
Combining Uncertainty and Description Logic
Rule-Based Reasoning in Situation-Aware Robots∗

Hans-Ulrich Krieger and Geert-Jan M. Kruijff
German Research Center for Artificial Intelligence (DFKI GmbH)

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
{krieger,gj}@dfki.de

Abstract

The paper addresses how a robot can maintain a state repre-
sentation of all that it knows about the environment over time
and space, given its observations and its domain knowledge.
The advantage in combining domain knowledge and obser-
vations is that the robot can in this way project from the past
into the future, and reason from observations to more general
statements to help guide how it plans to act and interact. The
difficulty lies in the fact that observations are typically uncer-
tain and logical inference for completion against a knowledge
base is computationally hard.

Introduction
A robot continuously builds up beliefs about the world, and
about the agents it is working with. It bases these beliefs in
its experience. This experience naturally covers the here-
and-now. What the robot currently sees, hears, plans to
do. At the same time, experience needs to go beyond that.
Recording past experience, the robot can reason about what
once was – and what might still be, even when the robot
isn’t looking that way right now. And, looking beyond the
moment, the robot can create expectations about what the
future might bring. Either based on what has been, or what
can be expected to be the case, given general “world” knowl-
edge the robot has.

Every time the robot forms new beliefs, or alters ones that
it already entertains, its collection of beliefs needs to be up-
dated. This update takes the model from some state t to a
new state t + 1. This new state reflects the robot’s beliefs
about the world. Typically, the robot updates its beliefs on
the basis of perceptual input it gets, or deliberative steps it
takes, e.g., in dialogue processing or action planning. Expe-
riencing the world and acting on it, are the main drives for
maintaining and updating a robot’s belief model.

What we would like to achieve is that, within bounds, the
belief model represents all the robot could possibly know
about the aspects of the world it is holding beliefs about. By

∗The research described here has been financed by the Euro-
pean Integrated projects CogX (cogx.eu) and NIFTi (nifti.eu) un-
der contract numbers FP7 ICT 215181 and 247870. We would like
to thank Bernd Kiefer and the reviewers for their comments.
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this we mean both a sense of temporal continuity or persis-
tence, and a sense of completion. By persistence we mean
that the robot can infer whether what it believed earlier is
still the case, currently. Even when the robot does not have
any current experience to confirm or disconfirm that. By
semantic completion we mean that when a robot creates a
belief based in experience, it can expand that belief by mak-
ing further inferences about that aspect of reality by using its
domain knowledge. There is a certain appeal to a model like
that. At each point, it represents all there is to know about
experience relative to the robot’s domain knowledge and in-
ference capabilities. And that means that any process acting
on that model only needs to inspect the model to make its de-
cisions, i.e., without needing to request further information
from other processes.

Just seeing this logically would be nice, but there is a
problem we need to face here. Namely, there is an inher-
ent uncertainty to a robot’s experience, reflected in the be-
liefs and inferences it can draw from them. A robot never
knows for sure that the object in front of it is a mug – with
some likelihood, yes, but it could also be a box. Or the room
it believes to be a bedroom is actually a kitchen. A robot
is never certain. Any computation for dynamically updat-
ing belief models needs to take these uncertainties into ac-
count. In this paper we discuss how we can deal with this
kind of uncertainty, in combination with safe monotonic log-
ical inference. As a consequence of the uncertainty and the
fact that “spelling out” uncertainty is incredibly inefficient,
a robot, or more generally, a situation-aware system needs
some model of bounded rationality.

Approach
We describe here an approach that combines uncertainty and
description logic rule-based reasoning. Probabilistic infor-
mation is attached to perceived events (percepts) or inter-
action with other agents, whereas monotonic reasoning is
realized in a highly-optimized rule-based reasoner that cov-
ers great parts of OWL (ter Horst 2005) and integrates user-
defined rules, going beyond the expressivity of OWL DL.

What is unique to our approach is that uncertainty of
perceived information is not translated into uncertainty (or
fuzziness) built into logical reasoning, but instead is realized
through possible worlds, ordered by their likeliness w.r.t. the
probability of a recognized external event that is integrated

into the world and the distance of the world to a goal that an
agent wants to achieve (see Figure 1).

Thus facts and rules inside a given world are safe and al-
ways do hold for this specific possible world. However, it
might be the case that such a world is either very unlikely or
its ABox is inconsistent, and thus can not be pursued further.

