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Abstract 

In an enterprise called "deep lexical semantics", we develop 
various core theories of fundamental commonsense 
phenomena and define English word senses by means of 
axioms using predicates explicated in these theories. This 
enables deep inferences that require commonsense 
knowledge about how the world functions. There are 
difficulties in our approach to manually axiomatize words 
and commonsense knowledge. First, developing axioms is 
done by experts and this means the process is slow and 
expensive. Second, it is hard, if possible at all, to predict in 
advance all the kinds of axioms that should be encoded in 
core theories. In this paper we present a method for 
harvesting from free-form text on the web, simple axioms 
for change-of-state verbs which is a combination of text-
mining and manual filtering. Focusing on two change-of-
state verbs, ―break‖ and ―cut‖, we show how the harvested 
axioms can help in addressing the above problems.  

Introduction 

If computers are to understand and reason about statements 

as humans do, they need a lot of knowledge as well as 

appropriate mappings from words to this knowledge. We 

are engaged in an enterprise we call ―Deep Lexical 

Semantics‖ in which we develop various core theories of 

fundamental commonsense phenomena and define English 

word senses by means of axioms using predicates 

explicated in these theories. Among the core theories are 

causality, scales and change-of-state. The combination of 

the axioms defining words and axioms in core theories 

should make deep inferences possible. For example, if our 

core theory of composite entities has an axiom that says 

―pieces are smaller than the whole‖, and an axiom that 

defines ―cut‖ as ―causing a change from being whole into 

being in pieces‖, we can infer from ―she cut the paper‖ that 

―the pieces of paper were smaller than the starting page‖. 

However, there are difficulties in our approach to 

manually axiomatize words and commonsense knowledge. 

The first problem is that developing axioms is done by 

experts and this means the process is slow and expensive. 

The second problem is that one cannot predict in advance 

all the kinds of axioms that should be encoded in core 

theories. 

In this work, we investigate the possibility of addressing 

these difficulties by extracting lexical knowledge from 

large corpora. First, we present a method for harvesting 

axioms for change-of-state verb senses, which is a 

combination of text mining and manual filtering. Then we 

present a case study on the extracted axioms for two 

change-of-state verbs ―break‖ and ―cut‖. We observe that 

in many cases, the manually-encoded axioms can be found 

in the harvested inferences. This suggests the possibility of 

replacing the process of manual axiomatization by experts 

with a semi-automatic method consisting of text mining 

and non-expert annotations. We also show how the 

harvested inferences can help us to enrich the core theories 

by revealing missing concepts and axioms in these 

theories. 

Related Work 

There are a number of relevant works that extract inference 

rules from text. (Lin and Pantel 2001) developed a method 

for learning inference rules using distributional similarity 

between dependency tree paths. The rules obtained by their 

method mostly express synonymy or similarity relations 

such as ―x is the author of y ↔ x wrote y‖. (Chklovski and 

Pantel 2004) use lexico-syntactic patterns over the Web to 

detect similarity, strength, antonymy, enablement and 

temporal happens-before relations between pairs of 

strongly associated verbs. (Girju 2003) extracts causal 



relations between event nouns using lexico-syntactic 

patterns. An example of such relations is ―Earthquakes 

generate tsunami.  

The difference between our work and the 

aforementioned works is that we are interested in 

entailments rather than synonymy, before-after or causality 

relations. (Gordon and Schubert 2011) describe a method 

for acquiring a collection of conditional (if–then) 

knowledge by exploiting presuppositional discourse 

patterns (such as ones involving ‗but‘, ‗yet‘, and ‗hoping 

to‘) and abstracting the matched material into general 

rules. Their method is able to extract rules that describe 

complex consequences or reasons. An example of such 

rules is ―If a male stands before a female in the doorway, 

then he may expect to be invited in‖. Another rule which is 

more similar to what our method extracts is ―driver in a car 

crash might be injured‖. Although the results of our 

procedure include expected consequences of an event (for 

example, ―cutting skin results in bleeding‖) extracting such 

―expectation‖ rules is not our final goal. Instead, we are 

more interested in lexical entailment rules such as 

―breaking of a device‖ entails ―a change from the device 

being functional‖ which is almost always true.  

