
Formalizing Commitments Using Action Languages

Tran Cao Son and Enrico Pontelli
Computer Science Department
New Mexico State University

tson|epontell@cs.nmsu.edu

Chiaki Sakama
Computer and Communication Sciences

Wakayama University
sakama@sys.wakayama-u.ac.jp

Abstract
This paper presents an action language, called Lmt, for repre-
senting and reasoning about commitments in multi-agent do-
mains. The language is an extension of the language L, with
new features motivated by the problem of representing and
reasoning about commitments. These features include time,
delayed effects, ir/reversible effects, concurrent actions, and
multi-agents, for specifying and reasoning about narratives in
multi-agent domains. The paper provides a transition-based
semantics for Lmt, which makes it possible to define an en-
tailment relation between queries and multi-agent narratives
with time constraints. The paper also demonstrates how fea-
tures and properties of commitments can be described in this
action language. In particular, it shows how Lmt can handle
both simple commitment actions as well as complex commit-
ment protocols. Furthermore, the semantics of Lmt provides
a uniform solution to different problems in reasoning about
commitments such as the problem of (i) verifying whether
an agent fails (or succeeds) to deliver on its commitments;
(ii) identifying outstanding commitments; and (iii) suggest-
ing ways to satisfy outstanding commitments.

Introduction and Motivation
Consider the following conversation between agents A and
B:
Agent A: Do you want to do something tonight?
Agent B: Sure, what do you want to do?
Agent A: Let us have a pot-luck dinner with X . I will pre-

pare some sandwiches and call X . But can you pick her
up? Also, could you bring some soft-drinks?

Agent B: Sure. How about 7pm?
Agent A: Great.
The conversation highlights a number of activities thatA and
B promise to perform: A needs to prepare the sandwiches
and call X . These activities need to be completed before
7pm. B, on the other hand, needs to show up at A’s flat
by 7pm with soft-drinks and with X . These activities are
referred to as commitments between A and B. This conver-
sation also provides a number of interesting questions. What
happens if A fails to make the phone call to X? What hap-
pens if B does not have enough money to buy the drinks?
Can B ask A for money or can B ask X to bring the soft-
drinks? More generally, what does it mean for an agent to

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

satisfy (or violate) a commitment? What does it mean for an
agent to ask other agents for help in fulfilling her commit-
ments? How and when can we say that an agent has satisfied
(or violated) a commitment?

Commitments are integral parts of societies of agents.
Modeling commitments has been an intense topic of re-
search in autonomous agents.

The focus has often been on the development of ontolo-
gies for commitments (Castelfranchi 1995; Singh 1999), on
the identification of basic requirements for formalisms to
represent and reason about commitments (Mallya and Huhns
2003), and the development of formalisms for specifying
and verifying protocols or tracking commitments (Chesani
et al. 2009; Yolum and Singh 2002; Giordano, Martelli, and
Schwind 2007).

Commitments are strongly related to agents’ behavior and
capabilities, and they are often associated with time con-
straints, such as a specific time (or time interval) in the fu-
ture. For example, B can satisfy her commitment only if
she has enough money to buy the soft-drinks; A can sat-
isfy her commitment only if she has enough materials and
knows how to make sandwiches; a customer will not pay for
the promised goods if the goods have not been delivered; a
client will have to wait for her check if the insurance agent
does not follow through with her promise of entering her
claim into the system; or an on-line shopper needs to pay for
the order within 10 minutes after clicking the ‘Check Out’
button before the browser times out. As such, it is natural to
think that any formalization of commitments should be con-
sidered in conjunction with a formalization of actions and
changes. This also raises the question of whether high-level
action languages, a popular formalism for representing and
reasoning about actions and changes, are adequate for repre-
senting and reasoning about commitments, and if not, what
additional features are needed for this purpose.

Action languages (e.g., A, B, and C (Gelfond and Lifs-
chitz 1998)), with their English like syntax and simple tran-
sition function based semantics, provide an easy and com-
pact way for describing dynamic systems. Unlike event
calculus—an action description formalism often used in
the literature for reasoning about commitments—action lan-
guages can elegantly deal with indirect effects of actions
and static laws. Furthermore, off-the-shelf implementations

of various action languages are available.1 Existing action
languages, on the other hand, do not provide means for ex-
pressing statements like “I will make some sandwiches” or
“I will come at 7pm.” Both statements are about achiev-
ing a certain state of the world without specifying how. The
first statement does not indicate a specific time in the future
while the second does. Moreover, with a few exceptions, ac-
tion languages have been developed mostly for single-agent
environments.

In this paper, we will develop an action language, called
Lmt, suitable for formalizing commitments. We achieve this
by extending the action language L (Balduccini and Gelfond
2003; Baral, Gelfond, and Provetti 1997; Baral, McIlraith,
and Son 2000) with features such as multi-agency and future
effects of actions. The introduction of these features allows
representing and reasoning about actions with reversible and
irreversible future effects. To the best of our knowledge, a
combination of these types of actions has not been consid-
ered in the literature. The language supports also observa-
tions and protocols. We show that several tasks related to
reasoning with commitments, such as identifying satisfied,
outstanding, and unsatisfied commitments, can be uniformly
expressed as queries in Lmt. Furthermore, the problem of
finding a way to satisfy outstanding commitments can be
directly addressed using planning. The language also pro-
vides a natural means for specifying, verifying, and reason-
ing about protocols among agents.

The Language L with Concurrency
In this section, we review the language L, as developed in
(Baral, Gelfond, and Provetti 1997), enhanced with novel
capabilities to express concurrent actions. The language
L has been already extended in (Baral, McIlraith, and Son
2000) with static causal laws, sensing actions, and observ-
ables for diagnosis within narratives. The presentation in
this paper follows (Baral, McIlraith, and Son 2000) and con-
siders concurrent actions. The description of the language is
divided in three components: a domain description language
LD, a language to specify observations LO, and a query lan-
guage LQ.

LD: The Domain Description Language
The signature of LD consists of two non-empty disjoint sets
of symbols: the set of fluents F , and the set of actions, A. A
fluent literal (or literal) is either a fluent or a fluent preceded
by ¬. Given a literal ℓ, we denote with ℓ̄ its complement. A
fluent formula is a propositional formula constructed from
literals. A domain description in LD consists of axioms of
the following forms:

a causes ℓ if ψ (1)
φ if ψ (2)

impossible A if ψ (3)

where a is an action, ℓ is a literal, ψ and φ are sets of literals
(interpreted as conjunctions), and A is a set of actions.

1Several implementations can be found at potassco.
sourceforge.net/labs.html

Axioms of type (1), (2), and (3) are referred to as dynamic
laws, static laws (or state constraints), and non-executability
laws, respectively. Intuitively, a dynamic law describes the
direct effects of execution of one action (possibly concur-
rently to other actions), static laws describe integrity con-
straints on states of the world, and non-executability laws
describe conditions that prevent the (concurrent) execution
of groups of actions. In axioms of type (1) and (3) we will
omit the if part if ψ is a tautology.

A domain description given in LD defines a transition
function, which maps a set of actions and a state to a set
of states. Intuitively, given a set of actions A and a state s,
the transition function ΦD defines the set of states that may
be reached after executing A in state s. If ΦD(A, s) is an
empty set it means that A is not executable in s.

Let D be a domain description in the language of LD. An
interpretation I of the fluents in LD is a maximal consistent
set of fluent literals drawn from F . A fluent f is said to be
true (resp. false) in I iff f ∈ I (resp. ¬f ∈ I). The truth
value of a fluent formula in I is defined recursively over the
propositional connective in the usual way. For example, f∧q
is true in I iff f is true in I and q is true in I . We say that φ
holds in I (or I satisfies φ), denoted by I |= φ, if φ is true
in I .

Let I be an interpretation and K be a set of static causal
laws of the form φ if ψ. We say that I is closed under
K if for every rule φ if ψ in K, if I |= ψ then I |= φ. By
ClK(I) we denote the smallest superset of I which is closed
under K. If K is the set of all the static laws in a domain
description D, then we denote with ClD(I) the set ClK(I)
forK equal to the set of all causal laws inD. A state ofD is
an interpretation that is closed under the set of static causal
laws of D.

A set of actions B is prohibited (not executable) in a state
s if there exists an executability condition of the form (3) in
D such that A ⊂ B and s |= φ.

