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Abstract

Continuity from a qualitative perspective is dif-
ferent from both the philosophical and mathemat-
ical view of continuity. We explore different in-
tuitive notions of spatio-temporal continuity. We
present a general formal framework for continuity
and continuous transitions in mereotopology for
spatio-temporal histories and thus sketch the cor-
rectness of the conceptual neighbourhood for the
qualitative spatial representation languageRCC-8.

1 Introduction
We want to formalize theintuitivenotion of spatio-temporal
continuity for a qualitative theory of motion. We con-
sider temporally extended regions in space. This onto-
logical view is not entirely new (e.g. see[Russell, 1914;
Carnap, 1958; Clarke, 1981]). More recently,[Hayes, 1985;
Vieu, 1991] have considered all objects to be occurrent and
regarded as spatio-temporal (henceforth: s-t ) histories. To
the best of our knowledge[Muller, 1998a] is the first at-
tempt at a full mereotopological theory of space-time.

However it is worth noting that continuity from a quali-
tative perspective is different from both philosophical and
mathematical view of continuity. Even though we com-
mit to an ontology where objects are occurrent, we do
not attempt a formal characterization of the identity crite-
ria, which is difficult [Wiggins, 1980] and also beyond the
scope of this paper. The problem of continuity of contin-
uants still lacks a convincing treatment. There are a num-
ber of possibilities in the literature to cope with this (see
[Thomson, 1983]). Some involve considering four dimen-
sional space-time (e.g.[Heller, 1990]) while others focus
on a revised theory of parts[Simons, 1987].

Muller presents an intuitive notion of s-t continuity and
one that is perhaps nearest to a qualitative understanding
of motion. Apart from Muller, the main work which ad-
dresses what continuity implies for a common-sense theory
of motion is [Galton, 2000]. However, it falls short of an
explicit generic characterization of s-t continuity in a point-
less mereotopology.

Intuitive spatio-temporal continuity (as previously pro-
posed by[Muller, 1998a]) is temporal continuity without
spatial leaps. However, such a notion of continuity allows
temporal pinchingi.e., a history is allowed to disappear and
re-appear instantaneously andweird transitions are possible
(see fig. 10). To avoid temporal pinching, we introduce a
notion of firm-connectedness. We investigate the different
notions of s-t continuity and transitions possible under dis-
tinct notions and provide a hierarchy of conceptual neigh-
bourhood diagrams.

Further, Muller’s interpretation of history-based theo-
rems of transition has been shown not to be fully adequate
[Davis, 2000]. Davis analyses the conditions under which
Muller’s theory can be said to be adequate and presents an
alternative more comprehensive framework for character-
isation of transitions. However, it is not expressed as an
object level first order theory, and it sacrifices the spirit of
mereotopology as it defines time instants and s-t points1.

Davis claims that proving the correctness of rules that
state the non-existence of transitions or worse, the exis-
tence of transitions from plausible mereotopological ax-
ioms would seem to be daunting if not hopeless. Tak-
ing up this challenge, we characterize transitions in pure
mereotopology over s-t regions. In order to identify an in-
stantaneous relation occurring during a transition between
histories we present an exhaustive categorization of rela-
tionships between adjacent parts of histories. Under the
strongest notion of s-t continuity, we axiomatize continu-
ous transitions for maximal firmly-connected s-t histories.
We sketch how to use the formulation to recover theRCC-
8 conceptual neighbourhood[Cohnet al., 1997]. Our ap-
proach is closer to Muller’s than to Davis’ in that we present

1[Pratt and Schoop, 1998] argue that points can always be
defined and their non introduction is thus illusory. However
the explicit introduction of points is still counter to the origi-
nal motivation and spirit of mereotopology[Whitehead, 1929;
Gerla, 1995]. Moreover it is possible there may be computational
reasons to eschew their explicit introduction. We recognize that
whether points are allowed or not in a mereotopology is perhaps
controversial, but we believe that at the very least it is interesting
to explore the possibility of not introducing them at all.



a “naive-physical” theory, rather than one closely based on
mathematical topology.

2 Mereo-Topological Framework
We will use three connection relations:Cst,Csp andCt for
spatio-temporal, spatial and temporal connection respec-
tively. The interpretation of these relations is as shown2

in Fig 1.
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Figure 1: a. Spatialb. Temporalandc. Spatio-Temporal
connection between two spatio-temporal entitiesx andy.

The binary relation of spatio-temporal connection
Cstxy : x is spatio-temporally connected toy is true just
in case the closures ofx andy at least share a s-t point3 –
fig. 1c. Spatial connection for space-time entities is their
connection in pure space. As shown in Fig. 1a connection
under spatial projection is interpreted along the temporal
axis i.e., spatial connection on projection to an infinites-
imally thin temporal sliceat right angles to the temporal
axis. Spatial connection is written asCspxy : x is spa-
tially connected toy – x andy are s-t regions whose clo-
sures have a spatial point in common, though not neces-
sarily simultaneously. Finally temporal connection isCtxy
: x and y are s-t regions whose closures have a tempo-
ral point in common, though not necessarily at the same
place. Fig. 1b shows temporal connection between spatio-
temporal regionsx andy.