(Pekar 2006) developed methods based on regular co-

occurrence of two verbs, within locally coherent text, for 

learning the implications of an event. They extracted such 

rules as ―(x was appointed as y) suggests (x became y)‖. 

However, they do not require that verb entailment holds in 

all conceivable contexts and view it as a relation that may 

be more plausible in some contexts than others while the 

kinds of axioms that we are interested in, are context 

independent. In addition, we do not limit the entailment 

between two verbs; rather we may have entailment 

between a verb (an event) and an adjective related to the 

state before or after that event.  

Deep Lexical Semantics 

In this section we give a brief introduction to our deep 

lexical semantics project (Hobbs, 2008). 

Framework 

We use first-order logic for encoding axioms in our 

commonsense theories, in the syntax of Common Logic 

(Menzel et al., 2008). Since human cognition concerns 

itself with actual and possible events and states, which we 

refer to as eventualities, we reify these and treat them in 

the logic as ordinary individuals. Most axioms are only 

normally true, and we thus have an approach to 

defeasibility—proofs can be defeated by better proofs. Our 

approach to defeasibility is based on weighted abduction 

(Hobbs et al., 1993) and is similar to McCarthy‘s 

circumscription (McCarthy, 1980).  

We use a logical notation in which states and events 

(eventualities) are reified. Specifically, if the expression 

p(x) says that p is true of x, then p’(e, x) says that e is the 

eventuality of p being true of x. Eventuality e may exist in 

the real world (Rexist), in which case p(x) holds, or it may 

only exist in some modal context, in which case that is 

expressed simply as another property of the possible 

individual e. 

Core Theories 

A core theory is a set of predicates and axioms that 

describe the relationships among a set of very abstract 

concepts that govern or characterize many aspects of the 

world we live in. In fact, core theories are the kind of 

commonsense knowledge that are trivial and humans 

acquire them in their early childhood. For example, a child 

understands such concepts as change, composite entity, 

scale, falling an moving. There are a number of works that 

have successfully extracted less basic types of 

commonsense knowledge from resources such as 

Wikipedia (Sangweon, et.al 2006), eHow (Jihee, 2010) 

which contain such knowledge as nutrition of eggs, step by 

step instructions for cracking and separating an egg and 

that eggs break easily.  However, we believe that the kind 

of commonsense knowledge encoded in core theories can 

hardly be obtained from written resources or by asking 

human subjects to generate them.  

In the following, we briefly describe two core theories, 

composite entities and change-of-state, as examples. 

A composite entity is a thing composed of other things. 

The concept is general enough to include complex physical 

objects (e.g., a telephone), complex events (e.g., the 

process of erosion) and complex information structures 

(e.g., a theory). A composite entity is characterized by a set 

of components, a set of properties, and a set of relations. 

Example predicates that are defined in this theory are 

compositeEntity(x) which simply says x is a composite 

entity; componentsOf(s, x) which says that s is the set of 

x‘s components; and componentOf(y, x) which says that x 

is a component of the composite entity y. The relations 

between these concepts are captured in several axioms. For 

example the following axiom defines the relationship 

between the above predicates: 
componentOf(y, x) ↔ compositeEntity(x) & 
componentsOf(s, x) & member(y, s) 

The above axiom says that y is a component of x if and 

only if x is a composite entity, s is the set of components of 

x and y is a member of s. In this axiom, the predication 

member(y, s) comes from our core theory of sets. 

The theory of change-of-state is the most relevant to this 

paper. The predication change’(e, e1, e2) says that e is a 

change-of-state whose initial state is e1 and whose final 

state is e2. The chief properties of change are that there is 

some entity whose state is undergoing change, that change 



is defeasibly transitive, that e1 and e2 cannot be the same 

unless there has been an intermediate state that is different, 

and that change is consistent with the before relation from 

our core theory of time (Hobbs et al., 2004). An example 

axiom in this theory is: 
change’(e, e1, e2) & change’(e0, e2, e3) →  

change’(e4, e1, e3)  

Which states that change is transitive: if there is a change 

from state e1 to state e2 and a change from state e2 to state 

e3, then we have a change from state e1 to state e3. 

Since many lexical items focus only on the initial or the 

final state of a change, we introduce for convenience the 

predications changeFrom’(e, e1) and changeTo’(e, e2). 