The effect of an action a in a state s of D is the set of for-
mulas eA(s) = {ℓ | D contains a law a causes ℓ if ψ, a ∈
A, and s |= ψ}.

Given the domain description D containing a set of static
causal lawsR, we formally define ΦD(A, s), the set of states
that may be reached by executing the set of actions A in s as
follows.
• If A is not prohibited (i.e., executable) in s, then
ΦD(A, s) = {s′ | s′ = ClD((s∩s′)∪eA(s)) and s′ is a state};

• IfA is prohibited (i.e., not executable) in s, then ΦD(A, s)
is ∅.

The function ΦD is extended to define Φ̂D for reasoning
about the effects of sequences of sets of actions as fol-
lows. For a state s and a sequence of sets of actions α =
[A1, . . . , An], let αn−1 = [A1, . . . , An−1], we define

Φ̂D(α, s) =

{s} if n = 0

∅ if Φ̂D(αn−1, s) = ∅∨
∃s′.[s′ ∈ Φ̂D(αn−1, s) ∧ Φ(An, s

′) = ∅]∪
s′∈Φ̂D(αn−1,s)

Φ(An, s
′) otherwise

We will commonly assume noop ∈ A, an action that is
always executable and not affecting the state of the world.

LO: The Observation Language
The language LO is built from sequences of sets of actions,
fluent formulas, and a set of situation constants S, contain-
ing two special constants, s0 and sc, denoting the initial sit-
uation and the current situation. Observations in LO are ax-
ioms of the forms:

φ at s (4)
α between s1, s2 (5)
α occurs at s (6)

s1 ≺ s2 (7)

whereφ is a fluent formula, α is a (possibly empty) sequence
of sets of actions, and s, s1, s2 are situation constants which
differ from sc.

Axioms of the forms (4) and (7) are called fluent facts and
precedence facts, respectively. (4) states that φ is true in the
situation s. (7) says that s1 occurs before s2. Axioms of the
forms (5) and (6) are referred to as occurrence facts. (6) in-
dicates that α starts its execution in the situation s. On the
other hand, (5) states that α starts and completes its execu-
tion in s1 and s2, respectively.

Narratives
A narrative is a pair (D,Γ) whereD is a domain description
and Γ is a set of observations of the form (4)-(7) such that
{s0 ≺ s, s ≺ sc | s ∈ S } ⊆ Γ. In our examples, we will
often omit the set of precedence facts related to s0 and sc
when we define Γ.

Observations are interpreted with respect to a domain de-
scription. While a domain description defines a transition
function that characterizes what states may be reached when
an action is executed in a state, a narrative consisting of a do-
main description together with a set of observations defines
the possible situation histories of the system. This charac-
terization is achieved by two functions, Σ and Ψ. While Σ
maps situation constants to sequences of sets of actions, Ψ
picks one among the various transitions given by ΦD(A, s)
and maps sequences of sets of actions to a unique state.

More formally, let (D,Γ) be a narrative. A causal inter-
pretation of (D,Γ) is a partial function Ψ from action se-
quences to interpretations, whose domain is nonempty and
prefix-closed.2 By Dom(Ψ) we denote the domain of a
causal interpretation Ψ. Notice that [] ∈ Dom(Ψ) for ev-
ery causal interpretation Ψ, where [] is the empty sequence
of sets of actions. A causal model of D is a causal interpre-
tation Ψ such that:
(i) Ψ([]) is a state of D; and
(ii) for every α ◦ [A] ∈ Dom(Ψ), Ψ(α ◦ [A]) ∈
ΦD(A,Ψ(α)).

A situation assignment of S with respect to D is a mapping
Σ from S into the set of sequences of sets of actions of D
that satisfy the following properties:
(i) Σ(s0) = [];

2A set X of action sequences is prefix-closed if for every se-
quence α ∈ X , every prefix of α is also in X . The symbol ◦
denotes list concatenation.

(ii) for every s ∈ S, Σ(s) is a prefix of Σ(sc).
An interpretation M of (D,Γ) is a pair (Ψ,Σ), where Ψ
is a causal model of D, Σ is a situation assignment of S,
and Σ(sc) belongs to the domain of Ψ. For an interpretation
M = (Ψ,Σ) of (D,Γ):
(i) α occurs at s is true in M if the sequence Σ(s) ◦α is a

prefix of Σ(sc);
(ii) α between s1, s2 is true in M if Σ(s1) ◦ α = Σ(s2);
(iii) φ at s is true in M if φ holds in Ψ(Σ(s));
(iv) s1 ≺ s2 is true in M if Σ(s1) is a prefix of Σ(s2).
Given two sequences of sets of actions α = [A1, . . . , An]
and α′ = [B1, . . . , Bm], we say that α is a subsequence of
α′, denoted by α ≪ α′, if α can be obtained from α′ by
(i) deleting some Bi from α′; and (ii) replacing some action
a ∈ A in the remaining Bi by noop. An interpretation
M = (Ψ,Σ) is a model of a narrative (D,Γ) if:
(i) facts in Γ are true in M ;
(ii) there is no other interpretation M ′ = (Ψ,Σ′) such that
M ′ satisfies condition (i) above and Σ′(sc) is a subse-
quence of Σ(sc).

Observe that these models are minimal in the sense that they
exclude extraneous actions. A narrative is consistent if it has
a model.

LQ : The Query Language
Let us define a query language LQ for narratives. Queries in
LQ are of the form:

φ after α at s (8)
where α is a sequence of sets of actions. A query q of
the form (8) is true in a model M = (Ψ,Σ) of a nar-
rative (D,Γ), denoted by (D,Γ) |=M q, if φ is true in
Φ̂D(α,Ψ(Σ(s)). A query q is entailed by a narrative (D,Γ),
denoted by (D,Γ) |= q, if q is true in every model of (D,Γ).

Lm for Multiagent Domains
The action language L can be extended for specifying and
reasoning about multiagent narratives. We will denote the
new language with Lm. To this end, we assume that each
agent will have its own set of fluents and actions. For-
mally, a multiagent domain is defined over a signature
⟨AG, {Fi,Ai}i∈AG⟩ where AG is a set of agent identifiers
and Fi and Ai are the set of fluents and the set of actions of
the agent i, respectively. We assume that Ai ∩ Aj = ∅ for
any two distinct i, j ∈ AG. Observe also that

∩
i∈S Fi may

be not empty for some S ⊆ AG. This represents the fact
that fluents in

∩
i∈S Fi are relevant to all the agents in S.

A multiagent domain specification is a set of axioms (1),
(2), and (3) where a ∈

∪
i∈AG Ai in each axiom of the form

(1), and for each set of actions A in an axiom (3), A is a
finite set A ⊆

∪
i∈AG Ai.

Example 1 Let us consider the Netbill example presented
in (Sirbu 1998) modeling a protocol between a merchant and
a customer. The customer can make a request for a quote,
accept a quote, or send a payment. The merchant can send a
quote, the goods, or the receipt. In this example, the agents
are the merchant and the customer, i.e., AG = {m, c}. The
signatures of the agents are:

Agent FAgent AAgent

m (merchant)

 request, pay,
goods, receipt,
quote, accept

 sendQuote,

sendGoods,
sendReceipt

c (customer)

 request, pay,
goods, receipt,
quote, accept

 sendRequest,

sendAccept,
sendPayment

The description of the actions for the two agents is encoded
by the following axioms:

Dc

sendRequest causes request
sendPayment causes pay
sendAccept causes accept
impossible {sendAccept} if ¬quote

Dm

sendGoods causes goods
sendReceipt causes receipt
sendQuote causes quote
impossible {sendReceipt} if ¬pay
impossible {sendGoods} if ¬accept

The last two laws state that the Merchant cannot execute
the action sendReceipt if ¬pay is true (the Customer has
not paid yet); he cannot execute the action sendGoods if
¬accept is true (the Customer has not accepted the offer).
On the other hand, the Customer cannot execute the action
sendAccept if he has not received the quote. 2

The semantics of a multiagent domain is defined by the tran-
sition function ΦD where D =

∪
i∈AG Di is the domain de-

scription defined over the set of fluents
∪

i∈AG Fi and the
set of actions

∪
i∈AG Ai. For later use, we define an action

snapshot as a set {ai}i∈AG where ai ∈ Ai ∪ {noop}. Intu-
itively, each action snapshot encodes the set of actions that
the agents in AG concurrently execute in a state. A trajec-
tory is a sequence s0β0s1β1 . . . βn−1sn such that each βj is
a snapshot and si ∈ ΦD(si−1, βi−1) for 1 ≤ i ≤ n.