The axiomatisation of these connection relations are
identical and follows[Cohnet al., 1997]. Note that in this
theory the closure and its interior cannot be distinguished.
We have the following axioms:

A1. Cαxx
A2. Cαxy→ Cαyx
A3. [∀z(Cαzx↔ Cαzy)↔ (x =α y)]

whereα ∈ {st, sp, t}4.

2Space is shown as 1D in these illustrations and the others fig-
ures in the paper, but this is simply for ease of drawing. The de-
fined concepts are applicable to 2D and other higher dimensional
space.

3Note that although we use points in the informal semantics
here, this does not mean we are introducing them at the object
level. Moreover there are other interpretations which do not in-
volve points at all, e.g. a distance metric[Randellet al., 1992], or
Boolean Connection Algebras[Stell, 2000].

4For clarity at times we omit the subscriptα from predicates.

For the sake of clarity, throughout the paper universal
quantifiers scoping over whole formulas are omitted. Lower
case symbols initalics stand for variables whereas predi-
cates are stated a priori.

2.1 Mereo-Topological Relations
FromCαxy we can define the mereological relation of part-
hood,Pαxy: x is a part ofy.

D1. Pαxy ≡def ∀z(Cαzx→ Cαzy)

The parthood relation is used to defineproper-part
(PPα), overlap (Oα) and disjoint (DRα). Further,
DCα,ECα,POα,EQα,TPPα and NTPPα i.e., discon-
nected, externally connected, partial overlap, equal, tan-
gential proper partandnon-tangential proper partrespec-
tively can be defined. These relations, along with the in-
verses for the last two viz.TPPiα andNTPPiα, constitute
the eight JEPD (jointly exhaustive and pairwise disjoint) re-
lations ofRCC-8 (see[Cohnet al., 1997] for definitions).
Fig. 2a show the JEPD set ofRCC-8 relations in space-time,
whereas Fig. 2b is the equivalent relations underCsp.
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Figure 2: a. JEPD set ofRCC-8 relations in space-time
formed fromCst andb. RCC-8 relations underCsp connec-
tion between two entitiesx andy.

We introduce the following existential axioms. Axiom
A4 ensures every region has a nontangential part. In A5
the individualz is notedx ∪ y or x + y and represents the
sum, whereas in A6 it is notedx − y and represents the
difference. In A7 the individualz represents the intersection
and is noted asx ∩ y.

A4. ∀y∃xNTPPxy
A5. ∃z∀u(Cuz↔ (Cux ∨ Cuy))
A6. POxy→ ∃z∀w((Pwx ∧ DRwy)↔ Pwz)
A7. Oxy→ ∃z∀u(Cuz↔ ∃v(Pvx ∧

Pvy ∧ Cvu))

In such cases we meanα = st (i.e., unless stated otherwise we
mean a spatio-temporal subscript).
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To identify instantaneous relations between histories
(such as in Figure 12) in a pointless mereo-topology re-
quires the categorization of relation between certain parts
of histories. This requires a notion of connection different
from the straightforward s-t connection. We will introduce
the notion offirm connection. A firm-connection in n-D
space is defined as a connection wherein an n-D worm can
pass through the connection without becoming visible to the
exterior. Thus, for two regions to be firmly-connected a di-
rectconduitexists between the two[Cohn and Varzi, 1999].
Figure 3 illustrates firm connection and non-firm connec-
tion.

y y
x

  a.   b.

x

Figure 3:a. Firm andb. Non-Firmconnection between two
entitiesx andy.

In order to define firm-connection, we define one-piece or
spatio-temporal connectedness. A spatio-temporal region is
spatio-temporally one-piece,CONstx just in case all parts
of x areCst connected. Similarly to represent that a certain
temporal extent is one-piece we define temporal connect-
edness : spatio-temporal regionx is temporally one-piece
just in case all parts ofx are temporally connected. We can
also define spatial connectedness: spatio-temporal regionx
is spatially one-piece just in case all parts ofx areCsp con-
nected. We have the following definition.

D2. CONαx ≡def ∀y, z(x = (y + z)→ Cα)

D4 states that a connection between two entitiesx and
y is a firm-connection just in case some one-piece part ofx
(CONstx) and some one-piece part ofy (CONsty) is interior
connected (INCON(x+ y)).

D3. INCONx ≡def ∀y, z, v[((x = y + z) ∧
NTPPvy)→ ∃w(Pvw ∧

NTPPwx ∧ Owz ∧ CONw)]
D4. FCONxy ≡def ∃u, v[Pux ∧ Pvy ∧ CONu ∧

CONv ∧ INCON(u+ v)]

In defining transitions between RCC relations, it will be
helpful to treat RCC relations as constant symbols rather
than as predicates; thus we define a predicaterccα(ψ, x, y):
meaningΨα holds between s-t regionsx andy (whereψ is
the lowercase translation of the RCC relationΨ).

