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Abstract. Preference-based reasoning is a form of commonsense reasoning that
makes many problems easier to express and sometimes more likely to have a
solution. In this paper, we present an approach to introducing preferences in the
weight constraint construct, which is a very useful programming construct widely
adopted in Answer Set Programming (ASP). We show, mainly by means of exam-
ples, the usefulness of the proposed extension, and we outline how to accordingly
extend the ASP semantics.

1 Introduction

Preference is deeply related to a subject’s personal view of the world, and it drives
the actions that we take in it. Preference is subjective, but in practice we influence
each others preferences all the time by making evaluative statements, uttering requests,
commands, and statements of facts that have an impact either on the possibility of per-
forming actions or on the objectives that one intends to pursue. Preference has been
studied in many disciplines, especially in philosophy and social sciences, but also in
psychology, economics (especially when the need arises of formalizing some form of
rational mental process that human beings activate during decision making, possibly in
presence of uncertain knowledge), and, last but not least, in logic.

The studies of the processes that support the construction or the elicitation of pref-
erences have historically deep roots. In logic, [21] initiated a line of research that was
subsequently systematized in [42] which is usually taken to be the seminal work in
preference logic. This line of research continues nowadays: the works of [40] and [29],
for instance, develop new modal preference logics that improve over [21] in several
directions. For other studies about preference the reader may refer, e.g. among many,
to [22, 27, 39, 7, 18] and to the references therein.

Many forms of commonsense reasoning rely more or less explicitly upon some form
of preferences. In fact, in contrast to expert knowledge, which is usually explicit, most
commonsense knowledge is implicit and one of the issues in knowledge representation
is making this knowledge explicit. Thus, being able to express and use preferences in
a formal system constitutes a significant step in this direction. Intuitively, it simulates
a skill that every person takes for granted. From the point of view of knowledge repre-
sentation, many problems are more naturally represented by flexible rather than by hard
descriptions. Practically, many problems would not even be solvable if one would stick
firmly on all requirements.



Not surprisingly, several formalisms and approaches to deal with preferences and
uncertainty have been proposed in Artificial Intelligence (AI), such as CP-nets and pref-
erence logics (see [6, 12, 22, 7, 18, 25, 5], to mention a few). Explicit preferences for
actions in rules have been studied in AI. As a notable example we mention the SOAR
architecture [37].

Preferences handling in computational logic has been extensively studied too. The
reader may refer, e.g., to [17, 10] for recent overviews and discussion of many existing
approaches to preferences. Many of these approaches have been defined in the context
of Answer Set Programming (ASP for short) [20, 28, 30], a relatively recent paradigm
of logic programming that has been successfully applied to many forms of knowledge
representation and commonsense reasoning (cf., among others, [4, 26, 38, 19] and the
references therein).

In fact, ASP has the peculiarity that an ASP program may have none, one or several
answer sets. These answer sets can be interpreted in various possible ways. If the pro-
gram formalizes a search problem, e.g., a colorability problem or a path finding prob-
lem for graphs, then the answer sets represents the possible solutions to the problem,
namely, in the examples, the possible colorings or the existing paths for given graph.
In knowledge representation, an ASP program may represent a formal definition of the
known features of a situation/world of interest. In this case, the answer sets represent the
possible consistent states of this world, that can be several whenever the formalization
involves some kind of uncertainty. Also, and ASP program can be seen as the formal-
ization of the knowledge and beliefs of a rational agent about a situation/world, and the
answer sets represent the possible belief states of such an agent, that can be several if
either uncertainty or alternative possible choices are involved in the description [11].
Such an agent can exploit an ASP module for several purposes, such as answering
questions, building plans, explaining observations, making choices, etc. For knowledge
representation tasks, preferences may play a relevant role. For instance, the motivating
example discussed in [8] concerns scheduling problems to be solved according to both
preferences and priorities.

In [10] it is observed that “. . . commonsense reasoning [is] based on our inherent
preference to assume that things, given what we know, are normal or as expected. This
assumption allows us to form preferred belief sets, base our reasoning exclusively upon
them, and ignore all other belief sets that are consistent with our incomplete knowledge
but represent situations that are abnormal or rare”. More generally, expressing prefer-
ences can be viewed as an indirect way of expressing preferences on belief sets in terms
of the elements these belief sets contain. One may also want to represent conditional
preferences so that beliefs can be accepted based on other beliefs already accepted or
rejected. Preferences in ASP may be employed to select the “most preferred” answer
sets, considering that this however implies an increase in computational complexity. Or
also one may introduce programming constructs that influence the construction of an-
swer sets by including the best preferred available conclusions. This is the stance that
we take in this paper, where of course the two points of view can be seen as comple-
mentary rather than exclusive.

