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Abstract

We introduce CIM, a Commonsense Inference Mem-
ory system utilizing both Extended Semantic Networks
and Bayesian Networks that builds upon the common-
sense knowledgebase ConceptNet. CIM introduces a
new technique for self-assembling Bayesian Networks
that allows only relevant parts of the commonsense
database to affect the inference. The Bayesian Network
includes both the activities occurring within the input
sentences and the related activities appearing in the
commonsense database. The Bayesian Network is used
to interpret and infer the meaning of the set of input
sentences. With our self-assembled networks only rel-
evant inference is performed, speeding up performance
of reasoning with commonsense knowledge. We demon-
strate that our system can disambiguate the needs of
the user even if they do not state them directly, and do
not use keywords. This ability would not be possible
without either the use of commonsense or significant
training. Eventually this approach may be applied to
increase the effectiveness of other natural language un-
derstanding techniques as well.

Introduction

Natural Language Processing studies techniques to un-
derstand the semantics of written language in general
documents (Ali and Shapiro 1993; Jurafsky, Martin,
and Kehler 2000). Methods for understanding seman-
tics are usually combined with syntax to increase under-
standing. The use of commonsense reasoning in natural
language processing has so far been limited, however.
One example of using commonsense reasoning is for in-
ference in story understanding. Previous approaches to
story understanding applied language processing oper-
ations to build effective reasoning models. Common-
sense methods have been designed for domain specific
reasoning such as reasoning on the cause of a car ac-
cident(Kayser and Nouioua 2009), or generating sum-
maries according to data in medical care (Portet et al.
2009). Others aimed for a more general approach for
using commonsense in NLP. For instance, the search
engine Goose uses commonsense to understand a user’s
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search query without relying on keywords (Liu, Lieber-
man, and Selker 2006). Another general method es-
tablishes co-reference mappings of data in a memory
system to reduce the number of ambiguous sentence
interpretations and determine whether different refer-
ences describe the same event (Livingston and Riesbeck
2009). This approach may often be slow as it focuses
solely on matching entities and stories through memory.
We instead focus our approach on understanding lan-
guage through activities. Our approach is based on the
fact that the semantic roles of verbs have been used to
characterize nouns, and have been shown to predict the
brain activity associated with the meanings of nouns
(Mitchell et al. 2008). By focusing on the action com-
ponents of sentences, our commonsense inference mem-
ory (CIM) can improve inference with commonsense by
associating related commonsense activities with those
in the input sentences.

There are several commonsense knowledge bases that
can be used for language reasoning, such as Cyc (Lenat,
Prakash, and Shepherd 1985) from Cycorp and Con-
ceptNet (Liu and Singh 2004) from the Open Mind
Common Sense Project. We have chosen to use Con-
ceptNet due to the ease of integrating ConceptNet with
our CIM system. In ConceptNet, a word from the input
sentences is given and then related concepts are found
in the commonsense database and returned. Learner
has improved on the techniques used in ConceptNet
by creating a system that is similar to ConceptNet,
but with the addition of analogies to suggest new top-
ics (Chklovski 2003). Although they are able to sug-
gest additional knowledge, their results state that just
over 50% of their suggestions are incorrect or irrele-
vant. Similar to but more mathematically rigorous than
Learner, AnalogySpace calculates new potential anal-
ogy based inferences between commonsense concepts of
similar features (Speer, Havasi, and Lieberman 2008).
We provide a more general way to create new inferences
that allows the system to work toward understanding
different sets of input over time through Bayesian infer-
ence as opposed to the more limited analogy inference.