D5. rccα(ψ, x, y) ≡ Ψα(x, y)

2.2 Temporal Relations
At times for clarity, we will write the temporal relations as
infix operators[Muller, 1998b]. Therefore temporal con-
nectionCtxy : x is temporally connected toy is also writ-

ten asx <> y. We will also writePtxy,POtxy andEQtxy
asx ⊆t y, x σt y andx ≡t y respectively.

In order to introduce a spatio-temporal interpretation we
must capture a notion of temporal order between the entities
of the theory. Following[Muller, 1998a] we writex < y for
temporal order meaning the closure ofx strictly precedes
the closure ofy in time. Axiom A8 establishes that tempo-
ral connection and temporal order are incompatible. Also
temporal order is anti-symmetric (A9). Axiom A10 estab-
lishes the composition of temporal connection and temporal
order.

A8. x <> y→ ¬x < y
A9. x < y→ ¬y < x

A10. (x < y ∧ y <> z ∧ z < w)→ x < w

Allen [Allen, 1984] and even before him Nicod[Nicod,
1924] pointed out that if time is totally ordered then there
are 13 JEPD (jointly exhaustive and pairwise disjoint) rela-
tions in which oneone-pieceinterval can stand to another
which can be defined in terms ofmeets. We give the defi-
nition for meets(D6) which is a specialization ofECt and
define relations that we will be using in subsequent formu-
lations. D7 is the definition for one interval ending with
another and D8 for one interval starting with another. D9
states intervalx to be the interval between two distinct in-
tervalsy andz. Fig. 4 shows the different temporal rela-
tions.

D6. x 1t y ≡def ECt ∧ ¬∃v1, v2(v1 ⊆t x ∧
v2 ⊆t y ∧ v2 < v1)

D7. x A|t y ≡def ∀u(x 1t u↔ y 1t u)
D8. x |@t y ≡def ∀u(u 1t x↔ u 1t y)
D9. x ‖t (y; z) ≡def (y 1t x ∧ x 1t z)
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Figure 4: Temporal relations for space-time regions.

2.3 Spatio-Temporal Relations

A s-t connection implies a spatial as well as a temporal con-
nection. Though note that the converse is not necessarily
true. Fig 5 shows spatio-temporal regionsx andy are spa-
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tially5 and temporally connected but not spatio-temporally.
Therefore we have the following axiom:

A11. Cxy→ (x <> y ∧ Cspxy)

time

space

y

x

Figure 5:x andy Csp andCt but do notCst

We also introduce the notion of a ‘temporal slice’, i.e., the
maximal component part corresponding to a certain time
extent[Muller, 1998a].

D10. TSxy ≡def Pxy ∧ ∀z((Pzy ∧ z ⊆t x)→ Pzx)

Henceforth, the notationyw denotes the part ofy cor-
responding to the lifetime ofw when it exists (i.e., when
w ⊆t y)6. Fig. 6 shows the “temporal slice” and also the
whenx is not a “temporal slice” ofy for a part ofx is miss-
ing.

space

time

y

x w

time

x yTS     ; EQ x
w
y

w

y

space

TS     x y

x

Figure 6: Temporal sliceTSxy and whenx is not a temporal
slice ofy

We introduce relationships to refer to the initial and final
parts of a history. D11 states that a part of a historyy can
be termed its initial part just in case it starts withy and ends
before it. Conversely,x is the final part of a historyy (D12)
just in casex starts aftery and ends with it.

D11. IPxy ≡def Pxy ∧ x |@t y ∧
∃z(z A|t y ∧ x 1t z ∧ x ∪ z = y)

D12. FPxy ≡def Pxy ∧ x A|t y ∧
∃z(z |@t y ∧ z 1t x ∧ x ∪ z = y)

5Recall that spatial connection is interpreted as connection of
spatial projections onto an infinitesimally thin temporal slice at
right angles to the temporal axis.

6The notation y
w

is purely syntactic sugar: any
atom α(.. y

w
..) could equivalently be replaced by

∀x(TSxy ∧ x ≡t w)→ α(..x..)

Finally, models must not be spatio-temporal alone, so
spatio-temporal connectionCst needs to be different from
temporal as well as spatial connection.

