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Abstract malism will subsume the ‘classical’ abductive reasoninige T
formalism will provide us, however, with additional repees
tation capabilities that will encompass important altéxea
forms of abduction, such as abductive reasoning in theories
of actions and change and abductive logic programming. As
aresult, we obtain a generalized theory of abduction that co
ers in a single framework practically all kinds of abductive
reasoning used in Al.

Our basic language will be the classical propositional lan-
guage with the usual connectivés, v, -, —, t,f}. F will
1 Introduction denote the classical entailment. A Tarski consequence rela

Abduction is a kind of reasoning from facts to their explana-tion I in a classical language sipraclassicalf it subsumes
tions that is widely used now in many areas of Al, including classical inferencet= C i-. By aconditional theorywe will
diagnosis, action theories, truth maintenance, knowlegige Mean a sel of rules A-B, whereA, B are classical propo-
date and logic programming. In this study we are going toSitions: -a will denote the least supraclassical consequence
show that abduction can be given a uniform representatioft|ation containingl, andCn., its associated provability op-
in terms of production and causal inference relations fro rator. As can be verified, -4 A hOIdS.' iff A is .der|vable
[Bochman, 2004a Such inference relations provide a natural "o @ by the rules fromA and the classical entailment.
generalization of classical logic that allows for nonmamit A consequence relation iassicalif it is supraclassical
reasoning. Accordingly, the suggested representation widnd satisfies the Deduction rulexifA - B, thena - A—B.
clarify the role of causal reasoning in abduction, as well as-lassical consequence relation can be seen as a classical en
the relation between abduction and nonmonotonic reasoning@iiment with some additional, nonlogical axioms; it. shéis

Causal considerations play an essential role in abductiorfilréady all the rules of classical inference.

They determine, in particular, the very choice of abduaple

as well as the right form of descriptions and constraintsiiev 2 Abductive systems and abductive semantics
in classical first-order representations). As has been show ) o o )
already in[Darwiche and Pearl, 1994system descriptions We will describe first a formalization of standard abductive
that do not respect the natural causal order of things can préeasoning. This formalization will serve as a basis for our
duce inadequate predictions and exp|anation5_ subsequent constructions and representatlons.

The intimate connection between causation and abduction An abductive systeris a pairA = (Cn, A), whereCn is a
has become especially vivid in the so-called abductive apsupraclassical consequence relation, whila distinguished
proach to diagnosis (see, e [ox and Pietrzykowski, 1987; set of propositions calleabducibles A set of abduciblea C
Poole, 1994; Konolige, 199% As has been acknowledged A is an explanatiorof a proposition4, if A € Cn(a).
in these studies, reasoning about causes and effects shouldin applications, the consequence relation is usually
constitute a logical basis for diagnostic reasoning. Unfor given indirectly by a generating conditional theaty, in
nately, the absence of an adequate logical formalization fowhich case the corresponding abductive system can be de-
causal reasoning has relegated the latter to the role of-an ifined as(Cna, .4). Many abductive frameworks also impose
formal heuristic background, with classical logic servig ~ syntactic restrictions on the set of abduciblg’s Thus, A is
the representation language. This naturally raises the-queoften restricted to a set of special atoms (e.g., thosefioiitt
tion whether classical logic is adequate for all kinds of ab-abnormality predicatesb), or to the corresponding set of lit-
ductive reasoning. We will give below certain grounds for aerals. The restriction of this kind is not essential, howeve
negative answer to this question. Indeed, for any abducible propositiohwe can introduce a

In this study we suggest to base abductive reasoning en-
tirely on causal descriptions. As we will see, the resulforg 'Poole’s TheoristPoole, 1988kbeing a notable exception.

The paper provides a uniform representation of
abductive reasoning in the logical framework of
causal inference relations. The representation cov-
ers in a single framework not only traditional, ‘clas-
sical’ forms of abduction, but also abductive rea-
soning in diagnosis, theories of actions and change,
and abductive logic programming.



new abducible propositional atopy, and add the equiva-
lenceA < py4 to the underlying theory. The new abductive
system will have much the same properties.