Similar to these systems, we take into account the
type of information we are analyzing, disambiguate
word meanings, and find the sentence topics prior to



Figure 1: An overview of the Commonsense Inference Memory (CIM) system, consisting of three subsystems: In-
formation Processing, Memory, and Inference. The information process system first analyses input sentences to
determine the topic and disambiguate meanings (details in Fig.2). The input is stored in the Memory system, and
then sent to the Inference system. The inference system combines the input with commonsense knowledge that
has been stored in the form of small 2-node Bayesian networks. This combination creates larger networks, linking
commonsense knowledge with domain knowledge from the input. These larger networks are then returned to memory
where they can be used to continue inferring new knowledge as sentences are input, as well as to create new relevant
information.

inference to ensure only accurate new knowledge is cre-
ated. We introduce the Commonsense Inference Mem-
ory (CIM) system to understand language using com-
monsense knowledge. It parses input sentences with
a modified version of the Stanford parser (de Marn-
effe, MacCartney, and Manning 2006). The informa-
tion is refined via Wordnet (Fellbaum 1998), VerbNet
(Kipper et al. 2006), and the ConceptNet database,
and then stored for inference. Assertions in Con-
ceptNet are used to create two-node Bayesian net-
works (BNs) that display causal relations of two ac-
tivities. Related BNs are adaptively selected by match-
ing the topic keywords given by these new input sen-
tences, and are then combined with common nodes.
This automated selection and assembly of BNs en-
ables inference processes to avoid inaccurate conclu-
sions and to potentially combine commonsense knowl-
edge better than in previous models (Chklovski 2003;
Speer, Havasi, and Lieberman 2008). We demonstrate
the use of our system on understanding user needs
through natural language statements, without the use
of keyword commands. We show that CIM can use
commonsense knowledge to understand user needs by
examining actions in a novel way that may not be pos-
sible without commonsense.

An Overview of the CIM System
Our system is a memory system using Extended Se-
mantic Networks (ESN) to infer new information via a
reasoning model of self-assembled Bayesian networks.
Fig. 1 shows an overview of our model.

The memory system receives input information in the
form of natural language sentences. These sentences
are first parsed into subjects and predicates using the
Stanford Parser. Word meanings are disambiguated by
referring to constraints in VerbNet or by matching topic
keywords generated from WordNet. Fig. 2 shows the
procedure of analyzing sentences. The parsed informa-
tion is stored in a temporally built ESN that acts as
working memory. Relevant information in our database
(long-term memory) is also added to the working mem-
ory to assist in comprehending the new information.

The next step is to construct a reasoning model using
commonsense knowledge. A Bayesian network (BN) is
suitable to infer new information by integrating the ex-
isting facts and commonsense knowledge. In Concept-
net, knowledge is represented as a relation between two
concepts or events. These events can be viewed as nodes
in a BN and thus we can construct well-structured BNs
with these relations. Information from the input can
also be converted into events in a commonsense-based
BN and serve as evidence during the calculation of prob-
abilities. A BN adjacency matrix is built to indicate if
two BNs share the same node. When new data arrives
from the working memory, BNs are selected by match-
ing the predicates and topic domains. Then the BNs
are combined according to the adjacency matrix. Fi-
nally, the combined BNs use evidence from the working
memory and calculate the probability of the BN’s pred-
icates. Predicates with high probability are regarded as
new information and propagated to the working mem-
ory. More details follow in the rest of the paper.



Figure 2: Information Processing System: Analyzing
information from the input. Sentences are first parsed
with the Stanford Parser and stored in a temporarily
built ESN. Then, word meanings are disambiguated:
topic keywords and word meanings from WordNet are
selected with the constraints from VerbNet and Con-
ceptNet to decide the possible topic domain of the sen-
tences. This refined information is then propagated to
the long-term memory or inference engine.