A12. ∃x∃y Ctxy ∧ ¬Cstxy
A13. ∃x∃y Cspxy ∧ ¬Cstxy

3 Space-Time Continuity
The notion of continuity should implicitly capture the intu-
itive notion of motion and this is the notion that has been
addressed in the existing literature on qualitative continu-
ity mentioned above. However, various weaker notions are
possible, and we will explore these below (these bear a
strong relationship to the various notions of connection in
[Cohn and Varzi, 1999]). First we need to define the notion
of ax being a component of a regiony, i.e. if it is a maximal
one piece part:

D13. Compxy ≡def CONx ∧ Pxy ∧
∀w[[CONw ∧ Pwy]→ w = x]

We now define various notions of what it means for a history
to be continuous. First of all consider the case of the history
having but a single component. This is essentially the case
considered by Muller7 who defines the notion of a history
being continuous if it is temporally self-connected and it
doesn’t make any spatial leaps:

D14. CONTw ≡def CONtw ∧ ∀x∀u((TSxw ∧
x <> u ∧ Puw)→ Cxu)

x

v

time

space

u

w=x+v+u

Figure 7: The regionw is discontinuous under Muller’s def-
inition of continuity because it makes a ‘sideways spatial
leap’.

See fig. 7 for an illustration of discontinuity under this
definition. However, this definition of continuity permits
“temporal pinching” of histories – that is histories may dis-
appear and reappear again instantaneously at the same spa-
tial location. We can define a stronger notion of continuity
for histories and disallow temporal pinching which we term
firm continuity. A non pinchedcontinuous space-time his-
tory is firmly continuous.

Figure 8a shows a firm-connected historyw, while Fig-
ure 8b is for a history with “temporal pinching”. D15 is
the definition of a non-pinched historyw and D16 defines
firm-continuity.

7Muller uses a slightly different definition ofCONtw because
his language distinguishes the interiors and closures of regions.
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Figure 8: a. Firmly-continuoushistory andb. A non-firm
history with instantaneoustemporal pinchingat the end of
z.

D15. NPw ≡def ¬∃x∃y[Pxw ∧ Pyw ∧
x 1t y ∧ ¬FCONxy]

D16. FCONTw ≡def CONTw ∧ NPw

If a history contains multiple components, then we can
consider how these relate to each other over time. The
strongest notion, which corresponds directly to the case of
a single component history is if all components are equi-
temporal:

D17. StrCONTw ≡def ∀x[Compxw → x ≡t w]

If not all components endure for the time of the whole his-
tory, then we can isolate several cases. Firstly, further com-
ponents may come into existence (a kind ofmultiplication),
but once they start, they carry on until the end, as do the
original component(s) (e.g. the urban landscape where spa-
tially disjoint new cities may be formed from “green fields”
and then never revert away being urban):

D18. MulCONTw ≡def ∃x[Compxw ∧ x ≡t w] ∧
∀y[Compyw → FPyw]

There is a natural dual to this, where all components start si-
multaneously but some may finish early (a kind ofcollapse,
e.g. the gold deposits on the planet earth, which become
fewer in number as they are mined and seams become ex-
hausted):

D19. ColCONTw ≡def ∃x[Compxw ∧ x ≡t w] ∧
∀y[Compyw → IPyw]

We can still regard a history as having a weak notion of
continuity providing there is at least one component which
lasts the entire time:

D20. WCONTw ≡def ∃x[Compxw ∧ x ≡t w]

Still weaker, we may allow for the possibility that no
component endures for the entire history, i.e. there may
be spatial jumps providing there are no temporal gaps (this
might correspond to the history of a particular species of
plant in which colonies die out, but others meanwhile are
formed):

D21. TCONTw ≡def ¬∃x[Compxw ∧ x ≡t w] ∧
∀z[z ⊆t w → ∃yPyw/z]

Dually, we may imagine that a history is spatially contin-
uous, in the sense that its components spatially overlap, but
there may be temporal gaps (e.g. a lake or river which dries
up periodically):

D22. SpCONTw ≡def ¬∃x[Compxw ∧ x ≡t w] ∧
∀xy[[Compxw ∧ Compyw]→ Cspxy]

A (weaker) variant would be that for any component of
w, the next component (or all of them if more than one com-
ponent starts simultaneously) isCsp. All these notions of
continuity are illustrated in fig. 9.

a. b. c.

x

time

time

d. f.e.

space

space

x x

x

x

x

xx

x x
x

x

x

x

x

Figure 9: Six kinds of continuous history:a. StrCont b.
MulCont c. ColCont d. WCont e. TCont f. SpCont

Each of these notions of continuity can be further refined
to exclude temporal pinchings and also spatial leaps within
a component. We do not have the space to investigate all
of these notions in detail here. Our principal focus will be
strong continuity with no temporal pinchings and no spatial
leaps:

D23. StrFCONTw ≡def StrCONTw ∧ NPw ∧
∀x∀u((TSxw ∧ x <> u ∧ Puw)→ Cxu)

For convenience of reference this notion of continuity for
histories will be labelledCS-0. Allowing temporal pinching
weakensCS-0 to CS-1 or CS-2 depending on whether tem-
poral pinching of one or both the histories involved in tran-
sition between relations of the spatial representation lan-
guageRCC-8 is allowed.

