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Abstract 
Commonsense is a challenge not only for representation and 
reasoning but also for large scale knowledge engineering 
required to capture the breadth of our ‘everyday’ world. One 
approach to knowledge engineering is to ‘outsource’ the 
effort to the public through games that generate structured 
commonsense knowledge from user play. To date, such 
games have focused on symbolic and textual knowledge. 
However, an effective commonsense reasoning system will 
require spatial and physical reasoning capabilities. In this 
paper, I propose a tool for gathering commonsense 
information from ordinary people. It is a user-friendly 3D 
sculpting tool for modeling and annotating models of 
physical objects and spaces. 

 Introduction 
There are many applications of commonsense reasoning 
that involve spatial information: 

• Word sense disambiguation. For example, the 
ambiguity in the sentence ‘the pig is in the pen’ might 
be resolved by comparing the size of a pig to the 
volume inside a ball-point pen and a pigpen.  

• Planning. For example, the problem of planning how 
to transport a sofa depends on knowledge of the size 
of a typical door-frame, the capacity of a car and ways 
of securing the object to a truck.  

• Vision and interpretation. For example, a domestic 
robot that is asked, ‘fetch me the coffee on the table,’ 
will need to know the shape of a table and coffee cup 
to be able to recognize them, will need to know what 
part of a table to look for objects that are said to be 
‘on’ the table and may need to understand the spatial 
associations with coffee and kitchen tables versus a 
table in the bathroom. 
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Unfortunately, such knowledge does not lend itself to 
elegant and self-contained axiomatization. A logical or 
symbolic system that is capable of spatial commonsense 
reasoning requires a huge volume of specific facts to be 
explicitly coded into its knowledge base. These facts might 
be encoded as axioms that, for example, state the typical 
dimensions of a pig, dictate that a table ordinarily has four 
legs attached to the underside of a flat surface and that an 
ordinary sedan is not able to carry a typical sofa inside. 

Even though logical formalizations are well suited to 
capturing the abstract properties of space and naïve 
physics, the breadth of commonsense is such that the 
axiomatic methods of modeling knowledge in logical 
formalisms need to be augmented with techniques for 
large-scale data collection. The potential number of facts 
or axioms is limitless; there are countless simple questions 
about the real world that cannot be answered by pure 
inference from a small kernel of knowledge. They must be 
learnt or taught. The only guard against unanticipated 
queries is a complete formal description of every object in 
the universe of discourse. However, the Cyc project shows 
that direct formalization can be very difficult and 
expensive (Wood 2005). 

The approach used in creating ConceptNet (Havasi, 
Speer and Alonso 2007) is one solution to covering the 
breadth of commonsense. ConceptNet is a network of 
informal semantic knowledge, structured around 21 
relations (ibid.). In ConceptNet, formal precision is 
sacrificed to gain broader coverage. By sacrificing 
precision, knowledge can be collected from the efforts of 
volunteers (rather than skilled engineers) playing specially 
crafted games on the internet. The instances in 
ConceptNet’s relations (such as IsA, MadeOf, UsedFor, 
CapableOf, DesireOf and InstanceOf) correspond to 
imprecise human intuitions rather than a more objective 
truth. For example, in ConceptNet, both tomatoes and 
mushrooms are vegetables, even though some would argue 
that they are fruits and fungi respectively, rather than 



vegetables. Nevertheless, such informal knowledge has 
been demonstrated in useful applications (e.g., (Shen, 
Lieberman and Lam 2007; Faaborg et al. 2005)). It can 
furthermore be combined with formal logics of 
commonsense to, for example, deduce that an agent is 
likely to perform an action (Performs) given that it is 
capable of the action (CapableOf) and desires the outcome 
(DesireOf). 

While ConceptNet is a useful knowledgebase of simple 
relationships between concepts, it lacks spatial knowledge 
apart from the three relations PartOf, HasA, AtLocation 
and LocatedNear. The objective of this paper is, therefore, 
to develop a representation scheme and tools suitable for 
collecting broad commonsense knowledge of the physical 
and spatial world. 

In this paper, I propose a simple homogenous 
representation suitable for capturing a ‘first-order’ 
approximation of rich (but informal) physical knowledge. 
While the representation is relatively informal and lacks 
the expressiveness of first order logic, it serves as a 
practical compromise between having a narrow but highly 
expressive logic and not having any physical knowledge at 
all. In fact, it is intended that the scheme be used alongside 
expressive logics; complementing the depth of a formal 
ontology with the breadth of a large knowledgebase of 
instances.  

I then proceed to describing preliminary work on a user-
friendly tool that enables ordinary people to participate in 
the creation of commonsense knowledge. The objective of 
this tool is to, like ConceptNet, ‘crowd-source’ the 
knowledge engineering process across a huge number of 
small contributors. 

