On Moving Objects in Dynamic Domains

Fangzhen Lin*
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

In the physical world, an object is a moving object if its posi-
tion changes over time. In a symbolic dynamic system such
as a computer program or a blocks world, what are the mov-
ing objects? In this paper, we propose a definition, consider
ways to generate moving objects and their “positions”. We
also introduce the flow graph of a moving object. It depicts
the “trajectory” of the object, thus should be useful when
planning to achieve a goal that involves moving some objects
around.

Introduction

In the physical world, an object is a moving object if its po-
sition changes over time. The notion is clear here because
we have a global time and a global spatial coordinate. The
same cannot be said about symbolic dynamic systems often
found in computer science and artificial intelligence, and it
is by no means obvious what the moving objects and their
positions are in such dynamic systems. For example, con-
sider a domain where the robot can paint some walls into
various colors. Depending on the axiomatization, the ob-
jects in this domain could be the robot, the walls, and the
colors. Now which of them are moving, and what are their
positions? Of course, there are domains where the notion
of moving objects is clear. Consider the logistics domain
[Bacchus, 2001] where there are packages that need to be
delivered from one location to another, and there are trucks
for moving packages inside a city and airplanes for moving
them to a different city. Here obviously airplanes, trucks and
packages are moving objects while locations and cities are
not.

Why are we interested in knowing whether an object is a
moving one or not? First of all, information about objects
that can move or be moved and how they move or can be
moved from one location to another is crucial to understand-
ing a dynamic domain. In fact, in many dynamic domains,
they could be the only thing that one cares about.

The next question is where such information comes from.
Most action description formalisms used in Al do not have a

*This work was supported in part by HK RGC under GRF
616208.
Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mechanism for specifying this information. One could con-
sider adding such mechanism to these action description for-
malisms. Alternatively, one can consider ways to discover
such information automatically from an action domain de-
scription. One can argue that perhaps the former is the right
way to go as the axiomatizers should have this information
to begin with. While this may be the case, an effective way
of discovering such information is still useful. At the very
least, it would provide a way to check whether the user’s
specification agrees with the result from the automatic ap-
proach.

In this paper, we propose a formal definition of moving
objects, and consider how information about them can be
computed.

Transition systems

To abstract away action formalisms, we consider transition
systems. Given a first-order language L, a transition system
is (M, T), where M is a set of first-order structures in L,
and T a binary relation. Intuitively, M is the set of legal
states and 7" represents the transition function on the legal
states. Typically, structures in M should share the same do-
main of objects, but this is not required.

The problem that we are considering is then given such a
transition system (M, T'), and an object @ in the domain of
a structure in M, whether a is a mobile object, and if yes
what its positions.

Basic definitions

First, some notations. If ¢(x1,...,2,) is a formula with
distinct free variables z1,...,x,, and a, ..., a, objects in
the domain of a structure M, then we write ¢(aq, ..., ay,)
to denote the expression of replacing a; for every free oc-
currences of x; in ¢ for all 1 < ¢ < n. Notice that for-
mally speaking, ¢(as,...,a,) is not a formula. For any
such expression p(ay, ..., a,), we write M = ¢(aq, ..., an)
if for some distinct variables z1, ..., 2, not occurring in
¢(a,...,a,), and some variable assignment ¢ such that
U(mi) = a,1 < i < n, M7U ': Qp(xl,...,l‘n)
(p(x1,...,xy,) is true in M under o), where (1, ...,2,)
is the result of replacing a; by z; in ¢(as, ..., a,) for all
1< <n.

In the following, if P is a predicate and u = (aq, ..., @y)

a tuple of objects that matches the arity of P, then we call
P(u) a property of a;, for every 1 < i <mn.

Definition 1 Let M be a non-empty set of structures that
have the same domain, and a an element of the domain. We
say that a is mobile in M if there are k > 2 properties
D1, .-, Pk about a such that

e for each i, there is an M' € M such that

M' = p;. @)

e foreach M' € M and any i # j,
M'E=pi V-V pg, (2)
M' = =(pi Apj)- (3)

Informally, py, ..., py, are the k different “positions” of ob-
ject a. Condition (1) means that each of these positions is
possible, and (2) and (3) says that in every state, a is in ex-
actly one of these positions. Notice that we require k to
be greater than 1 for otherwise (3) would be trivial. To be
specific, in the following, we will sometimes say that a is
mobile in M under the properties p1, ..., Dk.