An abductive systeriCn, .A) will be calledclassicalif Cn
is a classical consequence relation. A classical abdusyise
tem can be safely equated with a p@; .A), whereX is a set

of classical propositions (the domain theory). An example o

such a system in diagnosid e Kleeret al, 1997, a descen-
dant of the consistency-based approaclRziter, 1987.

In abductive systems, acceptance of propositions depen
on existence of explanations, and consequently such sgste

sanction not only forward inferences determined by the con{Cut)
sequence relation, but also backward inferences from factgrryth)

to their explanations, and combinations of both. All thes
kinds of inference can be captured formally by considerin

3 Production and causal inference

Production inference relations frofBochman, 2004aare
based on rules of the forrA = B having an informal inter-
pretation “A produces, or explaing3”. Formally, a(regular)
production inference relatiois a binary relatior=- on the set
of classical propositions satisfying the following postels:

(Strengthening) If AF BandB=C, thenA=C,

(Weakening) If A= BandBE C,thenA=C,

%nd)  If A= BandA=C,thend= B AC;

If A= BandA A B=C,thenA=C,
t=1t;

Z(Falsity) f=f1.

only theories ofCn that are generated by the abducibles. This From a logical point of view, the most significant ‘omis-

suggests the following notion:

Definition 2.1. Theabductive semanticS, of an abductive
systemA is the set of theorie§Cn(a) | a C A}.

sion’ of the above set is the absence of the reflexivity postu-

late A= A. Itis precisely this feature of production inference

that creates a possibility of nonmonotonic reasoning.
Production rules are extended to rules with sets of propo-

By restricting the set of theories to theories generated byitions in premises by stipulating that, for a sebf propo-
abducibles, we obtain a semantic framework containing morgitions,u = A hold if A a = A for some finitea C . C(u)

information. Generally speaking, all the information thah

will denote the set of propositions explaineday

be discerned from the abductive semantics of an abductive

system can be seen as abductively implied by the latter.

The information embodied in the abductive semantics can
be made explicit using the associated Scott consequerzze re

tion, defined as follows for any sets, ¢ of propositions,
bbac = (Va C A)(bC Cn(a) — cNCn(a) #0)

Clu)y={A|u= A}

| The production operatd plays the same role as the usual
derivability operator for consequence relations. In jgatér,

it is a monotonic operator, that is, C v impliesC(u) C
C(v). Moreover( is a continuous operator.

A (monotonic) semantics of production inference relations

This consequence relation describes not only forward exis described below.

planatory relations, but also abductive inferences froopp+
sitions to their explanations. Speaking generally, it dbss
the explanatory closureor completion of an abductive sys-
tem, and thereby captures abduction by deduction[@bn-
soleet al, 1991; Konolige, 1998.

Example.The following abductive system describes a varian

of the well-known Pearl's example. Assume that an abductive

systemA is determined by the sek of rules

Rained F Grasswet Sprinkler F Grasswet
Rained F Streetwet,

and the set abducible$ained, —Rained, Sprinkler,
=Sprinkler, -Grassswet.
Since Rained and —Rained are abducibles,Rained

an independent (exogenous) parameter (and similarly for

Sprinkler). However, since only-Grassswet is an ab-
ducible, non-wet grass does not require explanation, btit wi
grass does. Thus, any theory&f that containsGrasswet
should contain eitheRained, or Sprinkler, and conse-
guently we have

Grasswet by Rained, Sprinkler.

Similarly, Streetwet implies in this sense both its only ex-
planationRained and a collateral effeatrasswet.

Definition 3.1. e A bimodelis a pair of consistent deduc-
tively closed sets. Aroduction semanticts a set of bi-
models. A production semantigsis inclusive if v C u,
for any bimodel(u, v) from B.

e A production ruleA=- B is valid in a production se-
manticsB if, for any bimodel(u, v) from B, A € w only
if B €w.

