

An Interface for Crowd-sourcing Spatial Models of Commonsense

Benjamin Johnston
Innovation and Enterprise Research Laboratory

Faculty of Engineering and Information Technology
University of Technology, Sydney

Australia 2007

Abstract
Commonsense is a challenge not only for representation and
reasoning but also for large scale knowledge engineering
required to capture the breadth of our ‘everyday’ world. One
approach to knowledge engineering is to ‘outsource’ the
effort to the public through games that generate structured
commonsense knowledge from user play. To date, such
games have focused on symbolic and textual knowledge.
However, an effective commonsense reasoning system will
require spatial and physical reasoning capabilities. In this
paper, I propose a tool for gathering commonsense
information from ordinary people. It is a user-friendly 3D
sculpting tool for modeling and annotating models of
physical objects and spaces.

 Introduction
There are many applications of commonsense reasoning
that involve spatial information:

• Word sense disambiguation. For example, the
ambiguity in the sentence ‘the pig is in the pen’ might
be resolved by comparing the size of a pig to the
volume inside a ball-point pen and a pigpen.

• Planning. For example, the problem of planning how
to transport a sofa depends on knowledge of the size
of a typical door-frame, the capacity of a car and ways
of securing the object to a truck.

• Vision and interpretation. For example, a domestic
robot that is asked, ‘fetch me the coffee on the table,’
will need to know the shape of a table and coffee cup
to be able to recognize them, will need to know what
part of a table to look for objects that are said to be
‘on’ the table and may need to understand the spatial
associations with coffee and kitchen tables versus a
table in the bathroom.

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Unfortunately, such knowledge does not lend itself to
elegant and self-contained axiomatization. A logical or
symbolic system that is capable of spatial commonsense
reasoning requires a huge volume of specific facts to be
explicitly coded into its knowledge base. These facts might
be encoded as axioms that, for example, state the typical
dimensions of a pig, dictate that a table ordinarily has four
legs attached to the underside of a flat surface and that an
ordinary sedan is not able to carry a typical sofa inside.

Even though logical formalizations are well suited to
capturing the abstract properties of space and naïve
physics, the breadth of commonsense is such that the
axiomatic methods of modeling knowledge in logical
formalisms need to be augmented with techniques for
large-scale data collection. The potential number of facts
or axioms is limitless; there are countless simple questions
about the real world that cannot be answered by pure
inference from a small kernel of knowledge. They must be
learnt or taught. The only guard against unanticipated
queries is a complete formal description of every object in
the universe of discourse. However, the Cyc project shows
that direct formalization can be very difficult and
expensive (Wood 2005).

The approach used in creating ConceptNet (Havasi,
Speer and Alonso 2007) is one solution to covering the
breadth of commonsense. ConceptNet is a network of
informal semantic knowledge, structured around 21
relations (ibid.). In ConceptNet, formal precision is
sacrificed to gain broader coverage. By sacrificing
precision, knowledge can be collected from the efforts of
volunteers (rather than skilled engineers) playing specially
crafted games on the internet. The instances in
ConceptNet’s relations (such as IsA, MadeOf, UsedFor,
CapableOf, DesireOf and InstanceOf) correspond to
imprecise human intuitions rather than a more objective
truth. For example, in ConceptNet, both tomatoes and
mushrooms are vegetables, even though some would argue
that they are fruits and fungi respectively, rather than

vegetables. Nevertheless, such informal knowledge has
been demonstrated in useful applications (e.g., (Shen,
Lieberman and Lam 2007; Faaborg et al. 2005)). It can
furthermore be combined with formal logics of
commonsense to, for example, deduce that an agent is
likely to perform an action (Performs) given that it is
capable of the action (CapableOf) and desires the outcome
(DesireOf).

While ConceptNet is a useful knowledgebase of simple
relationships between concepts, it lacks spatial knowledge
apart from the three relations PartOf, HasA, AtLocation
and LocatedNear. The objective of this paper is, therefore,
to develop a representation scheme and tools suitable for
collecting broad commonsense knowledge of the physical
and spatial world.

In this paper, I propose a simple homogenous
representation suitable for capturing a ‘first-order’
approximation of rich (but informal) physical knowledge.
While the representation is relatively informal and lacks
the expressiveness of first order logic, it serves as a
practical compromise between having a narrow but highly
expressive logic and not having any physical knowledge at
all. In fact, it is intended that the scheme be used alongside
expressive logics; complementing the depth of a formal
ontology with the breadth of a large knowledgebase of
instances.

I then proceed to describing preliminary work on a user-
friendly tool that enables ordinary people to participate in
the creation of commonsense knowledge. The objective of
this tool is to, like ConceptNet, ‘crowd-source’ the
knowledge engineering process across a huge number of
small contributors.

Pragmatic Representations of Objects
I previously proposed Comirit as a hybrid reasoning
framework for combining logical knowledge with
simulations (Johnston and Williams 2007). In Comirit,
physical objects are modeled using a large mass-spring
system. The shape and physical properties of objects are
approximated by a set of point-masses that are connected
to each other by springs. Thus, physical reasoning
problems involving ‘forward inference’ from a set of initial
conditions can be performed by iteratively solving the laws
of physics over the simulation.