The following result is immediate:

Proposition 1 If a is mobile in M under a set A of proper-
ties, then for each p € A there are two states M and M’ in
M such that M }= p and M' = —p.

Given a transition system (M, T'), and a state M € M,
we write T'(M) for the set of states reachable from M:

o M eT(M).
o If SeT(M),and (S,5") € T, then S" € T(M).

e T'(M) is the smallest set that satisfies the above two con-
ditions.

Definition 2 Ler (M, T) be a transition system, M € M,
and a an element in the domain of M. We say that a is
mobile in M under p1, ..., py if a is mobile in T (M) under

P1y -5 Dk-

In many cases, we want to know if an object is mobile in
the whole transition system, not just in one particular state.

Definition 3 An object is mobile in a transition system if it
is mobile in every state of the system, and it is non-mobile if
it is not mobile in every state.

If an object is mobile in one state, and not mobile in an-
other, then it is neither mobile nor non-mobile in the system.

Let’s see some examples.

In the following, we shall represent a state M (a structure
of a first-order language) as the set of atoms that are true in
M. Thus M | P(u) iff P(u) € M.

Given a transition system (M, T'), we have been calling
elements of M states of the system. Sometimes, we also
call them legal states to emphasize the difference between
states in the transition system and arbitrary models or sets of
atoms.

The blocks world

Consider classical blocks world with fluents on, ontable,
holding, handempty, and clear, and actions pickup,
putdown, stack, and unstack.

For this domain, the transition function is actually not rel-
evant because T'(M) is the same as the set of all states, i.e.
from any given state, one can reach any other state through
a sequence of actions.

Suppose there are just two blocks a and b. There are only
a handful of legal states:

S1 = {handempty, ontable(a), on(b, a), clear(b)},

Sy = {handempty, ontable(b), on(a,b), clear(a)},

S3 = {handempty, ontable(b), ontable(a), clear(a),
clear(b)},

Sy = {holding(a), ontable(b), clear(b)},

S5 = {holding(b), ontable(a), clear(a)}.

Consider block a, the sets of mutually exclusive proper-
ties of a are as follows:

{ontable(a),on(a,b), holding(a)}
{on(b,a), clear(a), holding(a)}

The first one says that a is either on the table, on another
block or held by the robot. The second one says that a is
either clear, held by the robot or under another block. These
are two alternative ways of describing the “positions” of a
block.

Now consider a version of the blocks world with F a
special constant denoting the floor [Nilsson, 1998]. With
this constant, the fluent ontable is no longer needed. With
two blocks a and b, the set of legal states is as follows:

S} = {handempty, on(a, Fl),on(b, a), clear(b),
clear(F1)},

Sh, = {handempty, on(b, F1),on(a,b), clear(a),
clear(Fl)},

S5 = {handempty, on(b, F1),on(a, Fl), clear(a),
clear(b), clear(Fl1)},

S} = {holding(a), on(b, Fl), clear(b), clear(F1l)},

S = {holding(b), on(a, Fl), clear(a), clear(F1)}.

The sets of mutually exclusive properties for blocks a
and b are still the same as before, with ontable(a) re-
placed by on(a, F'l). The properties about F are on(a, Fl),
on(b, Fl), clear(F1). They are not pair-wise mutually ex-
clusive, thus F'l is not a moving object in any state.

The above analysis works for domains with more than two
blocks as well. In fact, an analysis along the above line can

be worked out on a general domain. This is what we are
going to do for the logistics domain.

Logistics domain

The logistics domain [Bacchus, 2001] uses a multi-sorted
language with the following primitive sorts:

truck, airplane, package, airport, location, city.

It also uses some defined sorts:

e vehicle - the union of truck and airplane,
e physobj - the union of package and vehicle,
e place - the union of airport and location.

The fluents are inC'ity of arity place * city, at of arity
physobj x place, and in of arity package * vehicle.

The actions are loadTruck, loadAirplane,
unloadTruck, wunloadAirplane, drivelruck, and
flyAirplane. The assumption is that one can fly an air-
plane between any two airports, and drive a truck between
any two locations within the same city (so a truck cannot go
from one city to another).

There are too many legal states to enumerate here even
for a domain with only a couple of objects for each primitive
sort. However, we can consider each object in turn.