Regular production relations are strongly complete for the
inclusive production semantics (sggochman, 2004

By acausal theorye will mean an arbitrary set of produc-
tion rules. For any causal theory, we will denote by=-a
the least production relation that includés Clearly, =
is the set of all production rules that can be derived fram
using the postulates for production relations.

t

3.1 Causal and quasi-classical inference

el'he following two special kinds of production inferencearel
tions will play an important role in what follows.
A production relation will be calledausal if it satisfies

(Or) IfA=CandB=C,thenAVv B=C.
andquasi-classicalif it is causal and satisfies
(Weak Deduction) If A= B, thent=(A—B).

Causal production relations allow for reasoning by cases,

2A Tarski consequence relation of this kind has been used for th&nd hence they can be seen as systems of objective reason-

same purposes {i.obo and Uzéategui, 1997.

ing about the world. Moreover, the relevant productionsule



can already be interpreted eausal rulessince they provide causal inference relations constitute a maximal logic adtx

a natural formal representation of ordinary causal assesti  for this kind of nonmonotonic semantics.

A useful fact about such inference relations is that any pro- McCain and Turner have established an important connec-

duction rule is reducible to a set of clausal rufgé; = \/1;,  tion between the nonmonotonic semantics of a causal theory

wherel;, [, are classical literals. In addition, any rule=- B and completion of the latter. A finite causal thedxyis def-

is equivalent to a pair of ruled A =B =-f andA A B=- B. inite, if it consists of rules of the formd = [, wherel is a
The rulesA A B = B areexplanatory rulesThough logi- literal or f. A completionof such a theory is the set of all

cally trivial, they play an important explanatory role irusal  classical formulas

reasoning by saying that, il holds, B is self-explanatory

(and hence does not require explanation). On the other hand, — \/{A| A=pe A}  —p—\/{A|A=-pe A}

the ruleA A =B = f is aconstraintthat does not have an ex- N

planatory content, but imposes a factual restriction B on  for any propositional atom, plus the sef—A | A=f € A}.

the set of interpretations. Then the classical models of the completion precisely eorre
Quasi-classical production relations will be shown to ehar SPond to exact worlds ak (see[Giunchigliaet al, 2004).

acterize classical abductive reasoning. Weak Deduction is The completion formulas embody two kinds of informa-

equivalent to the following postulate: tion. As (fc.)rwfa\rd).implications from riglht to left, they ctain

(CA)  If A=, thend= A the material |mpl|cat|ons cgrres_:pon_dlng to the causalsryle

’ ' from A. In addition, left-to-right implications state that a lit-

The postulate asserts that any constrains also a self-  eral belongs to the model only if one of its causes is also in

explainable proposition. This partial collapse of theidst  the model. These implications reflect the impact of causal

tion between factual and explanatory information is adyual descriptions using classical logical means. Note, in pati

a first symptom of the limitations of classical reasoning inlar, that explanatory ruled A [ = [ produce trivial forward

representing abduction. implications, but contribute additional explanations &m-
. . curring literals. In this sense, they play the same roleeak
3.2 Nonmonotonic semantics causedrom [Poole, 1994 namely rules that cannot be used

Production inference relations determine also a natunad no for prediction, but only for explanation of observations.
monotonic semantics, and provide thereby a logical basis fo

a particular form of nonmonotonic reasoning. 4 Production inference and abduction

Definition 3.2. A general nonmonotonic semantioka pro- In this section we will show that production inference pro-

?hua(zctlignslgtf;rg?gfoz)eclgittl% r;]ésSTCehstﬁtmof:aél(gi)!act theories vide; a formal represe.ntation for a_bductive reasoning in ab
' ' ductive systems. To this end, we will extend the relevant no-

The general nonmonotonic semantics of a causal thory tion of explanation and say that an arbitrary sedf propo-
will be identified with the nonmonotonic semantics=efx . sitionsexplainsa propositionA in an abductive system, #