In recent work [15, 14, 16] we have proposed RASP, an extension to ASP where
complex forms of preferences can be flexibly expressed. In that work we have consid-
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ered plain ASP. In this paper, we intend to introduce preferences into ASP extended
with weight constraints [31, 34]. A weight constraint allows one to include in the an-
swer sets of given program an arbitrary (bounded, but variable) number of the literals
indicated in the constraint itself, according to weights. Weight constraints have proved
to be a very useful programming tool in many applications such as planning and config-
uration, and they are nowadays adopted (in some form) by most ASP inference engines
(usually called “ASP solvers” [2]).

In this paper, we propose to enrich weight constraints by means of RASP-like pref-
erences. For simplicity we consider the particular case of cardinality constraints, which
are however very widely used, considering that the extension to general weight con-
straints is easily feasible. The advantage of introducing RASP-like preferences rather
than considering one of the competing approaches is their locality. In fact, in RASP
one may express preferences which are local to a single rule or even to a single literal.
Contrasting preferences can be freely expressed in different contexts, as in our view
preferences may vary with changing circumstances. Instead, most of the various forms
of preferences that have been introduced in ASP (see [17] and [41] for a comparison
of these approaches) are based on establishing priorities/preferences among rules or
preferences among atoms which are anyway globally valid in given program (for a dis-
cussion and a comparison of RASP with different approaches to preferences in ASP
and logic programming the reader may refer to [14]). A weight constraint represents a
local context where RASP-like preferences find a natural application.

The rest of the paper is organized as follows. In Section 2 we briefly illustrate weight
constraints by means of examples. In Section 3 we summarize the form of preferences
as introduced in RASP and their motivations in relation to some relevant literature. In
Section 4 we illustrate our proposal of application of these preferences, in ASP, within
weight constraints. In Section 5 we show how the semantics for ASP with weight con-
straints proposed in [31, 34] can be extended so as to encompass preferences, without
affecting complexity: this is in our view one of the advantages of our approach. Finally,
we conclude in Section 6.

2 Cardinality Constraints in ASP

Cardinality constraints are a special case of weight constraints (both are discussed
in [31, 34], where their semantics is also presented). Though the computational com-
plexity of ASP with weight constraints remains the same, the modeling power of the
extended language is higher, as proved by the wide application of this construct (see,
e.g., [35]). A Weight Constraint is of the form:

l ≤ {a1 = wa1 , . . . , an = wan , not b1 = wb1 , . . . , not bm = wbm} ≤ u

where the ais and bis are atoms. Each literal in a constraint has an associated weight,
i.e., the weight of each ai is wai and the weight of each not bj is wbj The numbers l
and u give, respectively, the lower and upper bounds of the constraint. The weights and
bounds are real numbers. Intuitively, a weight constraint is satisfied by a set of atoms S
if the sum of weights of those literals occurring in the constraint that are satisfied by S
is between l and u. Either of the bounds can also be omitted, in which case it is taken
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to be not relevant. The intended meaning is that an answer set is allowed to include a
subset of the atoms occurring in the constraint so that the corresponding sum of weights
results in the interval [l, u], where the weight of a negative literal not bj is counted only
if bj is not in the answer set.

Plain literals can be seen as a special case of weight constraint, thus a program rule
(called weight constraint rule) will have the form

C0 ← C1, . . . , Cn.

where the Cis are weight constraints. As mentioned, the extra-expressivity is obtained
without increasing complexity of ASP. In fact, as proved in [31, 34], deciding whether
a program composed of a set of ground weight constraint rules has an answer set is still
NP-complete, and computing an answer set is still FNP-complete.

Weight constraints have become in time a very important and widely used program-
ming tool in ASP, especially in the formulation where all weights are equal to one.
Weight constraints in this special form are called Cardinality Constraints, for which the
following shorthand form is provided:

l {a1, . . . , an, not b1, . . . , not bm}u

In order to be able to compactly write down sets of literals for weight constraints,
[31, 34] introduce a notion of a conditional literal of the form l : d where l is a literal
and the conditional part d is a domain predicate3. A conditional literal corresponds to
the sequence of all the instances of the literal l obtained by making a substitution to
l : d such that for the resulting l′ : d′, d′ is in the unique answer set of the domain
part of the program. This allows programmers to write, in domain-restricted programs,
weight and cardinality constraints involving variables.