Pragmatic Representations of Objects 
I previously proposed Comirit as a hybrid reasoning 
framework for combining logical knowledge with 
simulations (Johnston and Williams 2007). In Comirit, 
physical objects are modeled using a large mass-spring 
system. The shape and physical properties of objects are 
approximated by a set of point-masses that are connected 
to each other by springs. Thus, physical reasoning 
problems involving ‘forward inference’ from a set of initial 
conditions can be performed by iteratively solving the laws 
of physics over the simulation. 

This technique may be viewed as a polynomial-time 
approximation to an axiomatization of the laws of physics. 
In those reasoning problems where approximate forward 
inference is sufficient, such simulations may entirely 
obviate the need for logical reasoning from principles of 
physics or naïve physics. Furthermore, the representation is 
well suited to creating large knowledge bases: the 

consistent representation allows for standardized tools that 
manipulate the homogenous representation scheme. 

Given this representation scheme, how can large 
knowledge-bases of physical objects be constructed? 
ConceptNet contains over 700,000 symbolic assertions for 
150,000 concepts (Havasi, Speer and Alonso 2007) created 
by user submissions. To match this kind of scale in a 
public repository of commonsense 3D models would be an 
enormous undertaking. A single 3D model can take 
anywhere from a few hours to days to build, so a team of 
100 might require several years to build just 100,000 
models. 

ConceptNet was ‘crowd-sourced’ from volunteers 
contributing knowledge on a webpage and via online 
computer games. If 3D modeling could be packaged into 
an entertaining and intuitive experience, it is not 
unreasonable to imagine 100,000 volunteers contributing a 
single 3D model each. 

A Simplified Representation Scheme 
In building a modeling tool to support hundreds of 
thousands of users and models, it makes sense to ask, 
‘what is the simplest 3D representation scheme that could 
possibly be useful for commonsense reasoning?’ 

Such a representation scheme should, at least, meet these 
conditions: 

• It should be conceptually clear so that users do not 
require extensive training (i.e., the steep learning 
curves associated with existing 3D modeling tools are 
inappropriate) 

• It should be efficiently modeled in popular simulation 
engines, such as those used by computer games (i.e., 
this means that it should be closely related to 
geometric primitives, rather than mass-spring 
systems) 

• It should be efficiently rendered on a users’ display 
• It should be both easy and efficient to manipulate, 

transform and analyze 
• It should, nevertheless, be capable of describing 

useful properties of a wide range of objects 
Given these objectives, I propose a simple scheme based 

on connected cubes. That is, we represent an object by a 
set of voxels. Each voxel is a 3-tuple of integer coordinates 
that corresponds to a cube aligned to a grid in 3D space. 
Associated with a set of voxels is a size parameter and a 
mass parameter. The value of the size parameter is the real 
world length of the maximum extent of the model along 
one of the three coordinate axes (i.e., the maximum of the 
x-length, y-length and z-length). The mass gives the total 
mass of the object. 

In addition to the geometric shape described by voxels, 
there is an associated set of annotations. Each annotation 



relates a voxel to a word or character string. The string is 
intended to denote a concept or symbol, similar to the 
informal concepts of ConceptNet. The annotation may be a 
voxel that is part of the geometric shape or it can be a 
voxel in empty space. For example, one might annotate the 
space in the middle of the bucket with the label “contents”. 
While the annotations are the same kind of informal 
concepts as used in ConceptNet, annotations may also be 
used to denote formal symbols in a logical language. 

More formally, we define a model of an object as the 
tuple O = (V, S, M, A), where V is a set of integer 
coordinates ZxZxZ (voxels), S is the real-world length of 
the longest extent of the object in meters, M is the mass of 
the object in kilograms and A is a partial relation from the 
set of integer coordinates to strings ZxZxZjS. Adjacent 
voxels are implicitly joined to each other as a fixed solid. 

Note that this representation scheme is only used for 
describing objects. It does not describe the geometric space 
of a simulation. In fact, it is preferable that space be 
modeled as a real continuum rather than voxels. That is, 
even though this representation requires that individual 
objects within the world are formed from cubes internally 
aligned in a 3-dimensional grid, the grids of separate 
objects do not need to align. Separate objects may orient 
and collide with each other in any direction. 

The size parameter allows objects to be modeled at 
different scales. A high-rise building might be modeled 
simplistically as, for example, eight cubes stacked on top 
of each other with a size parameter of 100m. Conversely, a 
chair might be modeled more intricately from 200 small 
cubes with the total size parameter being 1.2m. Again, both 
models may be used simultaneously; they do not require a 
homogenous grid in simulation but may be used side-by-
side with different cube sizes in the same simulation. 