An exact theory describes an informational state that i$s explainable by the abducibles that are impliecbyThe
closed with respect to the production rules and such thayeve following definition is based on viewing this notion of expla
proposition in it isexplainedby other propositions accepted nation as a kind of production inference.
in this state. Accordingly, they embody amplanatory clo-

sure assumptignaccording to which any accepted PTOPOSI-\\ith an abductive syster is a production relatiors, de-

tion should also have explanation for its acceptance. ; .
The general nonmonotonic semantics for causal theorie§TMined by all bimodels of the forfu, Cn(u N A)), where
jyis a consistent theory @n.

is indeed nonmonotonic in the sense that adding new rules t

the production relation may lead to a nonmonotonic change of We will assume that the set of abducibldsof an abduc-

the associated semantics, and thereby of derived infoomati tive system is closed with respect to conjunctions, thaif is,

This happens even though production rules themselves aré and B are abducibles, thed A B is also an abducible.

monotonic, since they satisfy Strengthening (the Anteegde Then the above production inference relation admits a very
Exact theories are fixed points of the production operatosimple syntactic characterization. Namely=-, B holds if

C. Since the latter operator is monotonic, exact theoried (anand only if A implies some abducible that explaifs

hence the nonmonotonic semantics) always exist.

Definition 4.1. A production inference relation associated

Lemma4.1. If =, is a production inference relation associ-
The causal semantics ated with an abductive systedy) then

For a causal interpretation of production rules, it is ratto .
restrict the nonmonotonic semantics to worlds. A=, B iff (30 € A)(C € Cn(4) & B € Cn(C))

Definition 3.3. A causal nonmonotonic semantissa pro- ~ As a consequence, we obtain that abducibles of an abduc-
duction inference relation or a causal theory is the setlof altive system correspond precisely to ‘reflexive’ proposisof
its exact worlds. the associated production relation.

The causal nonmonotonic semantics of causal theories c&orollary 4.2. If =, is a production inference relation as-
incides with the semantics suggestedNtCain and Turner, sociated with an abductive systef) thenC =4 C iff C is
1997. Moreover, it has been shown[Bochman, 200Bthat ~ Cn-equivalent to an abducible.



Due to this correspondence, reflexive (self-explanatory)jcausal theory’ (see, e.glConsoleet al, 1991; Konolige,
propositions of a production relation can be seen as abt992; 1994; Poole, 1994 The name has a different meaning

ducibles, and hence we introduce in our study, namely it denotes an arbitrary set of productio
Definition 4.2. A propositionA will be called anabducible ~ fules. It will be shown, however, that the these two notidins o
of a production inference relatios, if A= A. a causal theory are closely related.

Production inf lati ding to abdecti Recall that a set of rules can also be viewed as a causal the-
roduction interence relations corresponaing to aboectiv . iy oyr sense. Moreover, it has been shown earlier that ab-
systems form a special class described in the next defm't'onducibles can be incorporated into causal theories by aiegept
Definition 4.3. A regular production relation will be called corresponding explanatory rulels= A. Accordingly, for an

abductivef it satisfies abductive systentA, .A), we will introduce a causal theory
(Abduction) If B=C, then B= A= (C, for some ab- 4. Which is the union ofA (viewed as a set of production
ducible A. rules) and the sel =1 | [ € A}.

Production inference in abductive production relations is To begin with, the abductive semantics/pis included in

always mediated by abducibles. The following lemma de—the general nonmonotonic semanticsioj.

scribes the corresponding nonmonotonic semantics. Lhemma f4A6 Any theoryCna (a), wherea C A, is an exact
Lemma 4.3. Exact theories of an abductive production rela- theory ofA4. ) ) .

tion are precisely sets of propositions of the faftu), where ~_However, the reverse inclusion does not hold, even in the
wis a set of abducibles. literal case, and it is instructive to clarify the reasonghis

The next result establishes a correspondence between pappens. First, if the (;ausal theahy, is not well-founded, it-