The first predication says that e is a change from state e1 to 

another state that is inconsistent with e1. In other words 

after the change, state e1 no longer exists. Similarly, the 

second predication says that e is a change to state e2 that 

didn‘t exist before the change. 

Linking Word Senses to Core Theories 

There are existing resources such as VerbNet that have 

explicated the meaning of verbs in terms of basic concepts 

and have the potential to be used as a basis for 

axiomatizing meaning of verbs. Despite its high quality, 

VerbNet has its own limitations. The first limitation is its 

coverage. For example, VerbNet only covers those senses 

of ―break‖ that refer to ―appearing‖, ―splitting‖, ―hurting‖, 

―giving up a habit‖ and ―breaking apart‖ and the senses 

referring to ―breaking a law‖, ―breaking a record‖ and 

―breaking news‖ are missing. The synonym of ―breaking a 

record‖ which is ―better a record‖, is categorized under 

―exceed‖, but no semantic decomposition for ―exceed‖ is 

provided. The second limitation of VerbNet is that the 

axioms obtained from this resource are very general. For 

example, while we would like the axiomatization of 

―breaking an instrument‖ to contain such information as 

―making non-functional‖, we cannot get this information 

from the semantic decomposition of verb classes ―hurt‖ or 

―break apart‖. Therefore, although VerbNet is a good 

resource for axiomatizing verbs, still other methods are 

needed to enrich the set of its axioms by axiomatizing 

missing word senses as well as finding more specific 

axioms for the existing word senses. 

In the reminder of this section, we describe our method 

for harvesting from free-form web text, axioms for change-

of-state verb senses from large corpora. First we describe 

how to identify verb senses by considering their patient 

types and then we show how to harvest axioms for 

different verb senses. In the later sections we show that 

axioms defining some of these verb senses can be found 

among a small set of harvested axioms. 

Identifying Word Senses 

We cannot axiomatize a word that has multiple meanings 

or senses, rather we should axiomatize a word sense which 

refers to a single concept. WordNet (Miller, 1995) is our 

main reference for identifying senses of words; however, 

we do not stick to the WordNet senses. Our observation 

about change-of-state verbs is that in many cases, different 

senses of a verb can be identified by the type of patient that 

it takes. For example, the meaning of the verb ―break‖ 

when its patient P is of type ―instrumentality‖ (e.g., radio, 

motor, car) is ―P stops working‖. On the other hand, when 

P is of type ―message‖ (e.g., news, story), the meaning of 

―break‖ is ―P becomes known‖.  Thus we represent verb 

senses by a tuple (V, T), where V represents the verb and T 

represents the type of its patient. A word is of type T if T is 

its ancestor in the WordNet hierarchy. 

To identify different patient types that can distinguish 

between different senses of V, we create small groups of 

patient word senses, such that each group corresponds to a 

different sense of V. For each group, we take the first 

common hypernym in WordNet hierarchy as the type of 

that group. For example, we can create two groups of 

patients for ―break‖: group1 = {car-s1, radio-s1, device-s1} 

and group2 = {news-s1, information-s1, story-s5}1. The 

first common hypernym of these groups are 

―instrumentality‖ and ―message‖ respectively. 

Encoding Axioms 

Since in this paper we deal with change-of-state verbs, 

we describe here the general format of an axiom defining a 

change-of-state verb sense (V, T), which can be any of the 

following: 
(1) V’(e, p) & T(p) → 

 changeFrom’(e, e1) & <predications specifying e1> 

(2) V’(e, p) & T(p) → 

 changeTo’(e, e2) & < predications specifying e2> 

In the above axioms, V’(e, p) means that e is the 

eventuality of p undergoing V and T(p) means that p is of 

type T. Axiom (1) says that the eventuality of p 

undergoing event V, where p is of type T, is a change from 

a state e1, where e1 is specified by an additional 

predication. Similarly axiom (2) says eventuality e is a 

change to a state e2. The additional predications that define 

e1 and e2 are the essential part of an axiom defining a 

change-of-sate verb sense (V, T) and differ from one verb 

sense to the other. For example, for the verb sense (break, 

instrumentality), the previous state e1 can be specified by 

the predication function’(e1,p). In other words, if an 

instrumentality p breaks, there is a change from the state 

―p functions‖. Thus the complete axiom is: 
break’(e, p) & instrumentality(p)  →  

                                                
1
 The postfix s-i represents the sense number in WordNet. 



changeFrom’(e, e1) & function’(e1, p) 

In the above axiom, the predicate ―function‖ comes from 

our core theory of functionality.  