3.1 Continuous Transitions

With CS-0 the intuitive transitions between histories hold.
Under s-t interpretations forRCC relations and with “tem-
poral pinching”, we can have a number of weird transitions
(e.g. as shown in the fig. 10). Fig. 10a shows the transi-
tion from EC to TPP. This is possible for the “temporal
pinching” of historyy. In fig. 10b both the historiesx and
y undergo “temporal pinching” and a transition fromEC to
EQ results.

The transition networks forCS-0, CS-1 and CS-2 are
shown in fig. 11. It can be seen how weakening the notion
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y
TPP
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EQ
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time

spacespace

time

Figure 10: Transition froma. EC to TPP andb. EC to EQ.

of continuity adds direct transition links to the conceptual
neighbourhoods.

Note that the diagram forCS-2 differs slightly from the
conceptual neighbourhood given in fig. 10 of[Davis, 2000],
e.g. his figure has a direct link fromDC to TPP. This de-
pends on the interpretation of the spatial relationship hold-
ing when regions pinch to a spatial point. Davis considers
the normalised (regularised) spatial cross section and iso-
lated points will thus disappear, leading to the introduction
of yet further links. We could also take this approach in
which case his fig. 10 and our diagram forCS-2 should be
identical.

DC EC PO EQ

TPPi

TPP NTPP

NTPPi

Figure 11: Transition graph forCS-0,CS-1 andCS-2. Addi-
tional links forCS-1 are double arcs and forCS-2 are triple
arcs.

[Galton, 2000] identifies transitions as durative or instan-
taneous depending on whether the times involved are inter-
vals or instants and whether the initial and final states are
separated by an interval or an instant and defines eight dif-
ferent transition operators. In order to describe the different
transitions in our mereotopology, we define two durative
transition operators (see fig. 13a and 13b) and one which
identifies the case where a relationship only holds instanta-
neously (fig. 12).

Recognizing and classifying durative transitions such as
in Fig. 13(a,b) fromEC to DC or vice versa is relatively
straightforward in mereotopology. The problem occurs
when aRCC relation only holds instantaneously, e.g. a tran-
sition fromPO to NTPP with TPP holding instantaneously
in between (Fig. 12). In a true, pointless, mereotopology,
there is no direct way to represent the fact thatx and y
areTPP instantaneously in the above example. However,
we will show in the subsection immediately below how
this relationship can be identified without direct appeal to
points, by categorizing the mereotopological relations be-

tween temporally adjacent parts of histories.

A Model for Instantaneous Relations

In this subsection we analyse from first principles which re-
lations can hold instantaneously and under what conditions.
The underlying hypothesis for our analysis is that it is suffi-
cient to consider the Boolean combinations of two regions
and theirFCON relationship over the instantaneous transi-
tion.

We will thus determine the existence of an instantaneous
topological relation between two historiesx andy occurring
when two intervalsz1 andz2 meet, based upon the compar-
ison of(x ∪ y), (x ∩ y), (x − y) and(y − x), restricted to
the intervalsz1 andz2 respectively. These can be combined
such that they form 16 fundamental descriptions:

[x∪y
z1
|x∪y
z2

]11 [x∪y
z1
|x∩y
z2

]12 [x∪y
z1
|x−y
z2

]13 [x∪y
z1
| y−x
z2

]14

[x∩y
z1
|x∪y
z2

]21 [x∩y
z1
|x∩y
z2

]22 [x∩y
z1
|x−y
z2

]23 [x∩y
z1
| y−x
z2

]24

[x−y
z1
|x∪y
z2

]31 [x−y
z1
|x∩y
z2

]32 [x−y
z1
|x−y
z2

]33 [x−y
z1
| y−x
z2

]34

[ y−x
z1
|x∪y
z2

]41 [ y−x
z1
|x∩y
z2

]42 [ y−x
z1
|x−y
z2

]43 [ y−x
z1
| y−x
z2

]44


Each element[β|γ]ij of the matrix represents a condi-

tion πij(β, γ). We will call this matrixIMπ(r, x, y, z1, z2),
whereπ is a 4x4 matrix which gives the 16 predicates which
form the conditions. The entire matrix,IM is to be regarded
as a conjunction of its elements:

D24. IMπ(r, x, y, z1, z2) ≡def
∧4
i=1[

∧4
j=1 IMij(x, y)]

The notion of ‘firm-connection’ between the 16 individ-
ual pairs was identified as a simple test8 that enables the
identification of whether an instantaneous relationship oc-
curs. Thus eachπij is eitherFCON or¬FCON.