The above extension is sufficient to allow us to consider
a multiagent narrative. In the presence of multiple agents,
some extensions to the observation language, the query lan-
guage, and the notion of a narrative are necessary:

• Instead of a sequence of sets of actions in (5) or (6), we
consider a sequence of action snapshots.

• A multiagent narrative is a pair (D,Γ) where D is a
multi-agent domain specification defined over a signature
⟨AG, {Fi,Ai}i∈AG⟩, and Γ is a set of observations with
the above changes.

• The query language also consider sequences of action
snapshots instead of sequences of sets of actions.

Example 2 Given the domain in Example 1, N = (D,Γ) is
a narrative where
• D is the domain description described in Example 1;
• Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺ s3 ≺

sc and the following observations:

¬pay ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
[{sendRequest, noop}] occurs at s0
[{sendAccept, noop}] occurs at s2
[{sendQuote, noop}] between s1, s2

where s0, s1, s2, s3, sc are situation constants.
Let M = (Ψ,Σ) where

• Σ(s0) = [],
• Σ(s1) = {sendRequest, noop},3

• Σ(s2) = [{sendRequest, noop}, {noop, sendQuote}],
and

• Σ(s3) = Σ(sc) = Σ(s2) ◦ [{sendAccept, noop}].
and Ψ([]) = {¬f | f ∈ Fc ∪ Fm} which can be easily
extended to allow M to be a model of N . 2

Considering Time: The Action Language Lmt

Example 2 shows that specifying and reasoning about mul-
tiagent narratives can be effectively done using Lm. The
language, however, does not allow for the specification of
durative actions. As a result, it is not possible to specify
deadlines or time constraints within L (or Lm). For exam-
ple, the following statements cannot be represented:
• The customer is interested in the quote only within 2

hours from the completion of the request.
• The price on the quote is valid only for one day.
• The delivery only takes three days.
In this section, we propose an extension of Lm, called Lmt,
that supports the representation of durative actions and time
constraints in the observation and query languages. Before
moving to the definition of the language, let us discuss a few
issues that arise when actions with duration, time, and dead-
lines are considered. Consider the execution of an action a;
we can observe the following situations:
• An effect of a might be delayed. For example, sending

the goods to the customer causes the goods to be delivered
after three days;

• An effect of a could be override by the execution of an-
other action. For example, consider two actions: pump-
ing gasoline into the tank causes the tank to be full after
5 minutes; drilling a hole in the tank takes only 1 minute
and will cause the tank never to be full. The execution of
drilling 1 minute after initiating the pumping action will
cause the tank to never become full. Thus, the execution
of the action drill makes the tank no longer full and this
effect cannot be reversed by other actions.

In the following, we will propose a way to deal with these
types of issues. To address the first issue, we introduce the
notion of annotated fluents, i.e., fluents associated to rela-
tive time points, and use annotated fluents in axioms of the
form (1)-(3). To deal with the second issue, we introduce
the notions of irreversible and reversible processes.

3The first and second action are from the customer and the mer-
chant, respectively.

Syntax of Lmt

We assume an arbitrary but fixed multiagent signature
⟨AG, {Fi,Ai}i∈AG⟩ as in the previous section. For simplic-
ity, we assume that noop belongs to every Ai. The signature
of Lmt contains also a countable set of process names P .

An annotated literal is a formulae of the form ℓt, where ℓ
is a fluent literal and t > 0 is an integer, representing a future
point in time. We also allow annotations of the form ℓ∨[t1,t2],
denoting ℓt1 ∨ · · · ∨ ℓt2 for t1 ≤ t2. Annotated formulae are
propositional formulae that use annotated literals. Given a
fluent formula φ (i.e., where fluents are not annotated), φt

(φ∨[t1,t2]) is the formula obtained by replacing each literal
ℓ in φ with the annotated literal ℓt (ℓ∨[t1,t2]). An annotated
formula is single time if it is of the form φ∨[t1,t2] for some
non-annotated formula φ. An annotated formula is actual
if no literal in the formula is annotated. For an annotated
formula φ, φ+t is the formula obtained by replacing each ℓr
in φ with ℓr+t.

A multi-agent domain specification is a collection of laws
of the form (1)-(3) and laws of following forms:

φ starts process id [reversible|irreversible] ℓt̂ (9)
φ stops process id (10)

a starts process id [reversible|irreversible] ℓr̂ if φ(11)
a stops process id if φ (12)

where φ is a set of fluent literals, a ∈ ∪i∈AGAi, ℓt̂ and ℓr̂
are time annotated literals, of the form ∨[t1, t2] with 1 ≤
t1 ≤ t2 and ∨[r1, r2] with 0 ≤ r1 ≤ r2,4 and process id
belongs to P .

The main novelty is the introduction of the notion of pro-
cess. A process is associate to a delayed effect, denoted by
ℓt̂, and the time interval t̂ indicates when the process will
produce its effect. A process can be started by an action or
a property. Each reversible process can be interrupted by a
stops action/condition before materializing its effects, while
irreversible processes cannot be interrupted and will mate-
rialize their effects.

Example 3 Consider the domain from Example 1. Let us
assume that if the customer sends the payment, then the pay-
ment will be completed within 3 to 5 working days. The
customer, however, can cancel the payment before it is com-
pleted. This can be represented in Lmt by the laws

sendPayment starts payment process

reversible pay∨[3,5] (13)
cancelPayment stops payment process (14)

impossible {cancelPayment} if pay (15)

The first law creates a reversible process, since its effect can
be reversed by the second law. The third law states a non-
executability condition. 2

4For simplicity of the presentation, we do not consider ∧[t1, t2].
This is because a law with the annotation ∧[t1, t2] can be replaced
by a set of laws whose annotation is ∨[ti, ti] for t1 ≤ ti ≤ t2.

Transition Function for Lmt

The notion of a state in a Lmt domain D is similar to a state
in L domain, in that it is an interpretation of the fluents in D
and needs to satisfy the constraints imposed by static laws
in D. In presence of processes, a state of the world needs to
account for changes that will occur only in the future, when
a process reaches its completion. For example, the action
sendPayment in (13) states that the action starts a process
named payment process whose effect is to make pay true 3,
4, or 5 units of time after the execution of the action. For
this reason, we introduce the notion of an extended state as
a triple (s, IR,RE) where s is a state and IR and RE are
sets of pairs of future effects, each of the form (x : ℓt̂),
where x is a process name and ℓt̂ is an annotated fluent. In-
tuitively, s encodes the current state of the world, while IR
andRE contain the irreversible and reversible processes, re-
spectively. (s, IR,RE) is complete if IR = ∅ and ER = ∅.

Let us discuss the transitions between extended states.
In presence of future effects encoded by the processes, the
world changes due to (i) the completion of a process; or (ii)
action occurrences. Figure 1 illustrates this. On the left, we
have an extended state (s, {(x : p1)}, ∅) with (x : p1) as
a process whose effect is p. Intuitively, if nothing happens,
we would expect that p would be true in the world state one
unit of time from the current time. This results in the new
state of the world s \ {¬p} ∪ {p}, which happens to have
no more future effects. On the right, for the same extended
state, action a, whose effect is to make q true in the next mo-
ment of time, occurs. We expect the next world state to be
s \ {¬p,¬q} ∪ {p, q}.

<s, {(x:p
1
)},{}> <s \ {¬p} ∪ {p}, {},{}> <s, {(x:p

1
)},{}> <s \ {¬p,¬q} ∪ {p,q}, {},{}>

a causes q

Figure 1: Transitions Between Extended States (Inertia vs.
Dynamic)

The above discussion leads us to define the semantics of
Lmt domains in two steps. First, we specify an update func-
tion, which computes the extended state which is t units of
time from the current state assuming that no action occurs
during this time span. Second, we define the transition func-
tion that takes into consideration the action occurrences.