This technique may be viewed as a polynomial-time
approximation to an axiomatization of the laws of physics.
In those reasoning problems where approximate forward
inference is sufficient, such simulations may entirely
obviate the need for logical reasoning from principles of
physics or naïve physics. Furthermore, the representation is
well suited to creating large knowledge bases: the

consistent representation allows for standardized tools that
manipulate the homogenous representation scheme.

Given this representation scheme, how can large
knowledge-bases of physical objects be constructed?
ConceptNet contains over 700,000 symbolic assertions for
150,000 concepts (Havasi, Speer and Alonso 2007) created
by user submissions. To match this kind of scale in a
public repository of commonsense 3D models would be an
enormous undertaking. A single 3D model can take
anywhere from a few hours to days to build, so a team of
100 might require several years to build just 100,000
models.

ConceptNet was ‘crowd-sourced’ from volunteers
contributing knowledge on a webpage and via online
computer games. If 3D modeling could be packaged into
an entertaining and intuitive experience, it is not
unreasonable to imagine 100,000 volunteers contributing a
single 3D model each.

A Simplified Representation Scheme
In building a modeling tool to support hundreds of
thousands of users and models, it makes sense to ask,
‘what is the simplest 3D representation scheme that could
possibly be useful for commonsense reasoning?’

Such a representation scheme should, at least, meet these
conditions:

• It should be conceptually clear so that users do not
require extensive training (i.e., the steep learning
curves associated with existing 3D modeling tools are
inappropriate)

• It should be efficiently modeled in popular simulation
engines, such as those used by computer games (i.e.,
this means that it should be closely related to
geometric primitives, rather than mass-spring
systems)

• It should be efficiently rendered on a users’ display
• It should be both easy and efficient to manipulate,

transform and analyze
• It should, nevertheless, be capable of describing

useful properties of a wide range of objects
Given these objectives, I propose a simple scheme based

on connected cubes. That is, we represent an object by a
set of voxels. Each voxel is a 3-tuple of integer coordinates
that corresponds to a cube aligned to a grid in 3D space.
Associated with a set of voxels is a size parameter and a
mass parameter. The value of the size parameter is the real
world length of the maximum extent of the model along
one of the three coordinate axes (i.e., the maximum of the
x-length, y-length and z-length). The mass gives the total
mass of the object.

In addition to the geometric shape described by voxels,
there is an associated set of annotations. Each annotation

relates a voxel to a word or character string. The string is
intended to denote a concept or symbol, similar to the
informal concepts of ConceptNet. The annotation may be a
voxel that is part of the geometric shape or it can be a
voxel in empty space. For example, one might annotate the
space in the middle of the bucket with the label “contents”.
While the annotations are the same kind of informal
concepts as used in ConceptNet, annotations may also be
used to denote formal symbols in a logical language.

More formally, we define a model of an object as the
tuple O = (V, S, M, A), where V is a set of integer
coordinates ZxZxZ (voxels), S is the real-world length of
the longest extent of the object in meters, M is the mass of
the object in kilograms and A is a partial relation from the
set of integer coordinates to strings ZxZxZjS. Adjacent
voxels are implicitly joined to each other as a fixed solid.

Note that this representation scheme is only used for
describing objects. It does not describe the geometric space
of a simulation. In fact, it is preferable that space be
modeled as a real continuum rather than voxels. That is,
even though this representation requires that individual
objects within the world are formed from cubes internally
aligned in a 3-dimensional grid, the grids of separate
objects do not need to align. Separate objects may orient
and collide with each other in any direction.

The size parameter allows objects to be modeled at
different scales. A high-rise building might be modeled
simplistically as, for example, eight cubes stacked on top
of each other with a size parameter of 100m. Conversely, a
chair might be modeled more intricately from 200 small
cubes with the total size parameter being 1.2m. Again, both
models may be used simultaneously; they do not require a
homogenous grid in simulation but may be used side-by-
side with different cube sizes in the same simulation.

A 3D Modeling Tool
An advantage of a simple voxel-based representation is
that it lends itself to an extremely simple user interface. I
have designed an interface that allows a user to create a 3D

model by moving a cursor within a 3D space and setting
(or deleting) voxels at the current cursor position. The user
interacts with the system using the keyboard and mouse.
The arrow keys move the cursor in the x-y plane, while the
page-up and page-down keys move the cursor along the z
axis. The insert and delete keys are used to set and delete
(respectively) voxels at the current cursor position. The
mouse can be used to rotate the viewpoint and zoom into
parts of the object to check that the shape of the object is
correct. Annotations are added at the current cursor
location by typing with the keyboard; those annotated
voxels are depicted using a secondary color.

A simple prototype has been programmed using the
Panda3D game engine (Goslin and Mine 2004). Panda3D
is a game engine for Python and C++ that includes a rich
API for creating attractive and efficient 3D graphics, in
addition to offering a built-in physics simulator (called
ODE). Screen-shots of the prototype appear in Figures
1(a)–(c) and Figure 2.