A 3D Modeling Tool 
An advantage of a simple voxel-based representation is 
that it lends itself to an extremely simple user interface. I 
have designed an interface that allows a user to create a 3D 

model by moving a cursor within a 3D space and setting 
(or deleting) voxels at the current cursor position. The user 
interacts with the system using the keyboard and mouse. 
The arrow keys move the cursor in the x-y plane, while the 
page-up and page-down keys move the cursor along the z 
axis. The insert and delete keys are used to set and delete 
(respectively) voxels at the current cursor position. The 
mouse can be used to rotate the viewpoint and zoom into 
parts of the object to check that the shape of the object is 
correct. Annotations are added at the current cursor 
location by typing with the keyboard; those annotated 
voxels are depicted using a secondary color. 

A simple prototype has been programmed using the 
Panda3D game engine (Goslin and Mine 2004). Panda3D 
is a game engine for Python and C++ that includes a rich 
API for creating attractive and efficient 3D graphics, in 
addition to offering a built-in physics simulator (called 
ODE). Screen-shots of the prototype appear in Figures 
1(a)–(c) and Figure 2. 

This prototype is designed to be very ‘discoverable’. 
During informal usability tests with colleagues in our 
research lab, I asked participants to create a model of a 
chair. I gave no instructions, except for explaining that 
they should experiment with mouse, the arrow keys and the 
page-up, page-down, insert and delete keys. A new user 

Figure 1. (a) The cursor in the 3D modeling tool. (b) The result after creating four voxels. (c) A simple model of a chair. 

Figure 2. The model of a chair: rotated and with some labels. 



typically begins by experimenting with the arrow keys 
(learning that the keys move the cursor). They then quickly 
discover the role of insert and delete. Within a minute, they 
have mastered the environment and begin to create a 3D 
model of a chair. This ease of use is in stark contrast to the 
hours (sometimes days) necessary to gain even basic 
competency in a ‘professional’ 3D modeling tool. In fact, 
reactions to the prototype were unexpectedly joyful. The 
simple interface reduces the barrier to creation and 
construction, acting as a playful tool especially for 
producing physical objects and other geometric patterns. 

Role in Reasoning 
The objective of the user-friendly interface and simplified 
representation scheme is to make it feasible to construct an 
enormous, reusable, large-scale knowledge-base of 
physical objects. 

Because the knowledge will be collected from untrained 
volunteers, the resource will necessarily be informal, 
imprecise and contain redundancy. It will contain many 
different models of the same object: models at different 
levels of detail, with different shapes and with different 
labels. However, I do not view this informality as a 
weakness but as being of benefit to robust reasoning. For 
example, a system that has only one model of a 
prototypical chair might conclude that a chair always has 
four legs. In contrast, with many models of ‘chair’, the 
system would be able to deduce that chairs can have 
different numbers of legs and even that legs are a common, 
but not essential, property of chairs. 

Consider the following knowledge that may be extracted 
from 3D models: 

• The relative sizes of objects 
• Whether and how one object can contain another 
• Where objects might attach or connect to each other 
• The general shapes and physical similarity of objects 
• The spatial relationships of an object and its parts 
• Where an object’s ‘affordances’ might be said to be 

‘located’ (e.g., the top of a chair is used for sitting) 
• Whether an object is likely to be stable if unsupported 
• Whether an object may be used for other creative 

purposes (e.g., using a chair to change a light-bulb) 
Many of these questions can be answered by directly 
querying and manipulating the underlying representation. 
For example, one might use an Earth Mover’s Distance 
metric over the voxels to measure the physical similarity of 
two objects. One might find the average position of voxels 
to estimate the center of mass. 

Problems relating to containment, connection, 
attachment, stability and creative uses can be explored by 
instantiating the models in a physical simulation and 

observing the behavior. For example, one could test the 
stability of an unsupported object by instantiating a 
simulation and observing whether the simulated object 
topples over. 

Note, however, that I do not claim that this scheme is 
sufficient for commonsense knowledge. No collection of 
objects described using this simple scheme will be able to 
answer nuanced questions about precise dynamics. Instead, 
the collection might be best viewed as a tool for generating 
‘first order’ approximations of practical, spatial, 
commonsense reasoning problems. Given the difficulties 
and time associated with designing sophisticated theories 
of commonsense phenomena and situations, it may be the 
case that, for most domains of study, this simplified 
approximation will be the only approximation for the 
foreseeable future. 

Conclusion 
Sophisticated and deep theories of the commonsense world 
are important but, in a practical system, these need to be 
augmented with a broad knowledge base of factual data. In 
this paper, I have described a minimalistic but elegant 
scheme for representing knowledge: a scheme that I 
believe is the simplest solution that could be useful. This 
scheme is ideal for large-scale, crowd-sourcing of 
knowledge necessary for practical commonsense 
reasoning. While I have only reported on a prototype 
system, the tool will soon be published online and the 
models collected will be freely available. 
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