The essence of an axiom that defines a change of state is 

the predication that describes exactly which state changes.  

This information must be made explicit and coupled to the 

change-of-state verb.  To obtain such information at large 

scale, we turn to automated text harvesting. We note that 

an important part of an axiom is its argument structure. In 

the above example, the state that is changed (function) is 

the state of the patient of the verb. However this is not 

always the case. For example, consider breaking a law 

which we define as a change to the law-breaker being 

guilty: 
break’(e, x, l) & law(l)  →  

changeTo’(e, e1) & guilty’(e1,  x) 

Here, the agent of the event ―break‖ (x) is undergoing the 

change, not the patient (l). It should be possible to use 

syntax for automatically capturing the argument structure 

of an axiom. However, sometimes this information is not 

present in syntax or one cannot obtain it without co-

reference resolution. For now we leave the task of 

determining the argument structures for future work and 

only focus on the predicates. In the next section, we 

present a method for harvesting predicates that specify the 

before-state (e1) or after-state (e2) of a given change-of-

state verb sense (V, T).  

Harvesting State Predicates 

We harvested information from the ClueWeb09 dataset, 

whose English portion contains just over 500 million web 

pages extracted from the Web in 2009 by Prof. Jamie 

Callan and his group at CMU2.   

Predicates refer to basic concepts which may be 

represented by words with different parts of speech3. Since 

we are looking for concepts that describe a state, and since 

a state is usually described by adjectives or verbs, we only 

look for words with these parts of speech. In particular, we 

harvest a list of verbs (ZList) and a list of adjectives (JList) 

that specify predicates describing before-states and after-

states of a verb sense (V, T). Here we describe the 

procedure for extracting ZList only. JList can be extracted 

by slightly modifying this procedure. 

Finding Patterns 

The first step is to find patterns that capture change-of-

state. The patterns for before-state are different from those 

for after-state.  To find patterns for before-state, we create 

a seed (V, P, Z), where V is the verb for which we are 

                                                
2
 http://lemurproject.org/clueweb09.php/ 

3
 Hence we use the words ―predicate‖, ―adjective‖, ―verb‖ and ―word‖ 

interchangeably. 

harvesting states, P is a patient that verb sense (V, T) can 

take and Z is a verb that is strongly related to before-state 

of (V, T). An example of a good seed is (break, machine, 

work), since we know that ―a machine works before it 

breaks‖. We use these seeds to extract from the corpus a 

list of sentences that contain all the three words in the seed. 

Then we filter these sentences and keep only those in 

which P is the patient of V and there is a before-

relationship between Z and V. Next, we parse these 

sentences with a dependency parser to find the 

dependencies between V, P and Z in each sentence. This 

gives us a list of dependency patterns. Some of these 

patterns which for simplicity we translate into phrases are: 

• P Zed until it Ved (the TV worked until it broke) 

• P no longer Zs since it Ved (the TV no longer works 

since it broke) 

• Even though P Ved, it still Zs (even though the 

machine broke, it still works). 

Patterns for after-states are extracted similarly. With this 

method we have extracted 11 patterns for before-states and 

7 patterns for after-states. We also add an additional 

pattern which matches any sentence in which both V and Z 

occur such that either of them has P as its patient. We will 

refer to this pattern as P0. These 19 patterns are further 

expanded to 19*3 patterns by adding the feature of whether 

the patient of V, the patient of Z or none of them is a 

pronoun.  

Evaluating the Patterns 

We use precision as the measure for evaluating patterns. 