Constraints for Non-Existing Relations

Based on the (FCON) or (¬FCON) outcome of each pair,
216 possibilities exist for the instantaneous relation matrix;
however only a small number of them are possible. The
aim of this section is to makeexplicit the possibilities that
are not feasible, thus arriving at the ones that characterize
the class of instantaneous relations between two given his-
tories9. The way we will achieve this is to consider what
restrictions can be placed on the various matrix elements
(in terms of theirFCONnectivity) in order to be sure that
the transition is indeed instantaneous. Thus in each of the
conditions we specify which impossible values forπ and
thus forIMπ(r, x, y, z1, z2) can be excluded. For notational
convenience, in the matrices below, an entry at position i,j
of φ meansFCON whilst¬φ means¬FCON.

Condition 1 The union of the two histories before and after

8In case of parts of a pair not existing for one of the intervals
the connection is assumed to be¬FCON without any loss in gen-
erality of the analysis.

9Those relations that are irrelevant for a given condition and,
thus can take any of the two values will be marked by awild card
(-).
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an instantaneous transition is alwaysFCON.

π 6=

 ¬φ − − −
− − − −
− − − −
− − − −


If the intersection of the two histories(x ∩ y) doesn’t

disappear instantaneously, the intersection and the union is
alwaysFCON. Further, the difference (i.e.,(x − y) and
(y−x)) between the histories is related to the amount of in-
tersection. Thus, if it goes out of existence instantaneously
the difference between the histories would also disappear
instantaneously. The following two conditions are based on
this property.

Condition 2 The union-intersection pair is equivalent to
the intersection-intersection pair for two histories before
and after an instantaneous transition.

π 6=

 φ A2 − −
B1 B2 − −
− − − −
− − − −

where A2 6= B1 6= B2 6= A2.

Condition 3 If the intersection-intersection pair is
¬FCON, all others except the union-union pair are
¬FCON.

π 6=

 φ ¬φ − −
¬φ ¬φ − −
− − − −
− − − −


Conditions 4 to 9 are for firm-connection of the union-

intersection i.e, the intersection not disappearing instanta-
neously. These are based on the property of maximal con-
nected histories and the underlying assumption that pairs
with parts that do not exist in either one of the intervals
cannot have a firm-connection.

Condition 4 Both the difference pairs cannot beFCON si-
multaneously.

π 6=

 φ φ − −
φ φ − −
− − φ −
− − − φ


The following two conditions state that for the difference

pair beingFCON, the union-difference pairs before and af-
ter needs to be simultaneouslyFCON (recall that the union-
union is alwaysFCON). This condition is required to be
stated separately for(x− y) and(y − x) for the difference
is asymmetric.

Condition 5 If the difference pair(x − y) is FCON, the
union-difference pairs for(x− y) cannot be¬FCON.

π 6=

 φ φ ¬φ −
φ φ − −
φ − φ −
− − − −

 ∧ π 6=
 φ φ φ −

φ φ − −
¬φ − φ −
− − − −



Condition 6 If the difference pair(y − x) is FCON, the
union-difference pairs for(y − x) cannot be¬FCON.

π 6=

 φ φ − ¬φ
φ φ − −
− − − −
φ − − φ

 ∧ π 6=
 φ φ − φ

φ φ − −
− − − −
¬φ − − φ


The next two conditions follow the same justification as

stated for 5 and 6, but for the difference before and af-
ter the instantaneous transition being¬FCON. Under such
circumstances the union-difference pairs cannot beFCON.

Condition 7 If the difference pair(x − y) is ¬FCON, the
union-difference pairs for(x− y) cannot both beFCON.

π 6=

 φ φ φ −
φ φ − −
¬φ − ¬φ −
− − − −

 ∧ π 6=
 φ φ ¬φ −
φ φ − −
φ − ¬φ −
− − − −


Condition 8 If the difference pair(y − x) is ¬FCON, the
union-difference pairs for(y − x) cannot both beFCON.

π 6=

 φ φ − φ
φ φ − −
− − − −
¬φ − − ¬φ

 ∧ π 6=
 φ φ − ¬φ
φ φ − −
− − − −
φ − − ¬φ


Condition 9 All the pairs cannot beFCON simultaneously.

π 6=

 φ φ φ φ
φ φ φ φ
φ φ φ φ
φ φ φ φ


Existing Instantaneous Relation Matrices
The valid instantaneous relation matrices can be determined
by successively applying the above conditions and can-
celling the corresponding non-existing relations from the
set of all216 relations. Four relations remain for two his-
tories in transition through an instantaneous relationship10 .
This has been verified by finding their geometric interpreta-
tion.

Prop 1 The possible transition matrices for relations
which hold instantaneously between two histories are
(i) IMπeq

(eq, x, y, z1, z2), (ii) IMπec

(ec, x, y, z1, z2), (iii)

IMπtpp

(tpp, x, y, z1, z2), (iv) IMπtppi

(tppi, x, y, z1, z2).
The corresponding possible values forπ are displayed be-
low in the same order:

(i) πeq =

 φ φ − −
φ φ − −
− − − −
− − − −



(ii) πec =

 φ − − −
− − − −
− − − −
− − − −


10[Galton, 2000] terms these “states of position” as compared

to the other relations which cannot hold instantaneously (“states
of motion”).