. X . ; ay have exact theories that are not generated by abducibles
ductive production relations and abductive systems. SecondA 4 may create new abducibles of its own, if some
Theorem 4.4. A production inference relation is abductive if of the propositions happen to be inter-derivable. Taking a
and only if it is generated by an abductive system. simplest example, if we have that botl ¢ andg - p belong

Finally, we will show that the abductive semantics of anto 4, then bottp andq will be abducibles ot ,.
abductive system coincides with the nonmonotonic semantic Both the above reasons for a discrepancy will disappear,
of the associated abductive production relation. however, ifA is anacyclictheory. Actually, a restriction of
Theorem 4.5. If =4 is a production inference relation cor- this kind has been used extensively in the literature - sge, e

responding to an abductive systéimthen the abductive se- [Pearl, 1088; Consolet al, 1991; Poole, 1994

mantics ofA coincides with the general nonmonotonic se- A dependency grapbf a literal conditional theonA is
Mantics ok . the directed graph with literals as nodes, in which the ares a

) ) ) pairs(l,m) of literals, for whichA contains a rulé, a - m.
Thus, abductive production relations under the generah conditional theory isacyclig, if its dependency graph does
nonmonotonic semantics provide a faithful representatfon net contain infinite descending paths. In what follows, we

abductive reasoning. Moreover, the representation gives @j|| use, however, a weaker condition that will be sufficient
logical definition to abducibles as propositions having @ ce for our purposes.

tain logical property (namely reflexivity). Definition 4.4. A literal abductive s .
: : 4. ysten{A, A) will be
As has been shown iBochman, 2004 any production called abductively well-foundedif any infinite descending

relation includes a greatest abductive subrelation; mameo : : :
in many regular situations (e.g., when the production iahat path in the dependency graphacontains an abducible.

is well-founded) the latter determines the same nonmoimton Clearly, any aCyC|IC_ theory will also be ab_duct_lvely well-
semantics. Now, since abductive production relationsecorr founded. The following result shows that in this case the
spond exactly to abductive systems, this means that the gef@usal theoryA 4 captures the ‘abductive content’ of the
eral nonmonotonic semantics of a production relation is usuSource abductive system.

ally describable by some abductive system, and vice versa. Theorem 4.7. If A is an abductively well-founded literal ab-

o ) ductive system, then the abductive semantics obincides
4.1 Abduction in literal causal theories with the nonmonotonic semanticsf;.

Now we will show that a certain well-known class of abduc-  The above result shows that, from the perspective of ab-
tive systems can be directly interpreted as causal theoriegyctive reasoning, literal conditional theories can beveie
The description below will demonstrate, in effect, that thedirectly as causal theories.

causal reading of abductive systems has long been presegiample. (continued The following causal theory corre-

in the study of abduction and diagnosis. sponds to the (literal) conditional theory from the Peagks
By aliteral inference rule we will mean a rule of the form ample, discussed earlier.

a k= I, wherel is a propositional literal, and a set of literals.
A conditional theoryA will be calledliteral one, if it consists
only of literal rules. Finally, an abductive systein= (A, A) Rained = Streetwet
will be calledliteral one, if A is a literal conditional theory, Rained = Rained —Rained = —Rained
and the set of abducible4 is also a set of literals.

The above simplified abductive framework has been ex-
tensively studied in the theory of diagnosis under the nameGrasswet = ~Grasswet  Streetwet = ~Streetwet

Rained = Grasswet Sprinkler = Grasswet

Sprinkler = Sprinkler —Sprinkler = - Sprinkler



As follows from the above result, the general non- The framework of causal inference also provides syntac-
monotonic semantics of this causal theory coincides withtic means for differentiating between explaining obsdoret
the abductive semantics of the source abductive system, arathd finding models consistent with observations. Namety, fo

hence it determines the same abductive inferences. an observatiorO, adding a constraintO =-f to a causal
theory amounts to reducing the causal honmonotonic seman-
5 Causal abduction tics to exact worlds that explai@. But if we want only to

check consistency af with other data, we can add a rule
For ‘objective’ applications of abduction, such as diagsos ¢ —. O. By the decomposition of causal rules, the latter is
and logic programming, we have to consider the strongegquivalent to the combination efO = f and the explanatory
causalnonmonotonic semantics of production inference. Asryle O = O that make$) an abducible. Accordingly, the ob-
we mentioned, causal inference relations constitute an ad@ervationO is exempted from the burden of explanation, and
quate logic for this semantics. The corresponding kind othence is checked only for consistency. Note, however, that
abductive systems is described in the next definition. precisely this distinction disappears in quasi-classictir-