Information Processing

Parsing Sentences into Working Memory

The parsing module provides formatted information to
integrate with commonsense data (Fig. 2). It parses in-
put sentences and breaks them into several parts based
on grammar. Predicates in these sentences describe the
features or activities of the subjects. Some predicates
can break into the form of “joiner + object,” where
the joiner contains a verb, indicating the relations be-
tween the subjects and the objects (Fig. 3(a)). From a
graphical point of view, a vertex can symbolically rep-
resent a subject or an object while an edge can repre-
sent their relation. These extended semantic networks
(ESNs) are used to represent the information derived
from sentence, as shown in Fig. 3. Notice that there
are differences between the ESN and classical semantic
networks: 1) vertices in the ESN only represent subjects
and objects, and edges represent the relations between
vertices; 2) An edge has a probability if the predicate
that it belongs to comes from inference, however, if an
edge comes directly from an input sentence, it is labeled
in the ESN as evidence for inference; 3) There are mul-
tiple directed edges from one vertex to another; 4) a
loop edge is allowed.

(a)

(b)

Figure 3: Parsing sentences into the ESN. (a) Two sen-
tences are divided into subjects and predicates and the
predicates are broken into joiner and object. (b) Sub-
jects and objects in the sentences are stored as vertices
in the ESN; joiners are stored as edges connecting two
vertices. The joiners “is hungry” and “has” are marked
as evidence since they come from the input sentences.

Word Disambiguation

After the sentences are parsed, the meanings of words
must be disambiguated so that the input is not misun-
derstood in current or future reasoning. After the input
sentences are parsed into subjects, joiners and objects,
WordNet and VerbNet are used to disambiguate word
meanings and ensure the accuracy of information by
topic matching. WordNet provides meanings of words
and relations between synsets such as “is a kind of,” “is
similar to,” and “topic domain.” For example, Word-
Net provides the first step toward distinguishing the
word “bat” in the sentence “a bat eats insects,” from
several potential meanings: 1)“club used to hit balls
in a ballgame,” 2) “nocturnal mouse like mammal,”
and 3)“small racket with long handle to play squash.”
Meanwhile, VerbNet has semantic restrictions for verbs
to constrain their thematic roles. The transitive verb
“eat” requires a living object such as an animal or hu-
man to perform the activity.

Another technique for word disambiguation is to
match topic keywords of sentences. For example, the
sentence “he goes to the bank” has ambiguous mean-
ings: “he goes to a sloping land beside the water” or
“he goes to a depository financing institution.” The
meaning of the sentence cannot be disambiguated only
with WordNet and VerbNet. If there is another sen-
tence “he jumps into the water,” the working memory
then gets two potential topic domains from word mean-
ings in WordNet: [“sloping land, water”, “water”] and
[“depository, financing institution”, “water”]. Only the
first topic domain shares the common word “water,”
thus the meaning of “bank” is chosen to be a “sloping
land” because the meaning can be categorized to the
same topic with the second sentence.



With these disambiguation techniques, words in the
sentences can be assigned specific meanings. These
meanings are later used to select the related knowledge
by matching their topic words and feature words, after
being stored in memory.

Sharing Information through Memory
Two parts constitute the memory model that facilitates
information sharing between the Information Process-
ing and Commonsense Reasoning, both represented by
an ESN: working memory (WM), and long-term mem-
ory (LTM). The WM is a temporarily created ESN
that only stores information related to current reason-
ing. This information includes the most recent input
sentences, inferred data from the reasoning model, and
related information from the LTM.

At the end of the inference process relevant data is
stored in the LTM for later use. The LTM stores both
previously input and inferred data. When subjects of
new sentences arrive in the WM, input data of the same
subjects in the LTM are searched and copied to WM as
additional information for inference. This data is also
used as training data to update parameters such as the
conditional distribution in the Bayesian Networks in our
reasoning model.

One problem in a reasoning process is that there can
exist different pieces of input evidence causing a contra-
diction of conclusion. For example, if someone “works
hard,” then they would “feel tired.” On the other hand,
if they “rest,” then they would no longer “feel tired.”
This change could cause a contradiction if the person is
observed to “work hard” and “rest” in the evidence be-
cause they could still “feel tired” without enough rest.
One solution to this type of problem is to use prob-
abilities to decide the dominant factor (“work hard”
or “rest”) to a conclusion. Thus, probabilities allow
the system to easily accept options, and we apply a
Bayesian network for reasoning.