To compute the precision of patterns, we used these 

patterns to harvest ZList and JList (as described in the next 

section) for 16 change-of-state verb senses from several 

Levin classes. We used the baseline function (described in 

next section), for ranking ZList and JList. Then for each of 

the 16 verbs, we searched among the first 500 words to 

 
Figure 1: Distribution of pattern precision and recall (only 

patterns with precision>0.02 are shown.) 



obtain a gold set of verbs and adjectives. We obtained 

about 100 adjectives and 30 verbs in total. Then for each 

verb, we computed the precision of different patterns over 

the first 500 words and adjectives and took the mean over 

all 16 cases. Figure 1 shows the precision, as well as the 

recall and f-score for 22 before/after-state patterns in 

extracting verbs. For space reasons, we have only shown 

the statistics for patterns with precision above 0.02 (as we 

will see later, this is the best threshold for scoring). Pattern 

Ids are on the vertical axis. The prefix it0 in pattern Ids 

indicates that none of the patients of V or Z are pronouns; 

it1 indicates that V‘s patient (P1) is a pronoun and it2 

indicates that Z‘s patient (P2) is a pronoun. A phrasal 

representation of the patterns (without the prefix iti) is also 

shown in this figure. 

Harvesting Candidate Predicates 

To harvest state predicates for a verb sense (V, T), we first 

need the list of words with type T. Since T is a synset in 

WordNet, we can obtain this list from the synsets that are 

under synset T in the WordNet hierarchy. Each synset S 

that is under type T in WordNet hierarchy consists of 

several words. We filter these words and keep only those 

that have a high frequency and S is among their first two 

synsets. (This prevents a word such as ―king‖ to be 

considered as an instrumentality). We add all such words 

for different synsets to a list called TWordList. 

To obtain ZList we first filter the corpus and keep only 

sentences containing both V and a word in TWordList. 

Next, we parse these sentences using a dependency parser 

and match them against the set of patterns. We obtain a list 

of tuples (Z, f, l) where Z is the extracted word; f is the 

total number of times that Z is extracted and l is a list of 

pattern-frequency tuples. In a pattern-frequency tuple 

(pi,fi), pi is the pattern Id and fi is the number of times that 

pi extracted Z. 

Ranking the Candidates 

To rank the extracted words, we assign a score to each 

word based on its frequency, the patterns that extracted it, 

the frequency of patterns and the precision of patterns.  

To find a good scoring function for ranking candidate 

tuples (Z, f, l), we experimented with 4 different scoring 

functions (m1-m4) and compared them with the baseline 

function (m0) which simply takes f as the score. These 4 

scoring functions are as follows: 

m1:  𝑠 =   𝑓𝑖   , for all (pi, fi) in l,  where fi > t, i ≠ 0 

m2:  𝑠 =  𝑓𝑖    , for all (pi, fi) in l, i ≠ 0 

m3: 𝑠 =   
𝑓                 𝑖𝑓 ∃  𝑝𝑖, 𝑓𝑖 ∈ 𝑙; 𝑓𝑖 > 𝑡; 𝑖 ≠ 0
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

  

m4: 𝑠 =   
𝑓                  𝑖𝑓 ∃  𝑝𝑖, 𝑓𝑖 ∈ 𝑙;  𝑖 ≠ 0
0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

  

where t is the threshold for pattern precision. To evaluate 

these scores, we use the same gold data that we created for 

evaluating patterns. The best scoring method should be the 

one that has higher recall values in lower ranks. It turned 

out that the best scoring functions for verbs and adjectives 

are m3 with t=0.02 and m0 respectively. Figure 2 shows the 

percentage of gold verbs and adjectives that the best 

scoring function (among m1-m4) and the baseline function 

(m0) delivered. We can see that for verbs, m3 has a 25% 

recall at the cut-off rank 30, while the baseline has a recall 

of 15% only. For adjectives, the baseline is as good as m3 

before rank 30 and is much better thereafter. According to 

this graph, a good cut-off rank that contains 25% of good 

results is 30 for verbs and 60 for adjectives.  

Case Study 

In this section, we study the positive results (i.e., 

adjectives and verbs that describe the previous or next state 

of an event) harvested for different senses of two change-

of-state verbs ―break‖ and ―cut‖ to investigate their 

potential for axiomatizing these verb senses as well as 

helping experts to enrich the core theories. These positive 

cases are chosen by one of the authors, among the words 

with a rank lower than the corresponding cut-off. Tables 1 

and 2 show a comparison between our manually encoded 

predicates and the extracted verbs and adjectives for the 

verbs ―break‖ and ―cut‖ respectively. For space reasons, 

we only present the results for seven senses of each verb, 

for three of which we could obtain good axioms. Each row 

represents a verb sense specified by the patient type T. The 

first column shows the patient type T. The second column 

shows our hand-coded states and the third and fourth 

columns show those members of ZList and JList that we 

have selected from the top 30 and 70 items in these lists. 