Bounded rationality is built into our model in that the ap-
proach (i) is lazy and the number of worlds in focus might
be restricted to the most-probable ones; (ii) comes with
a monotonicity assumption explained later, so that prede-
cessors of expanded worlds need not be recorded; (iii) fa-
vors a kind of depth-first search that suits online search and
only backtracks in case an expanded world is less likely
than a recent non-expanded world; (iv) incorporates alter-
native/competing information from the future when back-
jumping to an older world; (v) might involve resource re-
strictions in order not to fully perform semantic completion
(this involves the forward chainer, described later). As we
see below, uncertain information reaches us discretized and
aggregated, so we are not forced to translate a continuum of
possible feature values into a finite set of values.

Percepts as Multivariate Probability Distributions
Incoming uncertain information (percepts) is represented as
a list of independent features over distributions of possible
values, for instance:

〈type = 〈mug : 0.6;box : 0.4〉,
color = 〈red : 0.6;blue : 0.3;green : 0.1〉,
shape = 〈square : 0.2; round : 0.8〉〉

Since we regard features as conditionally independent, we
turn the conjunction into a disjunction, viz., a multivariate
probability distribution:

〈〈type = mug, color = red, shape = square〉 : 0.072;
〈type = mug, color = red, shape = round〉 : 0.288;
.
〈type = box, color = green, shape = round〉 : 0.032〉

This representation does not change the probability mass
which is still 1 for the sum of the individual percepts. Such
a distribution over n complex percepts pi serves two pur-
poses. Firstly, the event probabilities are useful to compute
the transition probabilities Pr(wt+1,i | wt, pi, at) of a world
wt at t to n different possible successor worlds wt+1,i at
t + 1 (1 ≤ i ≤ n). The effects of action at has led to the
construction of world wt and can be checked against percept
pi to see whether at was successfully executed. Thus for the
above example, we can produce 12 possible continuations.
This is shown in Figure 1.

Secondly, the different feature-value combinations en-
coded in the percepts at t+1 are potentially added to copies
of the ABox of wt in order to eventually produce completed
ABoxes for wt+1,i. For the first percept, we then obtain the
following beliefs (o is a new individual): {mug(o, t + 1),
hasColor(o, red, t+ 1), hasShape(o, square, t+ 1) }.

Algorithm
We have separated the algorithm into three parts: (i) init()
which constructs the initial world at time 0, (ii) expand()

Figure 1: 12 extensions are possible to move from world wt

further into the future (see example above). wt+1,2 is the
world that comes with the largest transition probability and
has the least cost, as indicated by the path connecting wt+1,2

and the final goal world. Backtrack points, at which worlds
are not further pursued, are marked as 1, 2, 3, 6, and 7.

which generates possible continuations, and (iii) sense-
InferAct() which integrates new sensed information from
outside, calls expand() and checks whether a final world
has been reached. It is worth noting that we maintain sev-
eral global data structures, important to proper backjump
(not necessarily, chronological backtracking) to older non-
expanded world in case the agent changes its “focus”: time-
ToClock, timeToPosition, timeToAction, and timeToPer-
cepts. Note that time and current below are also global.

Init We start by constructing an initial world at time 0 (line
06). This world is equipped with some axiomatic knowl-
edge which we make explicit (07+08), but is not equipped
with information from outside (viewed technically, a blank
percept (09) has “led” us to this world). The axioms essen-
tially outline what we could know about any world. Since
we have not sensed the environment so far, the initial action
that is executed here, must be a wait action (12). We as-
sign some initial distance estimation to the goal state through
estimate() (14). The definition of a distance measure, of
course, depends on the agent’s mission, e.g., Euclidean dis-
tance for route finding. Since expansion has not started yet,
the agenda of most-probable successor worlds is empty (16).
init(initialKnowledge, initialPosition) ≡
01 time := 0
02 timeToClock[0] := getCurrentTime()
03 timeToPosition[0] := initialPosition
04 timeToAction[0] := wait
05 timeToPercepts[0] := 〈 blank 〉
06 current := makeNewWorld()
07 current.beliefs := initialKnowledge
08 current.beliefs := computeClosure(current.beliefs)
09 current.percept := blank
10 current.here := initialPosition
11 current.now := 0
12 current.action := wait
13 current.travel := 0
14 current.estimate := estimate(null, noop, current)
15 current.total := total(0, current.estimate)
16 activeWorlds := 〈 〉