Definition 5.1. An abductive systemd = (Cn,.4) will be  ence relations (see the postulate (CA) in Section 3.1).
called A-disjunctiveif A is closed with respect to disjunc-

tions, andCn satisfies the following two conditions, for any 2-1 APduction in logic programming

abduciblesA, A; € A, and arbitraryB, C" Finally we will show that abduction in logic programming is
e I BF AandC - A.thenB Vv C - A: also representable as a special case of the causal framework
' ' The role of abduction in logic programming is twofold (see
o If A BandA; - B, thenAv A, - B3 [Kakaset al, 1994 for an overview). First of all, logic pro-
A-disjunctive systems are precisely abductive systems th&tfams themselves are representable as abductive systems in
generate causal production relations: which negated atoms play the role of abducibles. In this

) ) o . sense, logic programs are inherently abductive, and abduc-
Theorem 5.1. An abductive production relation is causal iff tjon provides a representation for negation as failure.

it is generated by amd-disjunctive abductive system. Abductive logic programsare defined as pairél, A),
In contrast, classical abductive reasoning corresponds iwherell is a logic program, and! a set abducible atoms.
this sense to quasi-classical production inference. A formalization of abductive reasoning in this setting is{r

. . L . vided by thegeneralized stable semantifisakas and Man-
Theo.rem_5._2_. An abductive producfuon relat|o_n IS quasi- carella,ylgge]g According to the latter, an abductive explana-
classical iff it is generated by a classical abductive syste tion of a queryq is a subses of abducibles such that there
An important negative consequence from the above twexists a stable model of the progrdinJ S that satisfieg.
results is that classical abductive systems are alreadi ina It has been shown iinoue and Sakama, 199%$owever,
equate for reasoning with respect to the causal nonmorwtonthat abductive logic programs under the generalized stable
semantics. This conclusion is immediate from the fact thamantics are reducible to general disjunctive logic program
causal inference relations constitute a maximal logiclier t under the stable semantics. The relevant transformation of
latter, and hence any postulate added to causal inferedice wabductive programs can be obtained simply by adding to
extend the set of admissible models beyond exact worlds. the program ruleg, not p <, for any abducible atom from
In fact, the distinction between causal and classical abA. This reduction has shown, in effect, that abductive pro-
ductive reasoning has appeared as a distinction betweagrams have the same representation capabilities as general
consistency-based and abductive approach to diagnosis. Trlogic programs.
ditionally, the difference between the two has been desdrib  Now, general logic programs has been showiBiochman,
as a difference between finding the set of faults consister20044 to be representable as causal theories. The translation
with observations versus finding faults that explain (tlsat i for the stable semantics is obtained as follows. First, aay p
entail) observations. Further studies have shown, howevegram rulec, not d < a, not b is translated into a causal rule
that a slight generalization of the consistency-basedogmpr  d, -b = Aa —Ve. Second, the resulting causal theory is aug-
provides a representation also for explaining observationmented with the causal version of the Closed World Assump-
(seelde Kleeret al, 1992). On the other hand, it has been tion stating that all negated atoms are abducibles:
shown already infPoole, 1988pthat that the consistency Default Negation —p = —p, for any propositional atom.
based diagnosis can be represented via a completion of an
abductive theory. The real difference between the two ap- The causal nonmonotonic semantics of the resulting causal
proaches can be seen, however, as the difference betwe#teory will correspond precisely to the stable semanti¢h@f
a fully classical description of diagnosis systems (afdim  Source logic program. Moreover, unlike known embedding of
Kleer et al, 1994) and their causal description (see, e.g.,logic programs into other nonmonotonic formalisms, namely
[Konolige, 1994; Poole, 199% The earlier abductive ap- default and autoepistemic logics, the causal interpaetadf
proach of[Consoleet al, 1991 can also be viewed as im- logic programs turns out to be bi-directional in the sensg th
plicitly causal, since it used a completion of the conditibn any causal theory is reducible to a general logic program.
base as way of solving the abductive task. Combining the above representation results, we immedi-
- ately obtain a causal interpretation of abductive logic-pro
3Cf. the rule Ab-Or in[Lobo and Uzétegui, 1997. grams. Fortunately, under the causal translation of progra