The update of an extended state (s, IR,RE) is used to
move forward by one time step; the time of the annotated
fluents is decreased by one. Fluents that have become ac-
tual are used to update the state—in such a case we need to
ensure that irreversible changes prevail over reversible ones.
Formally, for ŝ = (s, IR,RE), the set of literals that should
be used in updating s in the next moment of time is

τ(ŝ) = {ℓ|(x : ℓ1) ∈ IR}∪{ℓ|(x : ℓ1) ∈ REs. t. ̸ ∃(z : ℓ̄1) ∈ IR}.

For a state s, the set of processes started and stopped by s in
the next moment of time is IR1(s) = {(process id : ℓt̂) |
there exists a law of the form (9) with the option irreversible
such that s |= φ}, RE1(s) = {(process id : ℓt̂) | there
exists a law of the form (9) with the option reversible such

that s |= φ}, and P2(s) = {process id | there exists a
law of the form (10) such that s |= φ}. For a set of process
namesN and a set of future effectsX , letX\N = X\{(x :
ℓt) | x ∈ N, (x : ℓt) ∈ X}).

The update of ŝ by one unit of time is a set of extended
states defined as follows:

update(ŝ) = {(s′, I(IR, s′), R(ER, s′) |
s′ = ClD(τ(ŝ) ∪ (s ∩ s′)) and
s′ is a state}

where, I(IR, s′) = (IR − 1) ∪ IR1(s
′) and R(ER, s′) =

((RE−1)∪RE1(s
′))\P2(s

′), and for a set of future effects
X , by X − d we denote the set {(x : ℓt−d) | (x : ℓt) ∈ X}.
Intuitively, s′ is a state that satisfies the effects that need to
be true one unit from the current state. For an integer t > 0,
let ŝ+ t =

∪
û∈update(ŝ+t−1) update(û) where ŝ+ 0 = ŝ.

Let us now consider the case where an action snapshot
α = {ai}i∈AG is executed in the extended state ŝ. Intu-
itively, there are two possible types of effects: the direct ef-
fect of the actions (eα(s)) and the processes that are created
by the actions. We know that eα(s) must be satisfied in the
next time point.

The effects of the processes starting by α in s, denoted by
procsα(s), is a set of pairs (IR′, RE′) where:
• For each (ai starts pid irreversible ℓ∨[t1,t2] if φ) in
D, with ai ∈ α and s|=φ, we have that IR′ contains
(pid : ℓt) for some t s.t. t1 ≤ t ≤ t2;

• For each (ai starts pid reversible ℓ∨[t1,t2] if φ) in D,
with ai ∈ α, and s|=φ, we have that RE′ contains (pid :
ℓt) for some t s.t. t1 ≤ t ≤ t2.

In addition, the set of processes stopped by α in s, denoted
by stopα(s), is a set of process names and is defined as
{pid | (ai stops pid if φ) is in D and s |= φ}. Intuitively,
each (IR′, RE′) encodes a possible set of effects that the
snapshot α can create given the current state of the world is
s. stopα(s), on the other hand, is the set of processes that
needed to be stopped. We are now ready to define transition
function Φt

D for Lmt domains which maps extended states
and action snapshots to sets of extended states. We need
some additional notations. We assume that ⊤ is a special
process name in P that does not appear in any laws of D.
For a set of literals L, we define ⊕(L) = {(⊤ : ℓ1) | ℓ ∈ L}.

Given an extended state ŝ = (s, IR,RE), a fluent literal
ℓ holds in ŝ if ℓ holds in s. The notion of executability of
a set of actions can be carried over to Lmt domains without
changes as it only considers the current state of the world.
The transition function Φt

D is then defined by

Φt
D(α, ŝ) =

∪
(I,R)∈procsα(s) update((s,

IR ∪ I ∪ ⊕(eα(s)), (RE ∪R) \ stopα(s))

if α is executable in s, and Φt
D(ŝ, α) = ∅ otherwise. In-

tuitively, Φt
D(ŝ, α) encodes the possible trajectories of the

world given that α is executed in ŝ. We extend Φt
D to Φ̂t

D

which operates on sequences of action snapshots in the same
way as done for ΦD.

In presence of time, we might be interested in the states
of the world given that α is executed t units of time from the

current state of the world. We overload Φt
D and define

Φt
D(ŝ, α, t) = Φ̂t

D(ŝ, [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸
t

]◦[α])

We also write Φt
D(ŝ, α, t)+t1 to denote

Φt
D(ŝ, α, t) + t1 =

∪
ŝ′∈Φt

D(ŝ,α,t) Φ̂
t
D(ŝ′, β)

where β = [{noop}i∈AG , . . . , {noop}i∈AG︸ ︷︷ ︸
t1

] Intuitively, a

member of Φt
D(ŝ, α, t)+ t1 is a possible extended state after

t1 time steps from the execution of α, which in turn was
executed t time steps from the extended state ŝ.

The next example illustrates the computation of Φt
D.

Example 4 Let us consider the domain in Example 1 with
the changes proposed in Example 3. Consider he state
s0 = {request, quote, accept,¬pay,¬receipt,¬goods}.
Let ŝ0 = (s0, ∅, ∅) and α1 = {noop, sendGoods}.
We have that α1 is executable in s0. We have
that eα1(s0) = {goods}. So, Φt

D(ŝ0, α1) =
update((s0, {(⊤ : goods1)}, ∅)) = {(s′0, ∅, ∅)} where
s′0 = {request, quote, accept,¬pay,¬receipt, goods}.
Let û = (s′0, ∅, ∅) and α2 = {sendPayment, noop}.
It is easy to see that Φt

D(û, α2) =
{update((s′0, ∅, {(payment process : payi)})) |
i = 3, 4, 5}. Therefore, Φt

D(û, α2) + 3 =
{(u′, ∅, ∅)} ∪ {update((s′0, ∅, {(payment process :
payi)})) | i = 1, 2} where u′ =
{request, quote, accept, pay,¬receipt, goods}. It is
easy to see that Φt

D(û, α2) + 5 = {(u′, ∅, ∅)}. 2

Let us define a timed action snapshot to be a pair (α, t)
where α is an action snapshot and t is a time refer-
ence. Φ̂t

D can also be extended to a transition function
that operates on sequences of timed action snapshots A =
[(α1, t1), . . . , (αn, tn)] where t1 < t2 < . . . < tn and αi’s
are action snapshots as follows:
• For n = 0: Φ̂t

D(ŝ, A) = ŝ; and
• For n > 0: Φ̂t

D(ŝ, A) =
∪

û∈Φt
D(ŝ,α1,t1)

Φ̂t
D(û, B)

whereB=[(α2, t2−t1), . . . , (αn, tn−t1)] if Φ̂t
D(û, B) ̸=

∅ for every û∈Φt
D(ŝ, α1, t1); otherwise, Φ̂t

D(ŝ, A) = ∅.
For a state s and a sequence of timed action snapshot A, we
define Φ̂t

D(s,A) = Φ̂t
D((s, ∅, ∅), A).

Example 5 Let us continue with Example 4. Let
α3 = {noop, cancelPayment} and the sequence A =
[(α2, 0), (α3, 1)]. Consider the extended state û. Let X =
{2, 3, 4}. We have that

Φ̂t
D(û, A) =

∪
v̂∈Φt

D(û,α2)
Φt

D(v̂, α3)

=
∪

i∈X Φt
D((s′0, ∅, {(payment process : payi) | i ∈ X})

= {(s′0, ∅, ∅)}
In other words, the payment was canceled before pay be-
comes true. On the other hand, for A = [(α2, 0), (α3, 3)]

we have that Φ̂t
D(û, A) = ∅ since there exists an extended

state, namely (u′, ∅, ∅) in Φt
D(û, α2) in which α3 is not ex-

ecutable. 2

The Observation Language Lmt
O and Lmt

Narratives
To accommodate time constraints about the observations, we
extend LO with an additional type of observations of the
form

s at t (16)

and refer to the new language as Lmt
O . We will also require

that α in (5)-(6) is a sequence of timed action snapshots.
A narrative of a multi-agent system (a narrative, for short)

is a pair (D,Γ) where D is a domain description and Γ is a
set of observations of the form (4)-(7) and (16).

Example 6 Let D1 be the domain description described in
Example 1 with the changes in Example 3 and Γ1 be the set
of observations consisting of the observations in Example 3
and the observation (s2 at 3). Then, N1 = (D1,Γ1) is a
Lmt narrative. 2

In the following, we will extend the notion of a model of a
narrative in the previous section to Lmt domains. Given an
extended state ŝ = (s, IR,ER) and an annotated literal ℓt,
we say that ℓt holds in ŝ, denoted ŝ |= ℓt, if
• For t = 0, ŝ |= ℓt if s |= ℓ; and
• For t > 0, ŝ |= ℓt if û |= ℓ for every û ∈ ŝ+ t.