7



(iii) πtpp =

 φ φ − φ
φ φ − −
− − − −
φ − − φ



(iv) πtppi =

 φ φ φ −
φ φ − −
φ − φ −
− − − −


where− = ¬φ.

z1

z 2

b

 PO

 PO

 EC

space
a.

x

y

z1

z 2

x

y

NTPP

 EQ

NTPPi

time time

space

z 2

z1

c

NTPP

TPP

 PO

y

x

time

space

Figure 12: Instantaneous Relations possible between two
historiesx andy.

Fig. 12 show the relations that can hold instantaneously
between two historiesx and y corresponding to the four
subcases of Prop 1.

It might be wondered why it takes a matrix involving 16
conditions over eight parts ofx and y to identify the in-
stantaneous relations and the conditions under which they
can hold. It might turn out that it is in fact possible to
characterise the conditions using a smaller set of condi-
tions. However our intention was not to prejudge the fi-
nal outcome, but rather to exhaustively analyse the rela-
tionships between the various parts ofx andy without any
preconception as to which relations could in fact be instan-
taneous and ‘discover’ the set analytically from the com-
plete space of possible matrices. By conducting the anal-
ysis in this way we can have confidence that we have not
missed a condition (an adhoc style of analysis might eas-
ily identify a sufficient condition but might not identify all
sufficient conditions). This analysis is rather in the style
of the 4- and 9-intersection model of Egenhofer[Egen-
hofer and Franzosa, 1991; Egenhofer and Herring, 1994;
Egenhofer and Franzosa, 1995] where from a 2 x 2 and 3 x
3 matrix which determine whether various topological parts
of two regions share points or not, then by imposing a vari-
ety of conditions (such as regularity or one pieceness), the

24 or 29 possibilities are whittled down to just eight possi-
bilities (corresponding to theRCC-8 relations).

3.2 Transition Operators
We can now define three transition operators. The first two
operators assume that the initial and/or the final relations
hold over intervals11 and differ as to which of the two rela-
tions hold at the dividing instant. The third is for histories
undergoing a transition between two relations with an in-
stantaneous relation holding in between.

Trans-To
A transition for two historiesx andy from relationR1 over
z1 to relationR2 overz2 occurs just in casez1 meetsz2 and
R1 holds over every initial part of the histories restricted to
z1 andR2 holds overx andy restricted toz2.

b.

z 

a.

EC

space

EC

DC

DC

2

1z z1

z 2

x y x y
time time

space

Figure 13: a. TransTo andb. TransFrom for space-time
historiesx andy at end ofz

D25. TransTo(r1, r2, x, y, z1, z2) ≡def

∀u, v[[IPu x
z1
∧ IPv y

z1
]→

rccsp(r1, u, v)] ∧ z1 1t z2 ∧ rccsp(r2, x/z2, y/z2)

Trans-From
A transition for two historiesx andy from relationR1 to
relation R2 occurs just in case there exists an intervalz2

just afterz1 such thatR1 holds overx andy restricted toz1

andR2 holds over every final part of the histories restricted
to z2.

D26. TransFrom(r1, r2, x, y, z1, z2) ≡def

rccsp(r1, x/z1, y/z1) ∧ z1 1t z2 ∧
∀u, v[[FPu x

z2
∧ FPv y

z2
]→ rccsp(r2, u, v)]

The following proposition hold:

Prop 2 ∀(r1, r2, x, y, z1, z2)[¬TransFrom(r1, r2, x, y, z1, z2)
∨ ¬TransTo(r1, r2, x, y, z1, z2)]

Ins-rel
Any transition for two historiesx andy with an instanta-
neous relationr holding in betweenz1 andz2 is related by
the instantaneous matrixIMπr (r, x, y, z1, z2)

D27. InsRel(r, x, y, z1, z2) ≡def [z1 1t z2 ∧
IMπr (r, x, y, z1, z2)

11Note that in the definitions below, the final two arguments to
therccsp predicate are always co-temporal, so these amount to just
testing the spatial topology at the specified time.
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For each instantaneous relation holding in betweenz1

andz2, distinctRCC relations hold before and after it. We
introduce the following relation relating the three relations:

D28. InsRel3(r1, r2, r3, x, y, z1, z2) ≡def

[InsRel(r2, x, y, z1, z2) ∧
∀u[IPuz1 → rccsp(r1, x

u
, y
u

)] ∧
∀u[FPuz2 → rccsp(r3, x

u
, y
u

)]]

We can now define anelementary transitionfrom an in-
terval z1 to an adjacent intervalz2 as being aTransTo, a
TransFrom or anInsRel3; r1 is the relation that holds at the
start of the transition,r3 is the relation that holds at the end
of the transition, andr2 is the relation that holds instanta-
neously betweenz1 andz2:

D29. EleTran(r1, r2, r3, x, y, z1, z2) ≡def

[TransTo(r1, r2, x, y, z1, z2) ∧ r2 = r3] ∨
[TransFrom(r1, r3, x, y, z1, z2) ∧ r2 = r1] ∨

[InsRel3(r1, r2, r3, x, y, z1, z2)]

Transitions need to be continuous; therefore we add ax-
ioms A14 and A15. A14 states that for anyTransTo to be
followed byTransFrom the intermediate state is equivalent.
Axiom A15 establishes an elementary transition during an
intervalz to be possible only for histories continuous over
that interval.