Below we illustrate this general form of cardinality constraints by means of an ex-
ample (for a full and formal definition the reader should refer to the above-mentioned
references). Assume that you wish to state that a meal is composed of at least two and
at most three courses. This may be expressed by the following cardinality constraint.

2{in menu(X,C) : course(C)}3← meal(X).

Assume now that the background knowledge base is the following.

meal(lunch). course(pasta).
meal(dinner). course(meat).

course(cake).
course(fruit).

The above constraint should be seen as a shorthand for what follows, where every pos-
sible value for variable C is listed (and thus the “domain predicate” course becomes

3 The subset of given program defining domain predicates consists of domain rules, syntactically
restricted so as to admit a unique answer set that should be relatively efficiently computable.
All the other rules in the program are required by most answer set solvers to be domain-
restricted in the sense that every variable in a rule must appear in a domain predicate which
occurs positively in the body of the rule.
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irrelevant), so as to make explicit which are the possible choices.

2{in menu(X, pasta), in menu(X,meat),
in menu(X, cake), in menu(X, fruit)}3← meal(X).

In turn, in the ground version of the program, which is the one that is processed by the
solvers, we will have the two instances (simplified because of the truth of meal(lunch)
and meal(dinner) in the knowledge base shown earlier):

2{in menu(lunch, pasta), in menu(lunch,meat),
in menu(lunch, cake), in menu(lunch, fruit)}3.

and
2{in menu(dinner, pasta), in menu(dinner,meat),
in menu(dinner, cake), in menu(dinner, fruit)}3.

Therefore, there will be different answer sets where one is the subset of another (which
is not possible in traditional answer sets, which are selected among the models in clas-
sical sense) in that they include a different number of atoms.

Notice that the grounding of a given constraint may change according to the under-
lying domain. Assume in fact to have this knowledge base:

meal(lunch). course(pasta)← not coeliac.
meal(dinner). course(meat).

course(cake).
coeliac. course(fruit).

The fact coeliac excludes pasta form the domain, and thus the grounding becomes:

2{in menu(lunch,meat), in menu(lunch, cake), in menu(lunch, fruit)}3.
2{in menu(dinner,meat), in menu(dinner, cake), in menu(dinner, fruit)}3.

3 Preferences in RASP

RASP, defined in [15], is an extension to the ASP framework that allows for the speci-
fication of various kinds of non-trivial preferences. RASP preferences follow the quite
intuitive principles first formalized in [42], and illustrated at length, e.g., in [40]. The
first two principles state that any preference relation is asymmetric and transitive. For
simplicity we stick to strict preferences, i.e., if in a certain context one prefers φ to ψ,
then in the same context one cannot also prefer ψ to φ. An advancement of our approach
over others is that preferences, as illustrated below, have a local flavor. I.e., a preference
holds in the context of the rule where it is defined, where different (even contrasting)
preferences can be expressed (and simultaneously hold) in different contexts. The third
principle states that preferring φ to ψ means that a state of affairs where φ ∧ ¬ψ holds
is preferred to a state of affairs where ψ ∧¬φ holds. The fourth principle states that if I
prefer ψ to (φ ∨ ζ) then I will prefer ψ to φ and ψ to ζ. Finally, the last principle states
that a change in the world might influence the preference order between two states of
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affairs, but if all conditions stay constant in the world (“ceteris paribus”), then so does
the preference order.

We propose an example in order to illustrate the approach, and then the formal
definitions follow. The RASP program below defines a recipe for a dessert. The writ-
ing icecream > zabaglione is called a p-list (preference list) and states that with the
given ingredients one might obtain either ice-cream or zabaglione, but the former is
preferred. This is, in the terminology of [42], an “intrinsic preference”, i.e., a preference
without a specific reason. In preparing the dessert, one might employ either skim-milk
or whole milk. The cp-list skimmilk > wholemilk pref when diet states that, if on a
diet, the former is preferred. Finally, to spice the dessert, one would choose, by the p-
set {chocolate,nuts, coconut | less caloric}, the less caloric among chocolate, nuts,
and coconut. These are instead instances of “extrinsic preferences”, i.e., preferences
which come with some kind of “reason”, or “justification”. Notice that, in RASP, ex-
trinsic preferences may change even non-monotonically as the knowledge base evolves
in time, as the justification can be any conjunction of literals.

icecream > zabaglione← egg, sugar,
(skimmilk > wholemilk pref when diet),
{chocolate, nuts, coconut | less caloric}.

less caloric(X,Y ) ← calory(X,A), calory(Y,B), A < B.
calory(nuts, 2).
calory(coconut, 3).
calory(X,Y ) ← ...

