Understanding Robocup-Soccer Narratives

Hannaneh Hajishirzi and Eyal Amir
University of Illinois at Urbana-Champaign
{hajishir, eyal} @illinois.edu

Abstract

We present an approach to map Robocup-soccer narratives
(in natural language) to a sequence of meaningful events and
use them to answer semantic questions about the narratives.
Our approach takes advantage of an action-centered frame-
work, an inference subroutine, and an iterative learning algo-
rithm. Our framework represents the narrative as a sequence
of sentences and each sentence as a probability distribution
over deterministic events. Our learning algorithm maps sen-
tences to meaningful events without any annotated labeled
data. Instead, it uses a prior knowledge about event descrip-
tions and an inference subroutine to estimate initial training
labels. The algorithm further improves the training labels at
next iterations. In our experiments we demonstrate that with
no labeled data our algorithm achieves higher accuracy com-
pared to the state of the art that uses labeled data.

1 Introduction

Mapping sentences of a narrative to a sequence of meaning-
ful events is an important, but very difficult, problem in Nat-
ural Language Processing (NLP) and linguistics. Finding
such mapping automatically alleviates the need of human
participations in many applications. The examples of those
applications include, but not limited to, commonsense query
answering, help desks, and navigational systems. For exam-
ple, automatic reading comprehension systems can answer
semantic questions about the narrative using this meaningful
representation. The examples of such questions are “Where
is the ball at every time step of the game?”. Current nar-
rative understanding systems cannot answer such questions
because they look for a response that lies in the text.
Recently, there have been some approaches that map nat-
ural language sentences to meaning representations. Most
of these approaches (e.g., (Zettlemoyer & Collins 2009;
Chen, Kim, & Mooney 2010; Kate & Mooney 2007)) use
some sort of annotated data to train a classifier that iden-
tifies meaning representations. Some other approaches
(e.g.,(Branavan et al. 2009; Vogel & Jurafsky 2010; C. Ma-
tuszek & Koscher. 2010)) provide indirect supervision for
the classifier by interacting with a physical dynamic environ-
ment to validate the selected meaning representations. It is
often very hard (sometimes infeasible) to either build human
annotated data or have access to an interactive environment.
In this paper, we introduce an iterative learning algo-
rithm that maps Robocup-soccer narratives to meaningful
events with no annotated labeled data. Instead, we use a

prior knowledge (in terms of few event specifications) that
is much easier to construct compared to annotating every
sentence of the narrative. Our iterative learning approach
achieves higher accuracy than (Chen, Kim, & Mooney 2010)
that uses labeled data. This improvement is possible due
to the representation, the inference subroutine that applies
event specifications to estimate initial labels, and iterative
learning that improves the quality of estimated labels.

We use a powerful representation to model Robocup-
soccer narratives. This representation (extension of prob-
abilistic situation calculus (Reiter 2001)) allows explicit
tracking of the change in the state of the narrative. In
this representation, sentences of the narrative are mapped
to probabilistic transitions which give rise to deterministic
events according to a probability distribution. Current state
of the narrative affects the probability that each event has
occurred. Deterministic events in turn give rise to world
changes that also depend on the current state.

We use an inference subroutine to keep track of the cur-
rent state of the narrative by applying event specifications.
We use this subroutine together with NLP tools to estimate
initial labels for our iterative learning approach. The labels
are initially estimated by finding feasible events (consistent
with the state of the narrative) and has low edit distance with
the verb of the sentence.

Our iterative learning approach computes the score of
choosing an event corresponding to a sentence given the cur-
rent state of the narrative. Our algorithm builds training ex-
amples as triplets of sentence, event, and the current state
from event histories. Event histories are constructed from
sampling events for sentences and applying inference to up-
date the current state. At each iteration, our approach trains
a classifier based on the current training labels which will be
further improved using the current classifier.

We use our framework together with learning and infer-
ence algorithms to analyze Robocup soccer games. We
demonstrate that using prior knowledge about events im-
proves the accuracy of mapping narratives meaningful
events compared to (Chen, Kim, & Mooney 2010). What
is more, we show that this event knowledge alleviates the
need of manually labeled data as we show improvement over
(Chen, Kim, & Mooney 2010) where they use labeled data.