Given a Lmt narrative (D,Γ), the notions of a causal in-
terpretation, causal model, and situation assignment defined
in Section can be carried over with minor changes: a causal
interpretation Ψ is a mapping from sequences of action snap-
shots to extended states of D; a situation assignment is a
mapping from the set of situation S into the set of sequences
of action snapshots. The notion of interpretation needs to
take into consideration time constraints and is modified as
follows.

An interpretation M of (D,Γ) is a triple (Ψ,Σ,∆), where
Ψ is a causal model of D, Σ is a situation assignment of S,
and ∆ is a time assignment which is a mapping from the
set of prefixes of Σ(sc) into the set of non-negative integers
such that ∆([]) = 0 and ∆(β) ≤ ∆(γ) for every β ⊑ γ ⊑
Σ(sc);5 and Ψ satisfies the following conditions:
• Ψ([]) is a complete extended state of D, and
• for every β, α such that β ◦ α ⊑ Σ(sc), Ψ(β ◦ α) belongs

to Φ̂t
D(Ψ([]), (β, 0) ◦ (α,∆(β))).

Given an interpretation M of (D,Γ) and an observation
o ∈ Γ, we say that o holds in M , denoted by M |= o, if
• for o of the form (4)-(7), M |= o iff o is true in M as

defined in Sect. ;
• M |= (s at t) if ∆(Σ(s)) = t.
With this extension, we can define a model of a narrative
(D,Γ) as an interpretation (Σ,Ψ,∆) of (D,Γ) that satis-
fies Γ such that there exists no other interpretation M ′ =
(Ψ,Σ′,Γ′) such that M ′ satisfies Γ and Σ′(sc) is a subse-
quence of Σ(sc).

Example 7 Consider the narrativeN1 = (D1,Γ1) in Exam-
ple 2 with the following modification to D1: the law related
to sendQuote is replaced by
sendQuote starts quote proc irreversible quote∨[2,2]

5The notation β ⊑ γ denotes that β is a prefix of γ.

Let M = (Ψ,Σ,∆) where Ψ and Σ are defined as in Ex-
ample 3 and ∆ is defined as follows. ∆(Σ(s0)) = 0,
∆(Σ(s1)) = 1, ∆(Σ(s2)) = 3, ∆(Σ(s3)) = ∆(sc) = 4.
We can show that M is a model for N1.

Now, let us consider N2 = (D2,Γ2), where D2 is ob-
tained from D1 by including the changes of Example 3 and
the modification about the action sendQuote. Γ2 is the
union of Γ1 and the following observations:

[{noop, sendGoods}] occurs at s3
pay at s4
s3 at 5

where s4 is a new situation constant satisfying s3 ≺ s4 ≺ sc.
It can be shown that in any model of N2, Σ(s4) would have
to contain the action sendPayment. 2

As Lmt extends L, queries of the form (8) can still be
considered and the entailment relation between a narrative
(D,Γ) and a query φ after α at s is defined as in Section
. In the presence of time, given a narrative (D,Γ) and a flu-
ent formula φ, we are also interested in knowing whether φt

is true (resp. false) in a situation s for some t1 ≤ t ≤ t2.
This is expressed using a query of the form

φ∨[t1,t2] at s (17)

We say that a query q of form (17) holds w.r.t. (D,Γ), de-
noted by (D,Γ) |= q, if, for every model M = (Ψ,Σ,∆)
of (D,Γ), there exists some t, t1 ≤ t ≤ t2, and φ is true in
Ψ(Σ(s)) + t. As an example, for the narrative (D2,Γ2), we
can show that (D2,Γ2) |= pay∨[4,6] at s3.

Basic Commitments in Lmt

We demonstrate that Lmt is adequate to encode commit-
ments and their manipulation. Commitments are encoded
as a new class of fluents and are manipulated by commit-
ment actions. Due to the lack of space, we present our study
on unconditional commitments (Singh 1999). We observe
that the treatment of conditional commitments can be done
similarly.

A commitment is of the form c(x, y, φ, t1, t2), where
x, y ∈ AG, 0 < t1 ≤ t2, and φ is formula. This states
that the debtor x agrees to establish φ between t1 and t2 for
the creditor y. A commitment where we do not care when
the property is made true can be expressed using a disjunc-
tive annotation. As an example, the statement “I will come
in three hours,” told by agent A to agent B, conveys the
commitment c(A,B, arrived, 3, 3) made by A to B.

We would like to stress that we can still think of com-
mitment fluents as propositions, i.e., c(x, y, φ) is a syntactic
sugar for c x y name(φ) where name(φ) is a propositional
variable representing the name of the formula φ.

We assume that the various propositions c(x, y, φ) are in∩
i∈AG Fi. Similarly, we assume that, to enable a mean-

ingful communication, if c(x, y, φ) is a commitment fluent,
then φ is a fluent formula which uses fluents from Fx ∪ Fy .

Activities are identified to enable the manipulation of
commitments (x is the debtor and y is the creditor):

• Creation of a commitment: create(x, y, φ, t1, t2) de-
scribes the fact that agent x creates a commitment towards
agent y in the period between t1 and t2. We assume that
each created commitment is associated to a unique identi-
fier, and at any point in time, no two active commitments
are identical;

• Discharge of a commitment: discharge(x, y, φ) indi-
cates that agent x discharges a commitment towards agent
y (by satisfying the request);

• Release of a commitment: the syntax release(x, y, φ) de-
scribes the fact that agent y releases x from its obligation;

• Assign a commitment: assign(x, y, k, φ, t1, t2) indicates
that agent y transfers the commitment to a different cred-
itor (with a new time frame);

• Delegate a commitment: delegate(x, y, k, φ, t1, t2) indi-
cates that agent x delegates the commitment to another
debtor (with a new time frame);

• Cancel a commitment: cancel(x, y, φ, ψ, t1, t2) de-
scribes the fact that agent xmodifies the terms of the com-
mitment (by canceling the previous one and generating a
new one with a new time frame).

These manipulations of commitments are the consequence
of actions performed by the agents or conditions occurring
in the state of the world. We consider two types of enabling
statements, called trigger statements, for commitment ma-
nipulation

[φ|a] triggers c activity (18)

where φ is a fluent formula, a ∈ A, and c activity is one
of the activities (or commitment actions). They indicate
that the commitment activity c activity should be executed
whenever φ holds or a is executed.

An example of the first type of statement can be

pay triggers create(m, c, receipt, 1, 3) (19)

which encodes the fact that the merchant agrees to send the
customer the receipt between 1 and 3 units of time since
receiving the payment. The statement

sendAccept triggers create(c,m, pay, 1, 5) (20)

states that the customer agrees to pay for the goods between
1 to 5 units of time after sending the acceptance notification.
A more complicated trigger statement is the following, taken
from an example in (Chesani et al. 2009),

broken triggers create(s, c, (broken⇒ paid 10), k, k)

for k ≥ 3, which represents the agreement between the ser-
vice provider (s) and a customer (c) which states that if the
printer is broken, the service provider needs to fix it within
three days or faces the consequence of paying $10 each day
the printer is not fixed.

Definition 1 A domain with commitments is a pair (D,C)
where D is a domain specification in Lmt and C is a collec-
tion of trigger statements.

Intuitively, a domain with commitments is an action the-
ory enriched with a set of (social or contractual) agreements
between agents in the domain which are expressed by the set

of trigger statements. For example, let Dn be the domain in
Example 1 and C1 be the two statements (19) and (20), we
have that (Dn, C1) is a domain with commitments. Let us
also represent another example from the literature (Chesani
et al. 2009).
Example 8 A customer has signed a service agreement with
a printer supplier: if a printer breaks down, the supplier
guarantees to send a technician on site. The technician must
intervene within three days from the call. Any delay in the
intervention will incur from the supplier’s side an obligation
to pay a $10 penalty per day of delay, as of the fourth day.