We have marked entries related to previous states with P 

and those related to next states with N. The successful 

extractions are marked in bold. We have categorized the 

axioms that will be obtained from each verb and adjective 

in ZList and JList into defeasible and indefeasible. An 

axiom is indefeasible if it is true without more assumptions 

 
Figure 2.Comparison of the best scoring function (among m1-m4) 

and the baseline function (m0) 



and is defeasible otherwise. The verbs and adjectives that 

yield defeasible axioms are marked in italic.  

Definitional Axioms 

If the extracted verbs and adjectives are to be used in 

axioms defining verb senses, they need to represent states 

that are indefeasibly true before or after the corresponding 

event. As the results in Tables 1 and 2 show, in many cases 

the harvested verbs and adjectives correspond to 

indefeasible axioms and in some cases they exactly match 

our manually encoded predicates: breaking a law changes 

the state of the law-breaker to being ―guilty‖; breaking a 

piece of information (such as news) changes the state of it 

from being ―unknown‖. Cutting a substance changes the 

state of it from being ―more‖ and cutting a piece of writing 

changes its state to being ―short‖. In some cases such as 

―breaking a law‖ and ―breaking a record‖, there are several 

indefeasible candidates such as {guilty, accountable, 

responsible} and {best, leader, hold, stand} respectively. In 

such cases, we can have several axioms, one per each 

candidate.  

There are some verb senses for which there are no useful 

predicates among the extracted lists. As shown in Table 1, 

while we defined the previous state of ―breaking a solid‖ as 

―being integrated‖ (alternatively we could define the next 

state as ―being separated‖), there are no predicates in ZList 

or JList that indicate integration or separation. This is a 

rather expected outcome as this kind of knowledge is too 

obvious to be stated in text. There are also cases such as 

―cut a check‖ for which we again didn‘t find any relevant 

predicate among the candidates; but this time, ―cutting a 

check‖ does not refer to an obvious commonsense concept. 

In this case, it is even hard for an expert to think of a state 

that is changed by ―cutting a check‖.   

Enrichment of Core Theories 

Now we show how the extracted data can reveal missing 

axioms in our core theories.  

When there are several indefeasibly true before/after-

states for one verb sense, there should be an entailment 

relationship among them. A good example is ―breaking a 

record‖ for which we have 3 alternative before-states: ―the 

record held‖, ―the record was the best‖ and ―the record 

breaker was the leader‖. In this case, there is an entailment 

relationship between each pair of states; since they all are 

referring to a single concept. To enable entailment between 

―the record being the best‖ and ―the record breaker being 

the leader‖, we need to make sure that the following 

axioms are in our commonsense knowledge base: 

(1) record(r, x, f) ↔ best(r, f) & have(x, r) 

(2) have (x, r) & best(r, f) ↔ best(x, f) 

(3) best(x, f) ↔ leader(x, f) 

The first axiom says if r is a record by x in field f, then r is 

the best in f and x is the holder of r. The second axiom 

says x‘s holding something that is the best in field f is the 

same as x‘s being the best in field f. The last axiom says 

x‘s being the best in field f is the same as x‘s being the 

leader in that field. The above axioms also enable 

entailment between ―being best‖ and ―being leader‖ as well 

as entailment between ―being a record‖ and ―being the 

best‖. To enable entailment between ―record  holds‖ and 

―record is the best‖, we need a more complex set of rules 

that together make it possible to make such inferences as: 

―holding means being valid‖, ―a record is valid at time t if 

and only if it is the best at time t‖, ―a record is the best in a 

field only until another record is set in the same field‖, 

―when r1 is the best in field f until time t and at time t , r2 

becomes the best, r1 is not the best thereafter‖.  