Inference with Commonsense
CIM understands language by combining the relevant
information in the ESN with the commonsense data
stored in small Bayesian networks before performing in-
ference. By creating small two-node Bayesian networks
of commonsense knowledge initially, and then combin-
ing them with input from the ESN when necessary, we
decrease the time it takes to reason using commonsense.

Bayesian Network Constraints
To ensure the communication between the inference
module and language parsing module, our system places
several constraints on the Bayesian Network so that in-
formation in the ESN can be easily integrated for in-
ference. The first constraint is that each BN node only
represents an activity or a property of a subject of a
sentence. Thus, BNs in our system can receive evidence
that is converted from the ESN for probability calcu-
lation, as the ESN stores information about subjects.

Figure 4: Conversion of information from ESN to BN
evidence. Starting from the ESN information in Fig.
3(b), the edges and nodes are converted to BN nodes.

In the conversion, an edge representing an unary rela-
tion in an ESN changes directly into a variable, denoted
as a BN node. Its probability distribution is initialized,
where values of the variable are “true” and “false” (Fig.
4, edge e1(v1, v1)). A directed edge representing a bi-
nary relation in an ESN is combined with its pointed
node into a BN node (the edge e1(v1, v2) and the node
v2 in Fig. 4).

The second constraint is that the activity and prop-
erty of node in a single BN should have the same agent.
This is different from a traditional BN, where each node
can represent events for different agents. This con-
straint ensures the system will infer new information
for the correct agent.

Bayesian Construction from Commonsense
To infer new information from a parsed sentence,
Bayesian networks are constructed from commonsense
knowledge to update activities of entities based on new
information (Fig. 1). The initial preprocessing stage
creates two-node Bayesian Networks from ConceptNet.
The knowledge in ConceptNet is expressed as five-tuple
assertions (“relation type”, “A”, “B”, “f”, “I”), where
“relation type” indicates the relation of concept “A”
and “B,” f is the number of times a fact is uttered
in their training corpus, and i counts how many times
an assertion was inferred during the ’relaxation’ phase.
For example, (CapableOf “animal” “grow” “f=2; i=2;”)
has a relation type “CapableOf,” which indicates that
if something is an “animal,” it is capable of performing
the activity “grow.” We chose nine of the twenty rela-
tion types to create our initial two-node BNs( as seen
in Table 1). These nine relation types are the most rel-
evant, as they are all related to activities. For example,
“CapableOf” will aid in classifying a person based on
what they do. However, “MadeOf” or “PartOf” will
not aid our classification as both will only give us in-
formation about the physical properties of an item, and
does not relate to its use in activities. With this set, all
nodes in the self-assembled Bayesian networks continue
to relate to actions only.

Additionally, we need to initialize the parameters of
the newly constructed BNs since the joint conditional
distributions of the BNs are not provided in Concept-
Net. We initialize the probability distribution values
according to the relation type of the corresponding as-



sertion (Table 1). The probabilities of nodes without a
parent are set to 0.5.

However, the parameters of the BNs can be later
adjusted according to training data from the LTM.
If there are 10 people in the LTM with the activ-
ity “have lots of cholesterol” and 7 out of them also
have the activity “have heart attack,” then the prob-
ability P (have cholesterol | have heart attack) is ad-
justed to 7/10. Deciding the probability function is a
task belonging to the structure learning of BNs. Much
work has been done on creating probability functions
with training data (Niculescu-Mizil and Caruana 2007;
Tsamardinos, Brown, and Aliferis 2006), which we uti-
lize in our system.

Bayesian Network Combination
When the newly parsed information is acquired from
the Working Memory (WM), BNs are selected and
joined together into a larger Bayesian net for activity
understanding (Fig.1). The selection process includes
two main steps: 1) selecting the BNs that contain ex-
actly the same information as the input and 2) selecting
BNs containing relevant information.