A14. [[TransTo(r1, r2, x, y, z1, z2) ∧
TransFrom(r3, r4, x, y, z2, z3)]→ r2 = r3]

A15. [EleTran(r1, r2, r3, x, y, z1, z2)→
[StrFCONT x

(z1∪z2) ∧ StrFCONT y
(z1∪z2) ]]

4 Conceptual Neighbourhood of RCC-8

We can use the above formulation to recover theRCC-8
conceptual neighbourhood diagram (forCS-0). We need
to show that the links not in the diagram represent inconsis-
tent transitions, and that the links in the diagram are con-
sistent transitions. The latter can be demonstrated at least
intuitively by displaying an actual situation diagrammati-
cally (e.g. see fig. 13)12. We will now sketch how one of
the missing links corresponds to an inconsistent transition
though we do not display a completely rigorous proof here.
The others can be derived by reasoning along similar lines.

Prop 3 Non-Existence of Elementary Transition between
DC andEQ.

Proof: A link betweenr1 andr2 in the conceptual neigh-
bourhood diagram exists iff the following formula is consis-
tent:∃(r, x, y, z1, z2)[EleTran(r1, r2, r, x, y, z1, z2) ∨

EleTran(r, r1, r2, x, y, z1, z2) ∨
EleTran(r2, r1, r, x, y, z1, z2) ∨

EleTran(r, r2, r1, x, y, z1, z2)]

12We recognise that this is not satisfying from a for-
mal point of view and one really want a rigorous proof
that the full theory conjoined with a sentence such as
∃x, y, z1, z2Transto(dc, ec, x, y, z1, z2) is satisfiable.

In each case, by axiom A15, we must have that
StrFCONT x

(z1∪z2)
∧ StrFCONT y

(z1∪z2)
. From D29 we can

infer one of:

c1. TransTo(eq, dc, x, y, z1, z2)
c2. TransFrom(eq, dc, x, y, z1, z2)
c3. TransTo(dc, eq, x, y, z1, z2)
c4. TransFrom(dc, eq, x, y, z1, z2)
c5. InsRel3(dc, eq, r, x, y, z1, z2)
c6. InsRel3(r, eq, dc, x, y, z1, z2)
c7. InsRel3(eq, dc, r, x, y, z1, z2)
c8. InsRel3(r, dc, eq, x, y, z1, z2)

c7 and c8 are immediately inconsistent since by Prop1dc
cannot be an instantaneously holding relation. In cases c1
and c2 consider the historyx: it is EQ to y and then im-
mediatelyDC – thus the historyx must comprise two com-
ponents since there must be an initial component spatially
located wherey is and then a spatially disconnected com-
ponent separated fromy; thus the historyx is notStrCONT
and thus notStrFCONT! Now consider the case c5 (a similar
argument holds for c6): initiallyx andy areDC; then they
are instantaneouslyEQ; there are two possibilities for the
relationship betweenx andy duringz2: either the histories
continue spatially connected to their respective parts during
z1 – but in this case there will be isolated points fromx in y
(or vice versa) instantaneously to make themEQ; or one or
both the histories do not continue to be spatially connected
to their parts duringz1, in which case by an argument sim-
ilar to that made for c1 and c2, historyx is not StrCONT
and thus notStrFCONT. Thus every possibility leads to an
inconsistency andEQ andDC cannot be neighbours in the
conceptual neighbourhood transition graph.�

5 Conclusion

We have formally characterised different intuitive notions
of s-t continuity. The strongest notion of s-t continuity has
been formally defined and transition rules for s-t histories
formulated in a pure, pointless, mereotopology. Our for-
mulation is similar to Muller’s, but avoids the flaws found
by Davis and only requires a simpler mereotopology which
does not have closure and interior operators. Nor does it
have the explicit temporal points used by Davis. We have
sketched how the formulation might be used to recover the
RCC-8 conceptual neighbourhood diagram to be found in
the literature. The axiomatisation of transitions under dif-
ferent notions of s-t continuity is part of ongoing research
as is a completely formal proof of the correctness of the
RCC-8 conceptual neighbourhood diagram. It should also
be straightforward to recover the dominance theory of Gal-
ton which is a refinement of the conceptual neighbourhood
diagram and closely corresponds to the three different kinds
of transition we have identified here (Transto,Transfrom
andInsrel).
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