Intuitively, the domain can be encoded by the action

repair causes ¬broken
The collection of trigger statements contains a single state-
ment

In the following, we will define the semantics of a do-
main with commitments (D,C) by translating it into a Lmt

domain D′ where D′ consists of D and a collection of dy-
namic laws and static laws originating from C.
• Action Triggers

Assume that a triggers c activity belongs to C. In this
case,
◦ if c activity = create(x, y, φ, t1, t2), then the laws

a causes c(x, y, φ) and
a starts c(x, y, φ) reversible done(x, y, φ)∨[t1,t2]

are added to D′. The dynamic law records the fact that
the commitment c(x, y, φ) has been made by the exe-
cution of the action a. The second law starts a process
which indicates that the commitment must be satisfied
between t1 and t2.

◦ if c activity = discharge(x, y, φ) then D′ contains

a stops c(x, y, φ) if c(x, y, φ)
a causes ¬c(x, y, φ) if c(x, y, φ)
a starts discharging(x, y, φ) irreversible φ if c(x, y, φ)

Here, the action a stops the commitment process
c(x, y, φ) by starting a process of achieving φ. It also
records the fact that the commitment c(x, y, φ) has
been satisfied (the dynamic law).

◦ if c activity = release(x, y, φ) then

a stops c(x, y, φ) if c(x, y, φ) and
a causes ¬c(x, y, φ) if c(x, y, φ)

belongs to D′. The action stops the commitment pro-
cess and records that the commitment has been re-
moved.

◦ if c activity = assign(x, y, k, φ, t1, t2) then D′ con-
tains
a stops c(x, y, φ) if c(x, y, φ)
a causes ¬c(x, y, φ) if c(x, y, φ)
a causes c(x, k, φ)
a starts c(x, k, φ) reversible done(x, k, φ)∨[t1,t2]

The action stops the commitment process c(x, y, φ)
and starts the commitment process c(x, k, φ). It also
releases the process c(x, y, φ).

◦ if c activity = delegate(x, y, k, φ, t1, t2) then D′

contains
a stops c(x, y, φ) if c(x, y, φ)
a causes ¬c(x, y, φ) if c(x, y, φ)
a causes c(k, y, φ)
a starts c(k, y, φ) reversible done(k, y, φ)∨[t1,t2]

This is similar to the case of release, only with differ-
ent debtor.

◦ if c activity = cancel(x, y, φ, ψ, t1, t2) then D′ con-
tains
a stops c(x, y, φ) if c(x, y, φ)
a causes ¬c(x, y, φ) if c(x, y, φ)
a causes c(x, y, ψ)
a starts c(x, y, ψ) reversible done(x, y, ψ)∨[t1,t2]

The action stops the commitment process c(x, y, φ)
and starts a new commitment c(x, y, ψ).

• Fluent Triggers
Assume that ψ triggers c activity is in C. In this case,
◦ if c activity = create(x, y, φ), then the static law

(c(x, t, φ) if ψ) is an element of D′;
◦ if c activity = create(x, y, φ, λ), then the static law

(c(x, y, φ, λ) if ψ) is an element of D′;
◦ if c activitiy = discharge(x, y, φ) then

¬c(x, y, φ) if ψ,φ belongs to D′.
◦ if c activity = release(x, y, φ) then ¬c(x, y, φ) if ψ

is an element of D′.
◦ if c activity = assign(x, y, k, φ) then D′ contains

¬c(x, y, φ) if c(x, y, φ), ψ c(x, k, φ) if c(x, y, φ), ψ
◦ if c activity = delegate(x, y, k, φ) then D′ contains

¬c(x, y, φ) if c(x, y, φ), ψ c(k, y, φ) if c(x, y, φ), ψ
◦ if c activity = cancel(x, y, φ, λ) then D′ contains

¬c(x, y, φ) if c(x, y, φ), ψ c(x, y, λ) if c(x, y, φ), ψ

We further need to include some additional static laws: if
c(x, y, φ) is present and φ is true, then the commitment can
be released: ¬c(x, y, φ) if φ, done(x, y, φ).

Let M = (D,C) be a domain with commitments.
We denote with τ(C) the collection of axioms generated
from the translation process mentioned above; with a slight
abuse of notation, we denote τ(M) = D ∪ τ(C). By
definition, the domain τ(M) defines a transition function
Φt

τ(M) which determines the possible evolutions of the
world given a state and the sequence of timed action snap-
shots [(α1, t1), . . . , (αn, tn)]. The function Φt

τ(M) can be
used to specify the transition function for M.

Definition 2 Let M = (D,C) be a domain with commit-
ments. The transition function ΦM for M is defined to be
the function Φt

τ(M).

Example 9 Consider the domain with commitments M1 =
(Dn, C2):
• Dn is the domain description described in Example 1;
• C2 is the set of statements consisting of (19), (20), and
the following statements

request triggers create(m, c, quote, 1, 1)
accept triggers create(m, c, goods, 1, 1)

So, the set of fluents in τ(M1), denoted by F1, consists
of F (the setof fluents of D1) and the commitment fluents
such as c(m, c, receipt), c(c,m, pay), c(m, c, quote), and
c(m, c, goods), and fluents of the form done(x, y, φ) which
are introduced by the translation from M1 to τ(M1). Let
s0 = {¬f | f ∈ F1}, we have that

Φt
τ(M1)

(s0, {sendRequest}) = {[s0, u, v]}

where u = s0 \ {request, c(m, c, quote)} ∪
{request, c(m, c, quote)} and
v = u \ {done(m, c, quote)} ∪ {done(m, c, quote)}. The
presence of c(m, c, quote) and done(m, c, quote) in u and
v is due to the laws c(x, y, quote) if request and
request starts c(x, y, quote) reversible done(x, y, φ)1

respectively, both are the result of the translation of the
statement

request triggers create(m, c, quote, 1, 1)
into laws in τ(M1). 2

Observe that each state of τ(M) consists of fluent literals
in D and commitments which appear in τ(C). In the def-
inition of Φt

τ(M), this is treated as any normal fluent. The
presence of c(x, y, φ) in a state indicates that the commit-
ment c(x, y, φ) has been made. done(x, y, φ) encodes the
fact that the commitment c(x, y, φ) needs to be realized by
the debtor. We will now define the notion of (un)/satisfaction
of commitment.

Definition 3 Let M = (D,C) be a domain with commit-
ments and γ = [s0, . . . , sn] be a sequence of states in τ(M).
Let c(x, y, φ) be a commitment fluent appearing in γ. We say
that c(x, y, φ) is
• satisfied in γ if sn |= ¬c(x, y, φ);
• violated in γ if sn |= c(x, y, φ) ∧ done(x, y, φ); or
• outstanding in γ if sn |= c(x, y, φ) and sn ̸|=
done(x, y, φ).

The reasoning about commitments given the execution of a
sequence of action snapshots can then be defined as follows.

Definition 4 Let M = (D,C) be a domain with commit-
ments, s0 be a state in D, and A = [(α1, t1), . . . , (αn, tn)]
be a sequence of timed action snapshots. We say that a com-
mitment c(x, y, φ) is factual during the execution of A in
s if there exists a sequence of states γ = [s0, . . . , sm] in
Φ̂t

τ(M)(s0, A) and c(x, y, φ) appears in γ.
A factual commitment c(x, y, φ) is
• satisfied after the execution of A in s0 if it is satisfied in
every sequence of states belonging to Φ̂t

τ(M)(s0, A).
• strongly violated after the execution of A in s0 if it
is violated in every sequence of states belonging to
Φ̂t

τ(M)(s0, A).
• weakly violated after the execution of A in s0 if it
is violated in some sequence of states belonging to
Φ̂t

τ(M)(s0, A).
• outstanding after the execution of A in s0 if it is not vi-
olated in any sequence of states and not satisfied in some
sequences of states belonging to Φ̂t

τ(M)(s0, A).

We illustrate the above definition in the next example.

Example 10 Let us consider the domain M1 and the state
s0 in Example 9. Since

Φt
τ(M1)

(s0, {sendRequest}) = {[s0, u, v]},

we have that c(m, c, quote) is violated after the execution of
sendRequest at s0. On the other hand, it is easy to verify
that for A = [(sendRequest, 0), (sendQuote, 1)],

Φt
τ(M1)

(s0, A) = {[s0, u, v′]}

where v′ = u\{¬done(m, c, quote),¬quote, c(m, c, quote)}∪
{done(m, c, quote), quote,
¬c(m, c, quote)}. This implies that the commitment
c(m, c, quote) is satisfied after the execution of A in s0. 2

Definition 4 shows that domains with commitments are ad-
equate for representation and hypothetical reasoning about
commitments. In practice, the status of a commitment often
depends on the real state of the world and the actions that
have been executed in the past. As such, to represent and
reason about commitments, it is necessary to consider the
narrative that leads to the current state of the world.