2 Representation

In this section we describe Probabilistic Action Model
(PAM) representation to model relational dynamic domains.

We later use PAM to represent robo-soccer narratives.

PAM is a framework for representing dynamic systems
and consists of two main parts: (1) a prior knowledge in-
cluding a probability distribution over state variables at the
initial time step and commonsense knowledge about spec-
ifications of events (2) a transition model to represent the
dynamics of the system. In PAM the transition model is
represented naturally as a probability distribution over dif-
ferent deterministic events. PAM is also augmented with el-
ements of first-order logic to allow compact representation.
This representation instantly resembles a narrative where a
sentence describes an uncertainty among different meanings
and every meaning identifies a deterministic event that oc-
curs in the domain. More specifically PAM representation is
defined as follows.

Definition 1. A PAM (L, EA, PA, Py) consists of a

e language £ describing the elements of the representation
(Def. 2)

e set of effect axioms EA for deterministic events (Def. 3)

e transition modeled with probabilistic actions PA (Def. 4)

e prior probability Py

Language: The language £ of PAM is almost similar to the
language of predicate logic. The language consists of a set
of constants, variables, predicates (called fluents), and de-
terministic events. In this language every constant and every
variable has a specific type, and every predicate and deter-
ministic event has a schema. Specifically, f(71,...,7) (or
f(T)) is a predicate schema where f is a predicate symbol
and 71, ..., T} are types.

Definition 2. The language £ of a PAM is a tuple £ =

(Ty, I, Itype, V, Vtype, F, DA) consisting of

e aset of types Ty

e aset of constants / and a function /type which maps every
constant to a type Itype : [— Ty

e aset of variables V and a function Vtype : V — Ty

e a set of predicate variable schemas F

e a set of deterministic event schemas DA

The predicates in the language are called fluents as their
truth values change over time. In PAM grounding of a fluent
f (&) is defined as replacing each variable in # with a con-
stant. Accordingly, a world state is defined as a full assign-
ment of {true, false} to all the groundings of all the fluents
in F. However, it is generally the case that, at any particular
time step, the values of many fluents are not known. There-
fore, we introduce the notion of partial states. The state of
the narrative is a conjunction of fluents that are true at a spe-
cific step.

Deterministic Events: In PAM deterministic event specifi-
cations are in the form of effect axioms.

Definition 3. Let da(Z) be a deterministic event schema and
Effect(%) and Precond(Z) be conjunctions of fluent schemas
whose variables appear in . The following represents the
effect axioms for da.

e da(Z) initiates Effect(T).

e da(Z) initiates Effect(Z) when Precond(Z).

The semantics of the above definition is as follows: For
every time step ¢ if Precond holds at time ¢, then the deter-
ministic event da initiates Effect at time ¢ + 1. Here we use
the frame assumption where truth value of a fluent stays the
same unless it is changed by an event.

Probabilistic Transitions: The transition model in PAM is
represented as a probability distribution of choosing deter-
ministic events conditioned on the current state.

Definition 4. Let ¢1(Z), ..., n(ZF) be partial states parti-
tioning the world. The following is the transition model pa:

pa(Z) produces

e dail,... ,da} withpl, ...
e ...

e dal;,... da’ withpl,, ... p% when ¢y (%)

where 7 are arguments of pa, and p’; is the probability of
choosing event daf, in the partition ¢ ; with probability p.

7p’£n when 1/}1 (j)

We use a Robocup-soccer dataset and show how to rep-
resent English narratives of soccer games using PAM rep-
resentation. We consider the robocup-soccer narrative as a
sequence of sentences extracted from the narrative. In fact,
the narrative model Tx = (T, OA) for PAM is a sequence
with length T of sentences OA = (a1, ...,ar) where a; is
the t** sentence. In fact each sentence in the narrative is
mapped to the PAM transition model which is a probability
distribution over deterministic events.

We build PAM representation corresponding to the narra-
tives by defining the language of the PAM followed by man-
ually constructing effect axioms of deterministic events. We
further learn the transition model automatically by using our
iterative learning approach ??.

We outline the PAM language from the event logs of the
games. We define two types feam and player. We instantiate
team to two instances “Purple” and “Pink” and player to 22
instances. Fluents of PAM include different playmodes of
the game such as arOffside, kickOff in the dataset. We add
a new predicate called holding(player) to show that player
holds the ball at a specific time step.