Expand When new information from outside is integrated
into the system, we construct a new world for each percept
from the multivariate distribution (02+03); see the example
above. The ABox is (shallow) copied over from current,
beliefs generated from the percept are added, and the clo-
sure is computed (04+05). This expansion also uncovers in-
consistent ABoxes through querying for individuals of type
owl:Nothing. In such a case, we assign an infinite dis-
tance. Only if the distance estimate between the new world
and the goal state is finite, we compute the total cost and
add next to the agenda (15–17). The lines 08–10 guaran-
tee that an older “passive” world at time s that is regarded
to be more likely than the current world at time t (s < t)
is equipped with the former positions and the performed ac-
tions of the agent at times s+ 1, . . . , t, when brought to the
“temporal forefront”.
expand() ≡
01 local next
02 for each percept ∈ timeToPercepts[current.now + 1]
03 next := makeNewWorld()
04 next.beliefs := copy (current.beliefs) ∪ beliefs(percept)
05 next.beliefs := computeClosure(next.beliefs)
06 next.percept := percept
07 next.now := current.now + 1
08 if next.now < time
09 next.action := timeToAction[next.now]
10 next.here := timeToPosition[next.now]
11 else
12 next.here := obtainPosition()
13 next.travel := travel(current, current.action, percept)
14 next.estimate := estimate(current, current.action, next)
15 if next.estimate 6=∞
16 next.total := total(next.travel, next.estimate)
17 push(next, activeWorlds)

Sense, Infer, Act As long as we have not reached a goal
state or have been interrupted (02-06), we keep on adding
new beliefs generated from percepts (10) to possible exten-
sions of agenda items (12). The definition of a goal state
clearly depends on the problem the agent wants to solve,
e.g., a zero distance to a landmark (route finding) or a spe-
cific logical entailment (exploration mission). “Safe” in-
formation about past events communicated by other agents
(e.g., human operator) is added to current and all sleeping
agenda items (07). This strategy could lead to the activation
of a former, less-likely world that needs to be enriched with
percepts and executed actions, as explained in the section on
Expand above. Thus the inner loop (11–17) might be exe-
cuted more than once until the time stamp now of the current
world is in sync with the global counter time. We also keep a
spatial map of the environment that is destructively updated
during this loop (17).

Action planning and execution finally started (19–21) af-
ter we have opted for a new world (16). We note here
that since action execution (21) is supposed to be carried
out asynchronously in a separate thread, the outer loop (02)
keeps on sensing the environment (10). As a result, new per-
cepts can in principle be used to correct an ongoing action,
potentially leading to an online replanning step in (19).
senseInferAct(initialKnowledge, initialPosition) ≡

01 init(initialKnowledge, initialPosition)
02 while true
03 if isInterrupted()
04 return *interrupted*
05 if goalReached()
06 return *success*
07 hearsay()
08 time := time + 1
09 timeToClock[time] := getCurrentTime()
10 timeToPercepts[time] := sense()
11 while current.now < time
12 expand()
13 recomputeEstimate(activeWorlds)
14 sort(activeWorlds)
15 restrictLength(activeWorld)
16 current = pop(activeWorlds)
17 updateMap(current.now)
18 timeToPosition[time] := current.here
19 current.action := plan()
20 timeToAction[time] := current.action
21 execute(current.action)

It is worth noting that this algorithm shares similarities
with the A? search algorithm in that the agenda is sorted
according to a combination (usually the sum) of the accu-
mulated path cost cost (a number) and the distance estimate
estimate (a number), establishing a total order. The search
space is a fan-out tree “into” the future, but sleeping past
worlds on the agenda which gain importance through future
knowledge (07) lead to a re-estimation of the total cost (13).
As explained above, a past alternative world is then equipped
with the things that have happened, since it became inactive.
This, however, does not necessarily mean that an agent in
this world has to travel back in space (even though it has
followed a wrong route as a result of false beliefs).

Inside a world, spatial search is carried out in a graph
representation of the environment by a variant of A?. As
mentioned above, this map is updated (17) every time we
perceive new information and move on to another world.
Traveling back in time from t to an inactive world at time s
(s < t) is achieved by destructively modifying the map, re-
moving the information that has been added between s and t,
and adding the new alternative information for time stamps
s, s+ 1, . . . , t. Contrary to spatial ABox beliefs which deal
with topological relations, the map mostly contains low-
level spatial information about objects (e.g., 2D coordinates)
and single-step costs between graph nodes. The reason for
having only one map and multiple ABoxes is that we can
efficiently undo modifications of the map, but would need
a truth maintenance-like structure hooked into the ABox to
avoid wrong entailments.