rules, Inoue and Sakama’s rulpsnot p « correspond to [Darwiche and Pearl, 1994A. Darwiche and J. Pearl. Sym-
causal rulep = p that make each sughan abducible of the bolic causal networks. IfProceedings AAAI'94pages
resulting causal theory. Accordingly, for an abductive-pro  238-244, 1994.

gram(IT, A), we define the causal theotyy; 4 as the union  [4a Kleeret al, 1994 J. de Kleer, A. K. Mackworth, and
tr(I) UA™ U A, wheretr(I) is the set of causal rules cor- g "Reiter. Characterizing diagnoses and systesusifi-

responding to the rules af, A~ is the set of rules:p = —p, cial Intelligence 52:197-222, 1992
for all atomsp, andA™ is the set of rulep = p, forall p € A. _ o ' o .
Then we obtain [Giunchigliaet al, 2004 E. Giunchiglia, J. Lee, V. Lif-

. : schitz, N. McCain, and H. Turner. Nonmonotonic causal
Theorem 5.3. The generalized stable semantics of an abduc- y g ;
tive program(I1,.4) coincides with the causal nonmonotonic theories Artificial Intelligence 153:49-104, 2004.
semantics of\jy 4. [Inoue and Sakama, 19P&. Inoue and C. Sakama. Nega-
Thus, abductive logic programs also correspond to causal 10N as failure in the headlournal of Logic Programming
theories under the causal nonmonotonic semantics, subject 35:39-78, 1998.

the Closed World Assumption. [Kakas and Mancarella, 19P\. C. Kakas and P. Mancar-
. ella. Generalized stable models: A semantics for abduc-
6 Conclusions tion. In Proc. European Conf. on Artificial Intelligence,

It has been shown that the framework of production and ECAI-9Q pages 385-391, Stockholm, 1990.
causal inference provides a uniform logical basis for abduc[Kakaset al., 1999 A. C. Kakas, R. A. Kowalski, and
tive reasoning. The suggested causal representation of ab- F. Toni. The role of abduction in logic programming.
duction is syntax-independent in the sense that abducibles In D. M. Gabbay, C. J. Hogger, and R. A. Robinson,
are defined not as syntactically designated propositiams, b editors,Handbook of Logic in Artificial Intelligence and
as propositions satisfying certain logical property in asz Logic Programming volume 5, pages 235-324. Oxford
system, namely reflexivity (self-explanatioA)= A. UP, 1998.

The results of this study indicate also that causal reagomn[Konolige, 1992 K. Konolige. Abduction versus closure in

constitutes an essential ingredient, Q”d evena pre-a:(_)n,dllt causal theoriesArtificial Intelligence 53:255-272, 1992.
of abduction. A truly general formalization of abduction in

its current applications in Al can be achieved only by taking[Konolige, 1994 K. Konolige. Using default and causal rea-

into account the causal picture of a situation or a system. soning in diagnosisAnnals of Mathematics and Artificial
It seems reasonable to suppose that the suggested causalntelligence 11:97-135, 1994.

theory of abduction could be useful also in other applica{| obo and Uzategui, 1997 J. Lobo and C. Uzategui. Ab-

tions of abduction in Al. Taking only one example, the causal  ductive consequence relations Artificial Intelligence
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