We introduce prior knowledge by manually building ef-
fect axioms for each deterministic event. We augment de-
terministic events DA of PAM with a deterministic “noise”
event called nothing that has no preconditions and no ef-
fects. The reason of adding this noise action is that (1) the
given narrative is not always consecutive and there are some
events missing (2) no meaning representations for a specific
sentence is available in the prior knowledge.

3 Basic Inference by Consistency Checking

In this section we outline the basic inference algorithm that
is a Viterbi-like (Rabiner 1989) dynamic programming ap-
proach that finds the most likely sequence of events corre-
sponding to an English narrative. Finally, the algorithm up-
dates the state of the narrative and checks if the query holds
in the current state of the narrative. Here we assume that the
transition model of PAM is available. In next (Section ??)
we introduce an iterative learning subroutine that automat-
ically computes the transition probability corresponding to
every sentence in the narrative. This probability depends on
the current state of the narrative while learning this proba-
bility is achieved with no labeled data.

In this section we overview the inference algorithm as it
is used as a subroutine in both query answering and the iter-
ative learning algorithms.

The algorithm Inference takes as input the narrative
OA = (a1,...,ar) and the PAM representation with de-
terministic events DA and the transition probability Pa. The

algorithm returns the Viterbi sequence (evq,...,evr) as
an approximation of the most likely event sequence corre-
sponding to the narrative given by the following recurrence
relations.

V1,da = Pa(dalay, so), S1,da = Prog(so,da), Pathy 4, = [da)
Vt,da = Pa(da‘ata St—l) + ‘/t—l,eu + lsf,,l,da
St da = Prog(si—1,da)), Pathy 4 = Pathy_1 .., + [da] e))

where ev = argmax,cpa(Vie1,da)s St—1 = St—1,ev, and
ls,dq 18 a loss function.

Here Vt,da' shows the value of the most likely event se-
quence Path, q, for the first ¢ sentences, Sy_1 4, Shows the
current state of the narrative at time ¢t — 1, . The Inference
algorithm initializes the value of the path with the proba-
bilities of events for the first sentence. Then, at each time
step the algorithm integrates the probability of event da
and the maximum value derived for the step ¢ — 1. If the
preconditions of da is not consistent with the current state
s¢—1 we penalize the value of choosing this event using a
loss function [,,_, 4, Which is a real number between 0 and
1. Current state St 4, is derived by Progressing state s;_1
with event da. The Viterbi path Path, ., updated by keep-
ing a pointer to the previous selected event in the recursive
step. Finally, the most likely event sequence is derived as:
evy = argmax,, . paA(V7,da), ev1.7—1 = Pathga, 4

Progress subroutine Prog(ev,s;—1) takes as input an
event da and the current state of the system s;_; and re-
turns the updated state s; if the preconditions of the event da
is consistent with s;_;. It then updates the current state of
the system by applying the effect axioms of the event da.

This viterbi-like approach does not return the exact most
likely event sequence as it depends on a loss function at ev-
ery step that the event is inconsistent. To return the exact se-
quence, we need to consider all the possible event sequences
of the forest corresponding to the narrative. However, it is
not feasible as the narratives are either too long or have high
branching factor. Only for the 2001 game for the first 100
comments it took about 50 Gig memory. The main of goal
of this paper is not to improve the accuracy of the inference
algorithm. We want to show that an efficient inference al-
gorithm to compute the current state of the narrative, careful
design of representation, and an iterative learning algorithm
achieves us significantly better results compared to the state-
of-the-art.

There have been several works in the literature on
exact query answering about a narrative as a sequence
(a1,...,ar) (e.g., (Baral & Tuan 2002)). The main idea is
to build a forest to maintain all, and only, feasible interpre-
tations of the narrative in an online fashion. However, this
approach is not feasible long narratives with large branching
factor.Sampling possible deterministic events of the narra-
tive (Hajishirzi & Amir 2008) is faster than the exact com-
putation, but it is still too expensive for our problem. The
algorithm approximates the inference by generating samples
among possible deterministic executions of the given narra-
tive.

In this section we introduce our iterative learning ap-
proach learn-inference that computes the transition proba-
bility corresponding to every sentence in the narrative with-
out any annotated labeled data. Instead, our algorithm uses

"Notice that V is not a probability function.