Consider a city object c. The set of properties about it is

{inCity(l,c) | l aplace}.

Since the truth values of these properties do not change from
state to state, there cannot be any set of them on which c is
mobile. Thus c is not a mobile object in any state.

Consider a location . The set of properties about it is

{inCity(l,c) | cacity} U
{at(x,1) | x apackage or a truck} U
{at(apn,l) | apn an airplane}

The properties from the third set can never be true, and the
truth values of those from the first set do not change over
states, thus [can only be mobile on the properties from the
second set. But the properties from the second set that are
possible (satisfies (1)) are not mutually exclusive. Thus [is
not a mobile object in any state.

Similar analysis would show that an airport is not a mobile
object in any state.

Consider a truck ¢t. The properties about ¢ are

{in(p,t) | p apackage} U {at(t,l) | I aplace}.

Let M be a state, and M = at(t,1) A inCity(l, ¢) for some
place [(location or airport) and city c. There are two cases.

e If [is the only place such that inC'ity(l, ¢) holds, then ev-
ery M' € T(M) will satisfy at(¢,1) and for some pack-
ages pi, ..., Dk, in(p;, t). Thus ¢ is not mobile in M.

e If there is another place I’ # [such that inCity(l',c)

holds in M, then ¢ is mobile: ¢ is mobile on the following
pair-wise mutually exclusive properties:

{at(t,") | M [inCity(l',c)}

The case for an airplane is similar: it is mobile if there are
more than one airport, not otherwise.
Consider a package p. The set of properties about it are

{in(p,v) | vavehicle} U {at(p,l) | I aplace}

These properties are mutually exclusive. Thus they make p
mobile if at least two of them are true in some of the states
in T(M). A state where p is not mobile is when p is at a
location in a city that does not have any trucks.

Wall painting

The notion of “mobile” or “moving” studied here is very
general. “Changing” may be a better word.

Consider a domain with walls and colors, and the action
of painting a wall into certain color: paint(w, ¢) always suc-
ceeds and changes the color of the wall w to color c.

So there are two sorts here, wall and color, and one fluent
color(w, ¢). The set of properties about a wall wy is

{color(wg,c) | cacolor}.

Assuming that a wall can have only one color in any initial
state, then all future states will have the same property. Thus
the above properties about wy are mutually exclusive, one
of them must be true, and each of them is true in some of
the states because of the painting action. So wg is a mobile
object in any state, and its “position” is its color. However,
a color is not a mobile object because properties about it
are not mutually exclusive: two different walls can have the
same color.

One reviewer questioned whether it is intuitive to say that
a wall is a moving object. Naturally, whether something is
intuitive depends on one’s perspective. What we consider
here are abstract transition systems. If we change “walls”
to “blocks”, “colors” to “locations”, and “paint(w,c)” to
“move(w,c)”, we get an isomorphic system where as ex-
pected blocks are moving objects and locations are not.

Discussions

1. In our definition of a mobile object, we consider proper-
ties about the object to be atomic formulas that mention
the object. One question is why not consider arbitrary
formulas that mention the object. One difficulty with ar-
bitrary formulas is that there is an infinite number of them.
Another is that it would not work. For instance, the con-
ditions in the definition would be trivially true if we let
p1 to be P(c) and py to be = P(c), as long as there is an
action that can change the truth value of P(c).

2. Whether an object is mobile according to our definition
clearly depends on the language. Consider the blocks
world domain. If we add a new fluent non(z,y), mean-
ing that = is not on y, then we effectively make for-
mula —on(z, y) an atomic one. This, among other things,
would make Fl mobile as on(a, Fl) and non(a, Fl)
would be mutually exclusive and one of them is true in
every state.

3. Our notion of mobile objects is very closely related to that
of legal states. We assume here that the set of legal states
is given as part of a transition system. Often, the legal
states are specified by constraints like (2) and (3) [Lin,
2004].

Computing moving objects
When the number of states is large, finding out if an object
is mobile by exploring the entire transition graph is not fea-
sible. However, we can concentrate on just the part of the
states that are relevant to the properties of the given object,
as we have done in the logistics domain.

Let M be a state of L, and A a set of atoms of the form
P(u), where P is a predicate of L, and u a tuple of objects
in the domain of M. We write M 4, the restriction of M on
A, as

My ={P(u) | Plu)e M nA}.

If M is a set of structures, then M 4 is {M4 | M € M}.