The first main step of selection is based on matching
BN nodes, predicates in the sentences, and the top-
ics in the working memory. After searching for BNs
with nodes representing the same predicates as the sen-
tences, select BNs containing the predicates that share
the same topic domain as from the working memory.
For example, if there is a sentence “he goes to the bank”
in the working memory and the topic keywords are “de-
pository, financing institution,” BNs with the node “go
to the bank” will be selected. Then BNs with the same
topic keyword remain but BNs with other topic key-
words such as “sloping land, water” will be removed.

At this point, multiple two-node BNs will have iden-
tical nodes representing the same predicate. We will
combine these BNs so that they share the same node,
and the length of the longest path in the new BN is
two. Thus, the new BN can only infer information with
a direct causal relation from the input sentence. To
infer new information, the second step of the selection
obtains relevant BNs that do not have the same predi-
cates as the input but are related.

An adjacency matrix M is built for selecting such

relation type P (A|B) P (A|¬B)
(PrerequisiteEventOf “A”,“B”) 0.9 0.2

(FirstSubeventOf “A”,“B”) 0.7 0.3

(EffectOf “A”,“B”) 0.7 0.2

(CapableOf “A”,“B”) 0.7 0.1

(SubeventOf “A”,“B”) 0.9 0.1

(MotivationOf “A”,“B”) 0.6 0.1

(DesirousEffectOf “A”,“B”) 0.6 0.4

(IsA “A”,“B”) 1.0 0.6

Table 1: Default probabilities for integrating information
to a BN from ConceptNet.

(a)

(b) (c)

Figure 5: Combination of two-node BNs. (a) Four se-
lected BNs, where node 1 represents the information
from the ESN. The two leftmost BNs are selected in
the first step by matching the information, that they
share node 1. (b) The two BNs with node 1 have been
combined. Now the other matching nodes are selected
by searching a d-connecting path in the adjacency ma-
trix. (c) After iterating through the process of combin-
ing nodes, we have a combined BN of four nodes.

BNs. If BN i and BN j share a common predicate,
then Mij = Mji = 1, otherwise Mi,j = 0. By multiply-
ing the adjacency matrix with itself, a path connecting
the BNs can be found. By searching d-connecting paths
containing the nodes that represent the input informa-
tion, all the relevant BNs can be selected. This saves
us from learning and inferring with unrelated data, and
hence reduces the complexity and increases the accu-
racy in over typical BN strategies.

After the selection, BNs are joined together accord-
ing to the shared node s. The joint distribution of
each node in the BN needs to be adjusted according to
the newly combined BN structure. Suppose the shared
node s have the set of parents ai in BN i and aj in
BN j, where ∀x, x ∈ ai ←→ x /∈ aj . From the training
data in the longterm memory, we can calculate the con-
ditional distributions P (s | ai) and P (s | aj). The new
joint conditional distribution P (s | ai, aj) can be modi-
fied in two ways: 1) assign the value of the distribution
manually or 2) calculate the distribution according to
the relations of the variables in ai and aj . As the first
method is trivial and impractical, we must define the
new distribution using method 2. We accomplish this
calculation as seen in Eq. 1 and Eq. 2.

P (s | ai, aj) =
∑
m

P (s | ai, aj,m)
P (aj,m, ai)

P (ai)
(1)

P (s | ai, aj,m) =
∑

k

P (s | ai,k, aj,m)P (ai,k | aj,m) (2)

where ai,k refers to the kth parent of s in BN i. The joint
distribution P (aj,m, ai) can be obtained by searching a
d-connecting path through the BNs and then the condi-
tionals P (ai | aj,m) and P (aj,m | ai) can be calculated.