This prototype is designed to be very ‘discoverable’.
During informal usability tests with colleagues in our
research lab, I asked participants to create a model of a
chair. I gave no instructions, except for explaining that
they should experiment with mouse, the arrow keys and the
page-up, page-down, insert and delete keys. A new user

Figure 1. (a) The cursor in the 3D modeling tool. (b) The result after creating four voxels. (c) A simple model of a chair.

Figure 2. The model of a chair: rotated and with some labels.

typically begins by experimenting with the arrow keys
(learning that the keys move the cursor). They then quickly
discover the role of insert and delete. Within a minute, they
have mastered the environment and begin to create a 3D
model of a chair. This ease of use is in stark contrast to the
hours (sometimes days) necessary to gain even basic
competency in a ‘professional’ 3D modeling tool. In fact,
reactions to the prototype were unexpectedly joyful. The
simple interface reduces the barrier to creation and
construction, acting as a playful tool especially for
producing physical objects and other geometric patterns.

Role in Reasoning
The objective of the user-friendly interface and simplified
representation scheme is to make it feasible to construct an
enormous, reusable, large-scale knowledge-base of
physical objects.

Because the knowledge will be collected from untrained
volunteers, the resource will necessarily be informal,
imprecise and contain redundancy. It will contain many
different models of the same object: models at different
levels of detail, with different shapes and with different
labels. However, I do not view this informality as a
weakness but as being of benefit to robust reasoning. For
example, a system that has only one model of a
prototypical chair might conclude that a chair always has
four legs. In contrast, with many models of ‘chair’, the
system would be able to deduce that chairs can have
different numbers of legs and even that legs are a common,
but not essential, property of chairs.

Consider the following knowledge that may be extracted
from 3D models:

• The relative sizes of objects
• Whether and how one object can contain another
• Where objects might attach or connect to each other
• The general shapes and physical similarity of objects
• The spatial relationships of an object and its parts
• Where an object’s ‘affordances’ might be said to be

‘located’ (e.g., the top of a chair is used for sitting)
• Whether an object is likely to be stable if unsupported
• Whether an object may be used for other creative

purposes (e.g., using a chair to change a light-bulb)
Many of these questions can be answered by directly
querying and manipulating the underlying representation.
For example, one might use an Earth Mover’s Distance
metric over the voxels to measure the physical similarity of
two objects. One might find the average position of voxels
to estimate the center of mass.

Problems relating to containment, connection,
attachment, stability and creative uses can be explored by
instantiating the models in a physical simulation and

observing the behavior. For example, one could test the
stability of an unsupported object by instantiating a
simulation and observing whether the simulated object
topples over.

Note, however, that I do not claim that this scheme is
sufficient for commonsense knowledge. No collection of
objects described using this simple scheme will be able to
answer nuanced questions about precise dynamics. Instead,
the collection might be best viewed as a tool for generating
‘first order’ approximations of practical, spatial,
commonsense reasoning problems. Given the difficulties
and time associated with designing sophisticated theories
of commonsense phenomena and situations, it may be the
case that, for most domains of study, this simplified
approximation will be the only approximation for the
foreseeable future.

Conclusion
Sophisticated and deep theories of the commonsense world
are important but, in a practical system, these need to be
augmented with a broad knowledge base of factual data. In
this paper, I have described a minimalistic but elegant
scheme for representing knowledge: a scheme that I
believe is the simplest solution that could be useful. This
scheme is ideal for large-scale, crowd-sourcing of
knowledge necessary for practical commonsense
reasoning. While I have only reported on a prototype
system, the tool will soon be published online and the
models collected will be freely available.

References
Faaborg, A., Daher, W., Lieberman, H. and Espinosa, J. (2005)
‘How to Wreck a Nice Beach You Sing Calm Incense’,
Proceedings of the 2005 International Conference on Intelligent
User Interfaces (IUI-05).
Goslin, M. and Mine, M.R. (2004) ‘The Panda3D graphics
engine’, Computer, vol. 37, iss. 10, pp. 112–114.
Havasi, C., Speer, R. and Alonso, J. (2007) ‘ConceptNet 3: a
flexible, multilingual semantic network for common sense
knowledge’, Proceedings of Recent Advances in Natural
Language Processing (RANLP 07).
Johnston, B. and Williams, M-A. (2007) ‘A Generic Framework
for Approximate Simulation in Commonsense Reasoning
Systems’, Proceedings of the International Symposium on
Logical Formalizations of Commonsense Reasoning 2007, AAAI
Press, Palo Alto, California, pp. 71–76.
Shen, E., Lieberman, H. and Lam, F. (2007) ‘What Am I Gonna
Wear: Scenario-Oriented Recommendation’, Proceedings of the
2007 International Conference on Intelligent User Interfaces (IUI-
07).
Wood, L. (2005) ‘Cycorp: the Cost of Common Sense’,
Technology Review, vol. 108, no. 3, pp. 33–33.

