Expressing Preferences among Histories
As described, we define a preference among two histo-
ries, Hl and Hh, directly in terms of a formula φ:

Hl �φ Hh iff 〈Hl, Hh〉 |= φ. (2)

The intent with 〈Hl, Hh〉 |= φ is that φ expresses a con-
dition in which Hh is at least as preferred as Hl. This
requires that we be able to talk about the truth values of
fluents and actions in Hl and Hh. In the previous sub-
section, we defined a query language on histories, QΣ,n,
and a notion of truth in a history for a query. Given
these definitions, we are now in a position to introduce
a preference-specification language, enabling the defini-
tion of preference relations between histories, as in (2).
Definition 5 Let Σ = 〈V, F,A〉 be an action signature
and n ≥ 0 a natural number. We define the preference-
specification language PΣ,n over QΣ,n as follows:

1. The alphabet of PΣ,n consists of the alphabet of the
query language QΣ,n, together with the symbols l

and h, called history labels, or simply labels.

2. Atoms of PΣ,n are either time atoms of QΣ,n or ex-
pressions of the form ` : b(t), where ` ∈ {l,h} is a
label and b(t) is an action or fluent atom of QΣ,n.
Atoms of the form ` : b(t) are also called labelled
atoms, with ` being the label of ` : b(t). We call
` : b(t) ground iff b(t) is ground.

3. Formulas of PΣ,n are built from atoms, as intro-
duced above, in a similar fashion as formulas of
QΣ,n. We call formulas of PΣ,n also preference for-
mulas.

4. A preference axiom, or simply axiom, is a closed
preference formula, i.e., containing no free time-
stamp variables.

For a formula α of QΣ,n and a history label ` ∈ {l,h},
by ` : α we understand the formula resulting from α by
replacing each action and fluent atom b(t) of α by the
labelled atom ` : b(t). Informally, a labelled atom ` : b(t)
expresses that b holds in a history associated with label `,
at time point t. The idea is that histories associated with
label h are at least as preferred as histories associated
with label l. This is made precise as follows.

Definition 6 Let Σ be an action signature and n ≥ 0.
Let φ be a preference axiom of PΣ,n and Hl, Hh histo-
ries over Σ with |Hi| ≤ n, for i = l, h. The relation
〈Hl, Hh〉 |=PΣ,n

φ is recursively defined as follows:

1. If φ = ` : b(t) is a ground labelled atom, for ` ∈
{l,h}, then 〈Hl, Hh〉 |=PΣ,n

φ iff

(a) Hl |=QΣ,n
b(t), for ` = l, and

(b) Hh |=QΣ,n
b(t), for ` = h.

2. If φ is a time atom, then 〈Hl, Hh〉 |=PΣ,n
φ iff φ is

true according to the rules of integer arithmetic.

3. If φ = ¬ψ, then 〈Hl, Hh〉 |=PΣ,n
φ just if

〈Hl, Hh〉 6|=PΣ,n
ψ.

4. If φ = ψ ⊃ η, then 〈Hl, Hh〉 |=PΣ,n
φ just if

〈Hl, Hh〉 6|=PΣ,n
ψ or 〈Hl, Hh〉 |=PΣ,n

η.

5. If φ = ∃v ψ, then 〈Hl, Hh〉 |=PΣ,n
φ iff, for some

0 ≤ i ≤ n, 〈Hl, Hh〉 |=PΣ,n
ψ[v/i].

If 〈Hl, Hh〉 |=PΣ,n
φ holds, then 〈Hl, Hh〉 is said to

satisfy φ. If Σ and n are clear from the context, we may
simply write |= instead of |=PΣ,n

.

Definition 7 Let φ be a preference axiom of PΣ,n. For
histories Hl, Hh over Σ of maximum length n, we define

Hl �φ Hh iff 〈Hl, Hh〉 |=PΣ,n
φ.

Note that the employment of the symbol �φ is purely
suggestive at this point, since �φ may have none of the
properties of an ordering.

We give some illustrations next.

Example 1 The formula

φ =
(

h : (∃if1(i) ∧ ∀i¬f2(i))
)

∧
(

l : (∃if2(i) ∧ ∀i¬f1(i))
)

expresses a preference of f1 over f2 in the sense that, for
all histories Hl, Hh, we prefer Hh over Hl whenever it
holds that Hh satisfies f1 but not f2, whilst Hl satisfies
f2 but not f1.

Example 2 For fluent or action name b, and a variable
i, let min[b, i] be given as follows:

min[b, i] =
(

b(i) ∧ ∀k((k < i) ⊃ ¬b(k))
)

.

Furthermore, for fluent or action names f1, f2, define

φ =
(

l :∃i, j((i ≥ j) ∧ min[f1, i] ∧ min[f2, j])
)

∧
(

h :∃i, j
(

(i < j) ∧ min[f1, i] ∧ min[f2, j])
)

.
(3)

Then, Hl �φ Hh holds iff both f1, f2 are true in Hl

and Hh, but f1 is established earlier in Hh than in Hl.