Lemma 1 Let M be a structure, F a set of properties about
an object a, and Py, ..., P;, € F. We have that a is mobile in
M under Py, ..., Py iff it is mobile in Mg under Py, ..., Py.

Proof: Straightforward. m

Given a set M of states, and a set F' of properties about
a, the following non-deterministic function mobile(M, F)
returns a subset P C F' under which a is mobile, if such a
P exists, and) otherwise.

By the above lemma, we assume that M = Mp.

Function mobile(M, F).

I. Let
Xi={p|pe FAN-IMM e MApe M},
Xy =X U((\M),
= F\ Xo,
M = Mp:.
2. Let Py = {p | {p} € M'}. (If the function returns a

non-empty set, this set must contain Fy.)

3. If there are two distinct p,p’ € Py such that {p,p'} C
M for some M € M'’, then return . (In this case, p
and p’ are not mutually exclusive, but must both in P, a
contradiction. So a is not mobile in this case.)

4. X =M ,P="P),Q=10.

5. foreach M € X,if MNP # () then Q = Q U M and
delete M from X;

6. The following is a loop with backtracking

while X # () do

choose a p such that

IMM e XApe M\ Qand VMM e X Apc¢€
M—-MnNQ=0, P=PU{p}; backtrack if no such
p, and return () if cannot backtrack; for each M € X, if
M N P # () then Q = Q U M and delete M from X;
return P;

Let’s run this function on the blocks world with two
blocks. The full set of legal states is S = {51, ..., S5}, and
for a,

e Step 2 return with £/ = F. So M’ = M.
e Only Sy4 is a singleton in M, so Py = {holding(a)}.
e Step 4 X = {S11, S12, S13, S}, P = {holding(a)},
and Q = 0.
e Step S: X = {5117512,313}, P = {hOldi’l’Lg(CL)}, Q=
{holding(a)}.
e The loop. Four possible choice of p in the first iteration:
ontable(a),on(a,b),on(b, a), clear(a).
— Choosing p = ontable(a) yields
P = {ontable(a), holding(a)},
X = {S12},
= {ontable(a), holding(a),on(b, a), clear(a)},
and then in the next iteration p = on(a,b), and then
outputs P = {ontable(a), holding(a),on(a,b)}.
— Choosing p = on(a, b) yields
P ={on(a,b), holding(a)},
X = {811,513},
Q = {on(a,b), holding(a), clear(a)},
and then in the next iteration, there will be
two choices for p: ontable(a) or on(b,a).
Choosing p = ontable(a) will make P =
{ontable(a),on(a,b), holding(a)}, X = 0, thus
outputs P = {ontable(a),on(a,b), holding(a)},
the same one as before. Choos-
ing p = on(b,a) will yield P =
{on(b,a),on(a,b), holding(a)}, X = {S13}, Q@ =
{ontable(a),on(b, a),on(a,b), holding(a), clear(a)}.
This means that there won’t be any possible choice for
p in the next iteration, thus causing backtracking.
— Choosing p = on(b, a) yields
P = {on(b,a), holding(a)},
X = {512,513},
Q = {on(b, a), holding(a), ontable(a)},
and then in the next iteration, there will be two choices
for p: clear(a) or on(a, b). Choosing p = on(a, b) will
cause backtracking, and choosing p = clear(a) will
yield an output P{clear(a), on(b, a), holding(a)}.
— Choosing p = clear(a) will yield
P = {clear(a), holding(a)},
X = {511},
= {clear(a), holding(a), ontable(a)}.

There will then only be one choice of p in the next it-

F = {clear(a), ontable(a), on(a,b), on(b, a), holding(a),on(a,a)}. eration: p = on(b,a), which will then output P =

e Spis:
Sll = {ontable(a), On(ba CL)}7
S12 = {on(a,b), clear(a)},
S13 = {ontable(a), clear(a)},
S14 = {holding(a)}.

So by the above lemma, we use this set as M to run the
function.

{on(b,a), clear(a), holding(a)}.

In general, if the blocks world domain has n blocks, then
the set of properties about a block a will be

A = {holding(a), clear(a), ontable(a)} U
{on(a,b) | bablock} U {on(b,a) | bablock}
which is linear in n. Let M be the set legal states. We know

that the size of M is exponential in n. However, the size of
M 4 is linear in nn: S is in M 4 iff

S = {holding(a)} or

S = {ontable(a), clear(a)} or

S = {ontable(a), on(b,a)} for some b # a or

S = {on(a,b),clear(a)} for some b # a or

e S ={on(a,b),on(c,a)} for some c # b # a.