Algorithm 1. Trainlter(Tx, PAM, K)
e Input: training narrative Tx, effect axioms EA, language
PAM.L
1. Repeat until convergence
(@) (evi,as, s:)in..N < HistoryGenerator(Tx, EA, K)
(b) fori:1to N
i. F; FeatureGenerator(evi, a;, 8i, PAM.L)
ii. I; < VoteGenerator(ev;, a;, s;, EA)
(C) W Classiﬁer(ﬁi;luN, li:l:N)

Algorithm 2. Learn-Inference(Train Txy 3, Test Tx,
PAM)

e Input: Train narratives Tx:. 3, Test narrative Tx, PAM

1. W « Train(Tx.3, PAM)

2. PAM.Pa + Test(Tx[1], true)

3. Inference(Txs, PAM)*

“PAM .Pa is updated at every step ¢ of the inference subroutine
using Test(Tx[t], s¢—1).

igure 1: Learn-Inference algorithm to compute the transition
model corresponding to each sentence in the test narrative.

a prior knowledge about event effect axioms with an in-
ference subroutine to update the current state of the narra-
tive. The algorithm first trains a classifier using an itera-
tive EM like learning algorithm (similar to EM-like Multi-
ple Instance Learning (Babenko, Yang, & Belongie 2009)).
This algorithm trains a classifier based on a set of initial ap-
proximate labels derived by applying an inference algorithm
given the event specifications. The algorithm further iterates
to improve training labels by applying the learned classifier
over training data. Finally, the algorithm applies the learned
classifier over the narrative to compute the transition proba-
bility assigned to every sentence.

Training: IterTrain algorithm takes as input a robo-soccer
narrative with sentences (a; . .. ar), the language of the cor-
responding PAM, and the effect axioms for deterministic
events. At each iteration, the algorithm first generates train-
ing examples of the form e; = (day, at, s¢—1) using history
generator. It then assigns features to each example using
feature generator. Then, it uses vote generator to assign
approximate labels to each example e;. The votes are ini-
tialized using event axioms and inference subroutine. Fi-
nally, the classifier generates a weight vector according to
the current training examples and their votes. These steps
are iterated until convergence. In next iterations the votes
are improved using the classifier at that time by using score
generator to computes the score of the examples. Here we
describe each modules in details.

Testing The input to test module is a sentence s with
the current state of the narrative st. In turn it returns the
probability of different events corresponding to the sen-
tence. The algorithm first uses the arguments of the sen-
tence and grounds all the possible event types ev; associated
with the sentence. It then normalizes the scores of examples
(ev;,s,st).

Finally, Learn-inference algorithm applies inference sub-
routine to the probabilities derived from the testing mod-
ule. Notice that the current states are updated through the
infernce subroutine after choosing the best event at every
time step.

4 Experiments

We use Robocup dataset from (Chen, Kim, & Mooney
2010). This dataset is based on four championship games
of Robocup simulation league from 2001 to 2004. We
generate the PAM representation corresponding to this
dataset according to Section 2 where we manually build
effect axioms for deterministic events. = We examine
our algorithms on this dataset to evaluate the effect of
adding prior knowledge (event specifications) to find the
most likely event sequence corresponding to the narrative.
We compare our algorithm with different baselines and
wasper-gen-igsl-meteor(WGIM) which is the most accurate
algorithm from (Chen, Kim, & Mooney 2010) which uses
annotated labeled data from even logs of the games in the
form of a mapping between sentence and the events that ap-
pear in the event log of the game within the 5 timesteps that
the comment is recorded.

We first compute the performance of algorithms to find

the most likely event sequence corresponding to a narrative.
For evaluation purposes only, we use manually constructed
gold-standard labels from (Chen and Mooney) where each
sentence is matched to the correct event. We evaluate the
accuracy of resulting event sequence by computing the pro-
portion of the events that have been correctly assigned to the
sentences. We conducted our experiments in two settings of
with labeled data and without labeled data.
Without labelled data: We apply learning-inference to
map a soccer narrative to an event sequence and show that
the resulting event sequence is more accurate compared to
baselines and (Chen and Mooney) where they use annotated
data. With respect to our learning algorithm, we train on
three Robocup games (e.g., 2001, 2002, and 2003) and test
on the last game (e.g., 2004). We then run Learn-inference
and compute the weight vector. The average number of
training examples per iteration is around 700. Notice that
the votes are initialized using event specifications and are
improved in each iteration.