In an easy extension of the preceding example, we can
express that we prefer first that f1 and f2 occur together,
and then that f1 occur before f2. As well, conditional
preferences are trivially expressible in our approach.

Having the preference-specification language at hand,
we define a preference framework as follows:

Definition 8 Let Σ be an action signature and n ≥ 0.
A preference framework over Σ with horizon n is a

pair (H ,P), where

• H is a set of histories over Σ having maximum
length n, and

• P is a set of preference axioms over PΣ,n.

The question then is how to select maximally preferred
histories, given a preference framework (H ,P). If P

contains more than one axiom, this question involves the
general problem of combining different relations and is
actually independent from the concrete form of our pref-
erence language. We say more on this in Section 6.

5 Modelling Notions of Previous
Approaches

We briefly outline how some extant preference notions in
the context of planning, as well as other temporal notions
from the literature, can be captured by our approach.

We start with the approach due to Son and Pon-
telli [2004]. As pointed out in Section 2, their lan-
guage is based on desires, i.e., formulas constructed from
∧ , ∨ ,¬, and the temporal (LTL) operators always,
until, next, and eventually. Furthermore, they de-
fine a satisfaction relation |= between histories and de-
sires, and moreover define that Hh is preferred to Hl,
given a desire φ, iff Hh |= φ but Hl 6|= φ. Let us write
Hl �PS

φ Hh if Hh is preferred to Hl in this sense. We
can show the following result:

Theorem 1 There is a translation τ mapping desires
into query formulas of QΣ,n, for some n, such that, given
a desire φ, Hl �

PS
φ Hh iff

〈Hl, Hh〉 |= (h : τ(φ)) ∧ (l : ¬τ(φ)).

In fact, translation τ is constructible in polynomial
time, and employs similar constructs as the abbreviations
�, ♦, and U in Section 4.1.

In the approach of Delgrande et al. [2004] (cf. Sec-
tion 2), a choice or temporal preference between actions

and fluents induces a corresponding preference between
histories. Considering the case of temporal preference
<t for simplicity, the following result can be shown:

Theorem 2 A history Hh is temporally preferred to a
history Hl in the sense of Delgrande et al. [2004] under
a single temporal preference f1 <t f2 just in case that
〈Hl, Hh〉 |= φ, where φ is Formula (3) from Example 2.

Finally, we consider the well-known interval alge-
bra [Allen, 1983], another dominant approach in tem-
poral reasoning, in which time intervals are the primi-
tive objects. There are 13 basic relations between inter-
vals, including relations such as before, meets, overlaps,
etc. One could envisage a temporal preference language
based on the interval algebra, wherein one may assert, for
example, that the interval during which coffee is drunk
overlaps with or starts before the interval in which a sem-
inar takes place. To this end, one might define that a flu-
ent f constitutes an interval just if it is true only for a
contiguous set of time points:

interval(f) = ∃i, j
(

(i ≤ j)∧

∀k(f(k) ≡ (i ≤ k) ∧ (k ≤ j))
)

.

Then, the relation that an interval meets another can be
defined by:

meets(f, g) = interval(f) ∧ interval(g) ∧ ∃i(f(i)∧

¬f(i+ 1) ∧ ¬g(i) ∧ g(i+ 1)).

Other relations follow analogously.

6 Ordering on Histories
We consider here how, given a preference framework,
one may determine those histories that are maximally
preferred. In a preference framework, each preference
formula defines a binary relation whose instances are
pairs of relatively less- and more-preferred histories.
Thus, one can express various independent preference re-
lations that must in some sense be combined in order to
come up with maximally preferred histories. However
this problem, of combining differing preference order-
ings, is a general and difficult problem in and of itself,
and is the object of ongoing research. Nonetheless, it is
instructive to consider ways in which one may determine
an overall preference ordering on histories, given a pref-
erence framework.

To begin, we can identify two base or generic ap-
proaches for determining (maximally) preferred histo-
ries. Recall that each φ ∈ P induces a binary relation
over H by Hl �φ Hh iff 〈Hl, Hh〉 |=PΣ,n

φ. As a base
approach we can define:
Definition 9 Let (H ,P) be a preference framework
over action signature Σ with horizon n ≥ 0. Then,
H ∈ H is a (general) maximally preferred history iff
H is a maximal element of

(∪{�φ| φ ∈ P })∗,

where, for binary relation R, R∗ denoted the transitive
closure of R.

Similarly, we can define a base approach founded on
cardinality:

Definition 10 Let (H ,P) be a preference framework
over action signature Σ with horizon n ≥ 0. Further-
more, for H ∈ H , let

c(H) = |{H ′ �φ H | H ′ ∈ H and φ ∈ P }|.

Then,H ∈ H is a (general) cardinality-based maximally
preferred history iff for every H ′ ∈ H , we have c(H ′) ≤
c(H).

We do not give a full discussion of the above ap-
proaches here—rather, for illustrative purposes, we elab-
orate on the cardinality-based approach.