(a) (b)

Figure 6: BN Combination based on nodes from Fig. 4.
(a) Some of the potential nodes from conceptnet. (b)
Since we know we want to know more about starving,
we find the connection between starving and hunger.
Then we find the nodes connected to hunger, leading
us to our answer.

If there is no such d-connecting path, the variables are
considered to be independent.

The assembled BNs use the predicates in the new
input sentences as evidence to calculate the probabil-
ities of other nodes. The predicates, represented by
nodes that have high probabilities, are then stored in
the working memory as new data. This new data is
updated to the long-term memory, and also used for
creating output.

Demonstration

Often in automated language analysis it can be diffi-
cult to determine implications, as they usually rely on
the listener having commonsense. In the case of a com-
puting system interacting with elderly users this can
become a bigger problem as they may not be able to
memorize keywords to give the system, or may not feel
comfortable interacting with computer systems. Thus,
it is beneficial for the system to be able to interpret
user needs through natural language.

Take for example the activity of needing to eat. A
user may have a variety of ways to state that they are
hungry: “I’m starving,” “I want a snack,” “Is it lunch
time yet,” or “Are there any leftovers” to name a few.
None of these phrase incorporate a keyword such as
”eat” or ”food” and there are many more examples that
also do not use such a keyword. However, as humans
we understand the semantics of these words easily.

Our system can also understand these phrases in
many cases. For example, in the case of Lisa being hun-
gry seen in Figures 3 and 4, we can combine knowledge
of ConceptNet with our input about Lisa to determine
that she wants to eat (Fig. 6). If nodes with the neces-
sary information are further away, additional iterations
will still connect them to the input node. Multiple iter-
ations are key to the success of the system, as it allows
inferring information that would not be found through
other techniques. However, to guarantee speed we limit
the number of iterations performed, which does not sig-
nificantly impact our ability to understand sentences.
Thus, we can analyze input to determine the needs of
the user by utilizing commonsense.

Conclusion

The CIM system can generate new sentences about
a subject based on a combination of the input sen-
tences, previous experience, and commonsense knowl-
edge. Commonsense knowledge from ConceptNet is
first obtained as two-node BNs, focused on the activ-
ities occurring within the sentences. These BNs can
adaptively combine into a larger BN by finding a path
between them via the adjacency matrix in an iterative
manner. The process creates a single BN containing
all (and only) relevant paths from the input sentences
to the query predicate. This BN can be translated to
an ESN for the creation of new sentences, giving new
inferred information about our input.

This model uses the long-term memory ESN to store
incoming sentences as previous experience that can
later become the training data to determine the pa-
rameters of the BNs. This allows the probability distri-
butions of the BNs to be dynamic in such a way that
new probabilities are automatically obtained each time
a new scenario causes the BN combination to occur. In
addition, it allows the system to learn from its input.
By creating a system combining ConceptNet with Ex-
tended Semantic Networks and multiple Bayesian net-
works that are capable of assembling, we are able to
improve on current inference from input sets of sen-
tences. We improve on the classical Bayesian Network
by considering only smaller well-focused Bayesian Net-
works, which are thus faster for inference. This can
significantly reduce the cost of Bayesian inference. In
addition, we are able to provide improved inference over
ConceptNet, as its result cannot be modified given the
same input information. Therefore, CIM provides im-
proved language understanding based on commonsense
reasoning that can be applied in human-computer inter-
faces and other natural language processing problems.

We have shown a way to organize commonsense infor-
mation so that it can be used to infer new information
and new sentences based on actions from the input. Al-
though there are some immediate applications to user
interaction scenarios, we also plan to investigate the
integration of our work with more standard NLP tech-
niques. We suggest first inferring new activities using
our system to create a set of new sentences that can be
combined with the original input sentences to create a
larger set of sentences. Then we can apply existing lan-
guage understanding techniques to this enlarged set of
input sentences, which could then potentially improve
the results of those techniques such as topic models.
Thus, our system has the potential to also increase the
success of more generally used NLP techniques.
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