In the rest of this section, we will show that the transition
function based semantics of domains with commitments is
also suitable for various tasks, such as verifying (un)satisfied
commitments and identifying outstanding commitments. To
this end, we define the notion of a narrative with commit-
ments.

Definition 5 A narrative with commitments is a triple
(D,Γ, C) where (D,C) is a domain with commitments and
Γ is a collection of observations of the form (4)-(7) and (16).

The semantics of a narrative with commitments (D,Γ, C)
is defined by (i) translating it to the narrative (τ(M),Γ) in
Lmt where M = (D,C); and (ii) specifying models of
(τ(M),Γ) to be models of (D,Γ, C). To save space, we
omit the specific details on the semantics of narratives with
commitments. We illustrate this through the next example.

Example 11 Consider the narrative N1 = (Dn,Γ, C2)
where M1 = (Dn, C2) is the domain description in Exp. 9
and Γ consists of the precedence facts s0 ≺ s1 ≺ s2 ≺ s3 ≺
sc and the following observations:

¬pay ∧ ¬accept ∧ ¬quote ∧ ¬goods at s0
sendRequest occurs at s0
sendAccept occurs at s2

where s0, s1, s2, s3, sc are situation constants.
A model M = (Ψ,Σ,∆) for this narrative can be built as
follows:
• The sequences of actions leading to the various situa-
tions are Σ(s0)=[],
Σ(s1)=[{sendRequest}],
Σ(s2)=[{sendRequest}, {sendQuote}], and

Σ(s3)=Σ(sc)=[{sendRequest}, {sendQuote}, {sendAccept}].
• Ψ([]) is the state where all fluents are false and Ψ(si) =

Φ̂tM1(Σ(si),Ψ([])).
• The time assignment for situation constants is given by
∆(si) = i for each i and ∆(sc) = 3. This is because each
action only takes one unit of time to accomplish.

The presence of the action sendQuote can be explained by
the fact that quote is the precondition for sendAccept. We
can show that M is a model of the narrative N1.

The minimality condition of models of a narrative also
allows us to prove that for every model (Ψ′,Σ′,∆′) of M1

• the situation assignment Σ′ identical to Σ;
• Ψ′([]) must satisfy {¬pay,¬accept,¬quote,¬goods}.

This allows us to conclude that N1 |= (¬pay at s) for
s ∈ S and N1 |= c(c,m, pay) ∧ ¬done(c,m, pay) at sc.
2

Let us now define the notion of satisfaction of a commitment
given a narrative.
Definition 6 Let N = (D,Γ, C) be a narrative and M be a
model of N . We say that a commitment c(x, y, φ) is:
• satisfied by M if M |= ¬c(x, y, φ) at sc.

• violated by M if M |= (done(c, y, φ) ∧
c(x, y, φ)) at sc.
• outstanding w.r.t. M if M |= ¬done(c, y, φ) ∧
c(x, y, φ) at sc.

Example 12 For the narrative N1 = (Dn,Γ, C2) from Ex-
ample 11, we can show that the commitment c(m, c, quote)
is satisfied, the commitment c(c,m, pay) is outstanding, and
there are no violated commitments. 2

Given a narrative N , we will say that a commitment is
satisfied if it is satisfied in all models of N ; it is strongly
violated if it is violated in all models of N ; and it is weakly
violated if it is violated in some models of N .

Complex Commitments and Protocols
A basic commitment represents a promise made by an agent
to another one, but without specifying a precise procedure
to accomplish the commitment. Basic commitments also do
not describe complex dependencies among “promises”.
Definition 7 (Protocol) A protocol is a formula (Pid, P)
where Pid is a unique identifier and P is of the form:
1. a set {ai}i∈AG , where ai ∈ Ai ∪ {any};
2. ?φ where φ is a formula;
3. p1; . . . ; pn where pi’s are protocols;
4. p1| . . . |pn where pi’s are protocols;
5. if φ then p1 else p2 where p1, p2 are protocols and φ

is a formula;
6. while φ do p where p is a protocol and φ is a formula;
7. p1 < p2 where p1 and p2 are protocols.
Intuitively, Case (1) describes a request for execution of cer-
tain specific actions by certain agents (any indicates that we
do not care about what that agent is doing); Case (2) is a test
action, which tests for the condition φ in the world state;
Case (3) sequentially composes protocols, i.e., it requires
first to meet the requirements of p1, then those of p2, etc.;
Case (4) requires any of the protocols p1, . . . , pn to be satis-
fied, i.e., it represents a non-deterministic choice; Case (5) is
the usual conditional selection and Case (6) is the iteration
over protocols; Case (7) is a partial ordering among proto-
cols, indicating that p1 must be completed sometime before
the execution of p2.

According to this definition, (p0, sendGoods <
sendPayment < sendReceipt) is a protocol.

The language can be extended to allow statements that
trigger complex commitments, analogously to the case of
basic commitments:

[a | φ] triggers complex commitment

A narrative can be extended with the following type of ob-
servation:

Pid at s (21)
where Pid is a protocol identifier. This observation states
that the protocol referred to by Pid has started execution at
situation s. A narrative is a triple (D,Γ, C) where Γ can
contain also protocol observations.

For a trajectory h = s0α1s1 . . . αksk, s0 is called the
start of h and is denoted by start(h). h[i, j] denotes the
sub-trajectory siαi+1 . . . αjsj . For every state s, traj(s)
denotes a set of trajectories whose start state is s.

Given a protocol P and a trajectory h = s0α1 . . . αksk,
we say that h is an instance of (Pid, P) if
• If P = {ai}i∈AG then k = 1 and, if α1 =

{
a1i
}
i∈AG ,

then for each ai ̸= any we have ai = a1i .
• If P = φ then k = 0 and s0 |= φ.
• If P = p1; . . . ; pn then there exists some sequence of

indices i0 = 0 ≤ i1 ≤ . . . ≤ in ≤ in+1 = k such that
h[iit , iit+1] is an instance of pt.

• If P = p1| . . . |pn then there exists some 1 ≤ i ≤ n such
that h is an instance of pi.

• If P = if φ then p1 else p2 and s0 |= φ then h is an
instance of P if it is an instance of p1; otherwise, h must
be an instance of p2.

• If P = while φ do p and s0 ̸|= φ then h is an instance
of P if k = 0; otherwise, there is an index 0≤i≤k s.t.
h[0, i] is an instance of p and h[i, k] is an instance of P .

• If P = p1 < p2 then there exists 0 ≤ i ≤ j ≤ k such that
h[0, i] is an instance of p1 and h[j, k] is an instance of p2.

(Pid, P) |= h denotes that h is an instance of (Pid, P).
We will now complete the definition of a model of a narra-

tive with protocols. The notion of interpretation and the en-
tailment relation between interpretations and observations,
except for the observations of type (21), are defined as in the
previous section. For an interpretation M = (Ψ,Σ,∆) of a
narrative (D,Γ, C) and a protocol observation (Pid at s) ∈
C, we say that M |= (Pid at s) if there exists some in-
stance s0α1s1 . . . αksk of (Pid, P) where:
(i) s0 = Ψ(Σ(s));
(ii) Σ(s) ◦ [α1, . . . , αk] is a prefix of Σ(sc);6

(iii) For every 1 ≤ j ≤ k, Ψ(Σ(s) ◦ [α1, . . . , αj]) = sj .
Def. 6 can be used unchanged for narratives with protocols.