Consider where one is given a set of desirable out-
comes, of which the goal is to determine the history
which satisfies the maximum number. Examples include
fluents which are simply preferred to be true somewhere
in a history, and temporal preferences [Delgrande et al.,
2004] in which one prefers that (pairs of) fluents become
true in a specific order. In such cases, one wants to max-
imise the set of these desiderata. Assume then that we are
given a set of (for simplicity) fluents D = {f, g, h, . . .},
where we wish to prefer a history in which as many of
these fluents are true as possible.

Given a set of histories H and preferences D, we de-
fine our preference framework by:

P = {(l : �¬d) ∧ (h : ♦d) | d ∈ D}. (4)

Definition 10 yields a total preorder on histories, the
maximum of which constitute the set of preferred his-
tories. A refinement of this approach is to use set con-
tainment on satisfied preferences, rather than cardinality:

Definition 11 Let (H ,P) be a preference framework
over action signature Σ with horizon n ≥ 0, and assume
that P is given by (4). For H ∈ H , let

s(H) = {H ′ �φ H | H ′ ∈ H and φ ∈ P }.

Then, H ∈ H is a (general) set containment-based max-
imally preferred history iff for every H ′ ∈ H , we have
s(H ′) ⊆ s(H).

Example 3 Consider a preference framework, where we
have simple preferences given byD = {f, g, h}. Assume
that we have histories H1, H2, H3, such that the follow-
ing hold:

H1 |= ♦f ∧ ♦h, H2 |= ♦g, H3 |= ♦h.

According to Definition 10, H1 is preferred; according
to Definition 11, H1 and H2 are preferred.

Besides the base approaches for determining maxi-
mally preferred histories, as pointed out above, another
possibility for generating a global ordering on histories
would be to employ methods based on the approach by
Brewka [2004] for building complex combinations of
different preference strategies. An elaboration of such
techniques is an issue for future work.

7 Conclusion
We have addressed the problem of expressing arbitrary
preferences over histories (or linear temporal sequences
interspersed with actions), inter alia addressing prefer-
ences in planning systems. We first defined a query lan-
guage for specifying arbitrary conditions that may be sat-
isfied by a history. Given this, we specified a second lan-
guage for defining preferences. A preference induces a
binary relation on histories, so that in an ordered pair of
histories the second history is preferred to the first. From
this, one can define a global ordering on the set of his-
tories, the maximal elements of which are the preferred
histories. The overall approach is very general and flex-
ible; specifically we argue that previous approaches to
preferences in planning are expressible in our formalism.

Acknowledgements
The second author was partially supported by the Ger-
man Science Foundation (DFG) under grant SCHA
550/6, TP C. The collaboration of the second and third
author was partially supported by the Information Soci-
ety Technologies programme of the European Commis-
sion, Future and Emerging Technologies under the IST-
2001-37004 WASP project.

References
[Allen, 1983] J. Allen. Maintaining knowledge about

temporal intervals. Communications of the ACM,
26(1):832-843, 1983.

[Brewka, 2004] G. Brewka. A rank based description
language for qualitative preferences. Proc. ECAI
2004, p. 303-307. IOS Press, 2004.

[Delgrande et al., 2004] J. Delgrande, T. Schaub, and
H. Tompits. Domain-specific preferences for causal
reasoning and planning. Proc. KR 2004, p. 673-682,
2004. AAAI Press.

[Eiter et al., 2003] T. Eiter, W. Faber, N. Leone,
G. Pfeifer, and A. Polleres. Answer set planning un-
der action costs. Journal of Artificial Intelligence Re-
search, 19:25-71, 2003.

[Fitting, 1990] M. Fitting. First-Order Logic and Auto-
mated Theorem Proving. Springer, New York, 1990.

[Gabbay, 1996] D. M. Gabbay. Labelled Deductive Sys-
tems: Volume 1, volume 33 of Oxford Logic Guides.
Oxford University Press, 1996.

[Gelfond and Lifschitz, 1998] M. Gelfond and V. Lifs-
chitz. Action languages. Electronic Transactions on
AI, 3, 1998. Available at http://www.ep.liu.
se/rs/cis/1998/016/.

[CI, 2004] Special issue on preferences in CP and AI.
Computational Intelligence, 2(20), 2004.

[Levesque et al., 1998] H. Levesque, F. Pirri, and R. Re-
iter. Foundations for the situation calculus. Linkoping

Electronic Articles in Computer and Information Sci-
ence, 3(18), 1998. Available at http://www.ep.
liu.se/ea/cis/1998/018/.

[Oztürk et al., 2005] M. Oztürk, A. Tsoukiàs, and
Ph. Vincke. Preference modelling. In Multiple Crite-
ria Decision Analysis, p. 27-72. Springer, 2005.

[Son and Pontelli, 2004] T. Son and E. Pontelli. Plan-
ning with preferences in logic programming. Proc.
LPNMR 2004, p. 247-260. Springer, 2004.