While in general the above procedure for mobile(M, F')
may run in exponential time because of backtracking, it
runs in O(n?) in the blocks world, and has two outputs:
P = {holding(a), ontable(a),on(a,by),...,on(a,by_1)}
or P = {holding(a), clear(a),on(by,a), ...,on(bx_1,a)},
where b1, ..., bi._1 are the other blocks that are different from
a.

Flow graphs

We have considered the definition of moving objects and
how to compute them. We now consider how properties
about them can be used in planning.

Let M be a structure in a transition system (M, T'), a an
object that is mobile on the positions pq, ..., p,. The flow
graph of a is a directed graph whose nodes are py, ..., D,
and there is an edge from p; to pj, ¢ # j, if there is a state S
reachable from M such that for some transition (.S, ") € T,
S = p; and S” |= p;. Notice that because of exclusiveness,
S = —pj;and S = ;.

The flow graph shows that to move a mobile object from
one position, say p; to a new position pj;, it must go through
the intermediate positions on one of the paths in the graph
from p; to p;.

In the blocks world, a flow graph for a block z is a cy-
cle that has edges going out and into holding(y) from each
node in {ontable(z), on(x,y), on(z, z), ...} (assuming that
we use this set as the positions of a block).

In the logistics domain, for a truck, its flow graph is a
complete graph, and similarly for an airplane. For a pack-
age p, there are two edges (one outgoing and one incoming)
between at(p,l) and in(p,t) (¢ is a truck) if p and ¢ are in
the same city, and there are two edges between at(p,!) and
in(p, apl) (apl is an airplane) if [is an airport.

We see that the flow graphs for blocks in the blocks world,
and those for packages in the logistics domain are actually
quite similar: in the former, holding(x) is the node that con-
nects the other positions, while in the latter positions of the
form in(p, x) are connecting points.

The flow graph of a moving object depicts how it can be
moved from one location to another independent of other
objects. Often we need to consider how more than one ob-
jects can be moved. For instance, we may want x to be on
1y, and y on the table; or that more than one packages to be
delivered to various locations.

Consider two objects a and b. Suppose initially they are
at p; and ¢, respectively, but need to be moved to p2 and
q2, respectively. Either there is an action that can move a
and b to their respectable goal position simultaneously or at
some point, either a is moved to its goal position first and
while keeping a where it is, b is moved to its goal position
or the other way around. So we consider flow graphs under
a constraint.

Let GG be a state sentence. The flow graph a in a state M
under the transition system (M, T') and constraint G is again
a directed graph whose nodes are py, ..., p,, and there is an
edge from p; to p;, ¢ # j, if there is a state S reachable from
M such that for some transition (S,5") € T, S E G A p;
and S’ = G A p;.

Consider a blocks world with three blocks a, b, and c.
The flow graph of a under the constraint ontable(b) is the
same as the flow graph of a without constraints, meaning
that a’s position is independent of the constraint ontable(b).
However, the flow graph of b under the constraint on(a, b)
has no edges as none of the actions about b can be performed
given this constraint. This means that to achieve the joint
goal on(a,b) A ontable(b), one should achieve ontable(b)
first for otherwise, once on(a, b) is true, there is no way to
achieve ontable(b) without making on(a, b) false.

Concluding remarks

We have defined a notion of moving objects and their “po-
sitions”, and considered ways to compute them. In terms of
application, if the objects in a planning domain can be di-
vided into those that are moving according to our definition
and those that are not, and furthermore those that are not do
not change their properties from states to states, then flow
graphs and flow graphs under constraints can be a powerful
tool to help with planning in such domains.

References

Bacchus, F 2001. AIPS’00 planning com-
petition. Al Magazine 22(3):47-56. See also
http://www.cs.toronto.edu/aips2000.

Lin, F. 2004. Discovering state invariants. In Proceedings of
the Nineth International Conference on Principles of Knowl-
edge Representation and Reasoning (KR2004), 536-544.
Nilsson, N. J. 1998. Articifial Intelligence: A New Synthesis.
Morgan Kaufmann Publishers, Inc., San Francisco, CA.