 As a second example for how the extracted information 

help enriching the knowledgebase, we consider  ―breaking 

a law‖, for which we got three indefeasibly true after-

states: ―being guilty‖, ―being accountable‖ and ―being 

responsible‖. In order to make possible the entailment 

between ―being guilty‖ and ―being responsible‖, we need 

to make sure that the following axioms are in our 

commonsense knowledge base: 

guilty’(e, x, a) → 

           agentOf(x, a) & against(a, l) & law(l)  

agentOf(x, a) → responsible( x, a)  

The first axiom says: if x is guilty for action a, then x is the 

agent of a and a is against the law l. The second axiom 

says: if x is the agent of an action a, then x is responsible 

for a. 

Table 1. Verbs and adjectives extracted for “break” 

Patient Type 

 (T) 

Hand-Coded 

State 

ZList JList 

Law N: guilty  

N: guilty, accountable, 

responsible,  

criminal  

Record P: best P: hold, stand P: best, leader 

Communication P: unknown P: keep 
P:  happy unknown,  

N: happy  

Device P: function P: worked P: good 

Solid P: integrated  P: good 

Body Part N:injured P: play, work,  run  

Group P: complete P: stay  

 
Table 2. Verbs and adjectives extracted for the verb “cut” 

Patient 

Type (T) 

Hand-

Coded 

State 

ZList JList 

Body Part 
N: open, 

injured 

N: bleed, 

die, heal 

P: grow 

N:open , dead  

Substance P: more N: starve 
P: more, many, most, enough  

N: little, low, small, few  

Piece of 

Writing  
P: long N: fit 

P: long  

N: short  

Person P: member    

Vehicle 
P: go 

straight  
N: spin  

Check ?   

 



As mentioned before, defeasible axioms are those that 

are not necessarily true without making additional 

assumptions. In Table 1, we have three defeasible cases: 

the state after ―breaking a law‖ is ―being criminal‖, the 

state before or after ―breaking news‖ is ―being happy‖, and 

the state before ―breaking a solid‖ is ―being good‖. 

Similarly, in Table 2 we have defeasible cases such as the 

state after ―cutting an organ‖ is ―bleeding‖. None of these 

are necessarily true and thus they cannot be used in axioms 

defining breaking a law, news, solid or cutting an organ. 

However, they still provide us with interesting knowledge 

such as: 

- A criminal is a guilty person 

- learning about information can make someone 

happy 

- integrity of a solid entity is good (or a change 

from being integrated is bad) 

which can be axiomatized and added to the respective core 

theories.  

One problem in using the extracted words as predicates 

is that these words may not be a predicate in our core 

theories. For example, the word responsible is not a 

predicate in our theory. In such cases, we have two 

choices: replacing these words with their definitions 

anchored in core theories (for example, the definition of 

responsible(x, e0) is agentOf(x, e0)). The second option is 

to add these words as new concepts to our core theories. 

This is where the harvested words help in enriching our 

knowledge base with new predicates (concepts).  

Conclusions and Future Work 

We presented an experiment for using text mining to 

facilitate the process of building a lexical and a 

commonsense knowledge base. In this experiment we 

focused on change-of-state verb senses (whose 

axiomatization requires information about the state 

changed by their corresponding event) and developed a 

harvesting method to obtain a rich set of candidate states 

for each verb sense. We showed that this short list of states 

contains candidates that are as good as the states chosen by 

experts. This suggests that we may be able to replace the 

expert effort in encoding axioms with a simple annotation 

task done via Mechanical Turk. We also showed that the 

extracted information can help enriching the core theories 

by revealing missing axioms in these theories. Our future 

work includes improving the patterns as well as the scoring 

functions to obtain a richer and smaller set of candidate 

axioms. We would like to apply our methodology to a 

larger set of verb senses and have Mechanical Turk 

annotators filter the resulted candidate list. We also need to 

develop a procedure for enriching the axioms with 

argument structure which will also enable us to harvest 

more complex axioms consisting of several predicates. We 

used a manual method for clustering different patients of a 

verb, but in practice we need an automatic method that 

given a verb, a large corpus and perhaps resources such as 

WordNet, finds all possible patients of that verb and 

clusters them into different types, such that each cluster 

represents a different sense of the verb. Finally, we would 

like to measure the coverage and specificity of our axioms 

against VerbNet‘s axioms, as well as the overlap between 

these two axiom collections.  
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