Complexity Considerations
Given P percepts per clock tick and T ticks in a sequence,
we can estimate the complexity of the above outlined algo-
rithm and some foreseeable variations in terms of the num-
ber of constructed worlds:

• full expansion: O(PT)

• lazy expansion (this paper): between O(P ∗ T) and
O(PT), depending on the predictive power of estimate()

• lazy expansion + length-restricted agenda: O(T) (the
whole search space can no longer be inspected; only a
constant number of worlds is in the focus)

• greedy expansion: O(1) (only the most-probable world
needs to be recorded and is extended without copying)

Completeness of Algorithm
The algorithm, as displayed above, is able to visit all pos-
sible worlds, thus guaranteeing that a final goal can be
reached, if it exists. This can be shown by defining the accu-
mulated travel costs to be 0 for each world and by choosing
the following distance function that realizes a breadth-first
search:

estimate(from, action, to) ≡{
∞ if to.beliefs is inconsistent
to.now otherwise

However, such a behavior is usually not desired, since full
expansion is intractable. Finding an optimal estimation is in
general impossible, since we do not know how far our final
goal is located in the future.

Forward Chaining and Closure Computation
Logical inference within the individual worlds is performed
by HFC, a highly-optimized rule-based forward chainer that
was originally implemented for reasoning and querying with
OWL-encoded ontologies (McGuinness and van Harmelen
2004) over RDF triples (Manola and Miller 2004). Usually,
bottom-up forward chaining is employed to carry out (all
possible) inferences at compile time, so that querying infor-
mation reduces to an indexing problem at runtime. The pro-
cess of making implicit information explicit is often called
materialization or computing the deductive closure of a set
of ground atoms A w.r.t. a set R of universally-quantified
implications B → H (if-then rules). The body and the head
of a rule consist of a set of clauses, interpreted conjunctively.
Forward chaining, as we used it here, can be seen as model
building over the Herbrand interpretation of a function-free
definite program (Horn logic as used in Prolog).

It is worth noting that the forward chainer operates in
a monotonic and certain conjunctive search space: neither
do we delete any information, nor do we attach probabili-
ties to asserted facts. As described in the algorithm above,
HFC regularly queries new information within a situation-
awareness loop. Since the size of relevant new information
between different closure computations is relatively small, a
new fixpoint is usually computed extremely fast, requiring
only a few iteration steps. HFC efficiently handles ABoxes
with millions of facts and provides means to work with thou-
sands of medium-sized ABox in parallel, an important fea-
ture that we employ in our approach here.

Rules in HFC
Rules are formulated using an extended RDF triple/tuple no-
tation (additional LHS tests and RHS actions). Rules

1. implement OWL entailment, and thus consistency; e.g.,

?s owl:sameAs ?o
?s owl:differentFrom ?o

->
?s rdf:type owl:Nothing
?o rdf:type owl:Nothing

2. provide custom functionality; e.g., by moving from a
point-based sensor-oriented representation to an extend-
able interval-based encoding:

?s ?p ?o ?t
->
?s ?p ?o ?t ?t

We have opted to go for general tuples instead of using en-
coding schemes, such as reification, thus making HFC able
to address two further important areas of functionality:

3. to coalesce information over time, e.g.,

?s ?p ?o ?b1 ?e1
?s ?p ?o ?b2 ?e2
->
?s ?p ?o ?b ?e
@test
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2
@action
?b = Min2 ?b1 ?b2
?e = Max2 ?e1 ?e2

4. to reformulate LTL safety conditions (r = robot, a = area),
such as G(explore(r) ∧ risky(a)⇒ ¬in(r, a)):

?r rdf:type Explore ?b1 ?e
?a rdf:type Risky ?b2 ?e
?r near ?a ?b3 ?e
->
DO SOMETHING / MOVE ROBOT AWAY / ...

In order to make the entailment rules for RDFS (Hayes
2004) and OWL (ter Horst 2005) also sensitive to time, we
have extended them by further temporal arguments (Krieger
2011). For instance, a rule that talks about functional object
properties in OWL is implemented as:

?p rdf:type owl:FunctionalProperty
?p rdf:type owl:ObjectProperty
?x ?p ?y ?b1 ?e1
?x ?p ?z ?b2 ?e2
->
?y owl:sameAs ?z
@test
IntervalNotEmpty ?b1 ?e1 ?b2 ?e2

References
Hayes, P. 2004. RDF semantics. Technical report, W3C.
Krieger, H.-U. 2011. A temporal extension of the Hayes and
ter Horst entailment rules for RDFS and OWL. In AAAI 2011
Spring Symposium “Logical Formalizations of Commonsense Rea-
soning”.
Manola, F., and Miller, E. 2004. RDF primer. Technical report,
W3C.
McGuinness, D. L., and van Harmelen, F. 2004. OWL Web Ontol-
ogy Language Overview. Technical report, W3C.
ter Horst, H. J. 2005. Combining RDF and part of OWL with
rules: Semantics, decidability, complexity. In Proceedings of the
International Semantic Web Conference, 668–684.