Example 13 Let N2 = (Dn,Γ, C2) where Dn is defined
as in Exp. 11, C2 is defined as in Exp. 11 with the ad-
dition of the protocol (p0, sendGoods < sendPayment <
sendReceipt) and Γ consists of the precedence facts s0 ≺ sc
and the single observation p0 at s0. Observe that any in-
stance of p0 contains the actions sendGoods, sendPayment,

6We use ◦ to denote append between lists.

and sendReceipt, in this order. The executability condition
of sendGoods implies that accept has to be true at the time it
is executed. Together with the minimality condition of mod-
els of N2, we have that for every model M = (Ψ,Σ,∆) of
N2, Ψ(s0) |= accept. We construct one model as follows:
• Σ(s0) = [] and Σ(sc) =
[{sendGoods}, {sendPayment}, {sendReceipt}];
• Ψ(s0) = s0 where accept ∈ s0, and Ψ(sc) ∈
Φ̂t

τ(M2)
(s0,Σ(sc));

• ∆(s0) = 0 and ∆(sc) = 3.
Observe that we can also infer that, in the above model,
the customer must have paid right after he/she received the
goods (at time 1), since (i) pay must be true for sendReceipt
to be executed; and (ii) sendReceipt is executed at time 2. 2

Related Works
Lmt is an evolution of a classical action languages, draw-
ing features like static causal laws from the language B
(Gelfond and Lifschitz 1998), narrative and observations
from the language L (Baral, Gelfond, and Provetti 1997;
Baral, McIlraith, and Son 2000), and time and deadlines
from the language ADC (Baral, Son, and Tuan 2002). To
the best of our knowledge, Lmt is the first action language
with all these features, embedded in the context of modeling
multi-agent domains. Lmt is similar to the planning lan-
guage PDDL 2.1 (and its successors) in that it provides a
means for describing systems with durative actions and de-
layed effects. Lmt has a transition function based semantics
and considers observations, ir/reversible processes and mul-
tiple agents, while PDDL 2.1 does not. It should also be
mentioned that Lmt differs from the event calculus in that
it allows representing and reasoning with static causal laws
while event calculus does not.

Our proposal is related to several works on reasoning
with commitments. The main differences between our work
and previous works lie in our use of an action language
and in our formulation of various problems as a query
in our language; this also allows the use of planning to
satisfy outstanding commitments. The treatment of com-
mitments and the ontology for commitments adopted in
this paper is largely inspired by (Mallya and Huhns 2003;
Singh 1999).

With respect to (Yolum and Singh 2002), our formal-
ization of basic commitments embedded in a domain with
commitments and in a narrative of a multi-agent system al-
lows also for a protocol specification that subsumes that of
(Yolum and Singh 2002). Similar differences are present
w.r.t. (Giordano, Martelli, and Schwind 2007), which builds
on dynamic temporal logic.

Our approach has some relations to (Chesani et al. 2009);
using a reactive event calculus, they provide a notion sim-
ilar to narratives. Besides being different from each other
in the use of an action language, our approach considers
protocols and (Chesani et al. 2009) does not. The same
authors, in (Torroni et al. 2009a), propose a new language
for modeling commitments in which existential quantifier of
time points are used. The use of disjunctive time specifica-

tion in annotating fluent formulas in our work allows us to
avoid the issues raised in (Mallya, Yolum, and Singh 2003;
Torroni et al. 2009a).

(Chopra and Singh 2006; Desai, Chopra, and Singh
2007) also makes use of an action language in dealing with
commitments and protocols. While we focus on formal-
izing commitments, the works (Chopra and Singh 2006;
Desai, Chopra, and Singh 2007) use C+ in specifying pro-
tocols. A protocol in our definition is similar to a proto-
col defined in (Chopra and Singh 2006; Desai, Chopra, and
Singh 2007) in that it restricts the evolution of the system to
a certain sets of trajectories. In this sense, our definition of
protocols provides the machineries for off-line verification
of properties of protocols (Torroni et al. 2009b). By intro-
ducing the observation of the from “Pid at s” we allow for
the possible executions of a protocol in different states and
hence different contexts. However, we do not have the no-
tion of a transformer as in (Chopra and Singh 2006) and the
ability to handle nested commitments as in (Desai, Chopra,
and Singh 2007).

Conclusion and Future Work
In this paper, we show how various problems in reason-
ing about commitments can be described by a suitable in-
stantiation of commitment actions in the language Lmt. In
particular, we show how the problem of verifying commit-
ments or identifying outstanding commitments can be posed
as queries to a narrative with commitments. We show how
the language can also be easily extended to consider com-
mitment protocols.

We would like to observe that our framework (Def. 6)
provides a way to identify outstanding, violated, and sat-
isfiable commitments given a narrative (D,Γ, C). A natural
question that arises is what should the agents do to satisfy
the outstanding commitments. The semantics of domains
with commitments suggests that we can view the problem
of identifying a possible course of actions for the agents to
satisfy the outstanding commitments as an instance of the
planning problem and thus can be solved by planning tech-
niques. An investigation of the application of multi-agent
planning techniques in generating plans to satisfy outstand-
ing commitments is one of our main goals in this research in
the near future.

References
Balduccini, M., and Gelfond, M. 2003. Diagnostic Reason-
ing with A-Prolog. Theory and Practice of Logic Program-
ming 3(4,5):425–461.
Baral, C.; Gelfond, M.; and Provetti, A. 1997. Representing
Actions: Laws, Observations and Hypothesis. Journal of
Logic Programming 31(1-3):201–243.
Baral, C.; McIlraith, S.; and Son, T. C. 2000. Formulating
diagnostic problem solving using an action language with
narratives and sensing. In Proceedings of the Seventh Inter-
national Conference on Principles of Knowledge and Rep-
resentation and Reasoning (KR’2000), 311–322.
Baral, C.; Son, T. C.; and Tuan, L.-C. 2002. A transi-
tion function based characterization of actions with delayed

and continuous effects. In Proceedings of the Eighth Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’2002), 291–302. Morgan Kauf-
mann Publisher.
Castelfranchi, C. 1995. Commitments: From individual in-
tentions to groups and organizations. In Lesser, V. R., and
Gasser, L., eds., Proceedings of the First International Con-
ference on Multiagent Systems, June 12-14, 1995, San Fran-
cisco, California, USA, 41–48. The MIT Press.
Chesani, F.; Mello, P.; Montali, M.; and Torroni, P. 2009.
Commitment tracking via the reactive event calculus. In
21th International Joint Conference on Artificial Intelli-
gence (IJCAI), Pasadena, CA, USA, 91–96.
Chopra, A. K., and Singh, M. P. 2006. Contextualizing
commitment protocol. In Nakashima, H.; Wellman, M. P.;
Weiss, G.; and Stone, P., eds., 5th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS 2006), Hakodate, Japan, May 8-12, 2006, 1345–1352.
ACM.
Desai, N.; Chopra, A. K.; and Singh, M. P. 2007. Represent-
ing and reasoning about commitments in business processes.
In Proceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver, British
Columbia, Canada, 1328–1333. AAAI Press.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
ETAI 3(6).
Giordano, L.; Martelli, A.; and Schwind, C. 2007. Specify-
ing and Verifying Interaction Protocols in a Temporal Action
Logic. Journal of Applied Logic 5(2).
Mallya, A. U., and Huhns, M. N. 2003. Commitments
among agents. IEEE Internet Computing 7(4):90–93.
Mallya, A. U.; Yolum, P.; and Singh, M. P. 2003. Resolv-
ing commitments among autonomous agents. In Dignum, F.,
ed., Advances in Agent Communication, International Work-
shop on Agent Communication Languages, ACL 2003, Mel-
bourne, Australia, July 14, 2003, volume 2922 of Lecture
Notes in Computer Science, 166–182. Springer.
Singh, M. P. 1999. An ontology for commitments in multi-
agent systems. Artif. Intell. Law 7(1):97–113.
Sirbu, M. A. 1998. Credits and debits on the internet. In
Huhns, M. N., and Singh, M. P., eds., Readings in Agents.
Morgan Kaufmann, San Francisco. 2990–305.
Torroni, P.; Chesani, F.; Montali, M.; and Mello, P. 2009a.
Social commitments in time: satisfied or compensated. In
DALT.
Torroni, P.; Yolum, P.; Singh, M. P.; Alberti, M.; Chesani,
F.; Gavanelli, M.; Lamma, E.; and Mello, P. 2009b. Mod-
elling interactions via commitments and expectations. In
Dignum, V., ed., Handbook of Research on Multi-Agent Sys-
tems: Semantics and Dynamics of Organizational Models.
IGI Global, Hershey, Pennsylvania. 263–284. Chapter 11.
Yolum, P., and Singh, M. P. 2002. Flexible protocol speci-
fication and execution: applying event calculus planning us-
ing commitments. 527–534. ACM.