We compare our iterative learning algorithm
(learn-inference) with no annotated data by different
baselines and WGIM (Chen, Kim, & Mooney 2010) that
uses labeled data. The first baseline is (inference) where
the possible events for every sentence are among the ones
that have low edit distance with a word in the sentence.
The second baseline (Entity) which selects the events cor-
responding to a sentence if they have matching number of
arguments. The third baseline (Entity-inference) combines
inference subroutine inference and Entity.

Table ?? shows the comparison with the gold-standard la-
bels for finding the best event sequence. The results demon-
strate that our learn-inference algorithm has higher accuracy
compared to baseline algorithms with no labeled data. What
is more, our results show improvement over WGIM which
uses labeled data. These results validate our intuition that
prior knowledge (in terms of event specifications) gives us
enough knowledge to forgo the expensive manual data an-
notation in supervised learning approaches.

With labelled data: Here we show that if we augment Chen
and Mooney’s approach with knowledge abouft events we
significantly improve their accuracy. For this experiment,
we apply inference where transition model is derived from
(Chen and Mooney’s) approach. Table 1 shows that by ap-
plying inference and keeping two consecutive states consis-

Approach [2001 [2002]| 2003 [[2004 || Avg.

Prior knowledge (no annotated data)

Learn-Inference .739 647 .867 .653 728
Inference .688 464 .640 454 573
Entity .625 564 718 720 .648
Entity-Inference .639 ST77 733 708 .656

Annotated labeled data

(Chen,Mooney)-inference | .767 721 .638 798 734

(Chen, Mooney) 121 .664 || .683 746 703

Table I: (fop) Comparing our approach learn-inference with other
approaches to find the most likely event sequence corresponding to
Robocup narratives.

tent improves the results of (?) to find the most likely event
sequence. Notice that they do not check if the selected event
is consistent with the rest of the sequence.

5 Conclusions and Future Work

In this paper we introduce an approach to map Robocup-
soccer narratives to sequences of meaningful events without
anny annotated labeled data. In this approach we alleviate
the need of labeled data and automatically generate labels
for training examples using prior knowledge about events
together with the careful design of representation and an in-
ference algorithm. We further use an iterative learning ap-
proach and improve the accuracy of labels. We show that
this approach improves the state-of-the-art which uses la-
beled data. Our approach works well when the narrative is
given in a temporal form (like reports, instructions, and sto-
ries) where the state changes over time. A very important
application of our work is inferring or predicting missing
events in the narrative. We can apply the inference algorithm
and find the missed sequence of events when two consecu-
tive sentences are inconsistent.

References

Babenko, B.; Yang, M.-H.; and Belongie, S. 2009. Visual
tracking with online multiple instance learning. In CVPR.

Baral, C., and Tuan, L. 2002. Reasoning about actions in
a probabilistic setting. In AAAL

Branavan, S.; Chen, H.; Zettlemoyer, L.; and Barzilay, R.
2009. Reinforcement learning for mapping instructions to
actions. In ACL-IJCNLP, 82-90.

C. Matuszek, D. F., and Koscher., K. 2010. Following
directions using statistical machine translation. In HRI.
Chen, D.; Kim, J.; and Mooney, R. 2010. Training a multi-
lingual sportscaster: Using perceptual context to learn lan-
guage. JAIR 37:397-435.

Hajishirzi, H., and Amir, E. 2008. Sampling first order
logical particles. In UAL

Kate, R. J., and Mooney, R. J. 2007. Learning language
semantics from ambiguous supervision. In AAAI, §895-900.
Rabiner, L. R. 1989. A tutorial on HMM and selected
applications in speech recognition. IEEE 77(2).

Reiter, R. 2001. Knowledge In Action: Logical Foun-
dations for Describing and Implementing Dynamical Sys-
tems. MIT Press.

Vogel, A., and Jurafsky, D. 2010. Learning to follow navi-
gational directions. In ACL.

Zettlemoyer, L., and Collins, M. 2009. Learning context-
dependent mappings from sentences to logical forms. In
ACL-1JCNLP, 976-984.