In full RASP, quantities for ingredients and products are allowed to be specified, and
the peculiarity of RASP is that resources in the body of rules are actually consumed
and thus are no longer available (unless there is a reminder) and instead resources in
the head are produced. However, in this paper we neglect the aspects of RASP related
to resources in order to concentrate on preferences. The constructs seen in the example
are defined below.

Definition 1. Let s1, . . . , sk be k > 0 either distinct constants or distinct atoms. Then
a basic preference-list (p-list, for short) is a writing of the form s1> · · ·>sk. Each
component si has degree of preference i in the p-list.

It is often the case that a preference should be applied only when some precondition
is satisfied. To model situations of such kind, we introduce conditional p-lists.

Definition 2. A conditional p-list (cp-list, for short) is a writing of the following form:

(r pref when L1, . . . , Ln),

where r = s1> · · ·>sk is a p-list and L1, . . . , Ln are literals.

Intuitively, a cp-list (r pref when L1, . . . , Ln) specifies that if all L1, . . . , Ln are
satisfied, then the choice among the sis occurring in r is ruled by the preference ex-
pressed through r. Otherwise, if any of the Li is not satisfied, then no preference is
expressed.
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In general, there might be cases in which useful (conditional) preferences are not
expressible as a linear order on a set of alternatives. This may originate from lack of ade-
quate knowledge or expertise in modeling a piece of knowledge, or from incapability to
completely describe total comparative relations, in presence of uncertainty. Moreover,
preferences might depend on specific contextual conditions that are not foreseeable in
advance.

P-sets are a generalization of p-lists that allows one to use any binary relation (not
necessarily a partial order) in expressing (collections of alternative) p-lists.

Definition 3. Let q1, . . . , qk be k > 0 atoms and let pred be a binary program predi-
cate. A p-set is of the form

{q1, . . . , qk | pred}.

The program predicate pred is supposed to be defined elsewhere in the program where
the p-set occurs.

The intuitive semantics of a p-set can be grasped by considering a particular exten-
sion for the predicate pred (namely, a set of pairs 〈a, b〉 assumed to be true in a certain
situation, i.e., a certain model of the program). Let X be the set of atoms {q1, . . . , qk}.
Consider the binary relation R ⊆ X2 obtained by restricting to X the extension of
pred . R is interpreted as a preference relation over X: namely, for any qi, qj ∈ X the
fact that 〈qi, qj〉 ∈ R models a preference of qi on qj . The case of p-lists is a particular
case of p-sets, obtained when R describes a total order.

As mentioned, R does not need to be a partial order, e.g., for instance, it may imply
cycles. In such cases, those resources that belong to the same cycle in R are considered
equally preferable. On the other hand, R might be a partial relation. So, there might
exist elements of X that are incomparable.

Because of the presence of incomparable resources and equivalent resources, R can
be seen as a representation of a collection of p-lists, one for each possible total order
on X compatible with R. In particular, in case of equally preferable options, a non-
deterministic choice is made. Instead, in case of incomparable options one among the
possible total orderings of these options is arbitrarily selected.

Compound preferences are allowed in RASP. For lack of space we do not report the
full definition, however p-lists (and cp-lists) are generalized so that preferences can be
expressed among sets of objects, instead of simple options.

4 Preferences in cardinality constraints

It might be useful to enhance the modeling power of cardinality constraints by exploit-
ing complex preferences such as those that can be expressed in RASP. In the example
below, we reconsider menus and courses to state by means of a p-list that pasta is pre-
ferred over meat.

2{in menu(X,C) : course(C) | in menu(X, pasta) > in menu(X,meat)}3
← meal(X).

where constants occurring in the p-list are among the possible values of variable C, i.e.,
are elements of the domain of course (cf., the knowledge base shown in Section 2).
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Notice that we do not need to express preferences over all possible values of C (even
though this is possible). In the example, we state that we prefer to include pasta rather
than meat, and we are indifferent about the third course. Preference is “soft” in the sense
that pasta will be chosen if available, otherwise meat will be selected, again if available,
otherwise some other course will be selected anyway.

Below we extend our example by employing the pref when form of conditional
preference, i.e., a cp-list. precisely, we state that in summer we prefer fruit over cake.

2{in menu(X,C) : course(C) | in menu(X, fruit) > in menu(X, cake)
pref when summer}3← meal(X).

Finally, we may employ p-sets to state that we prefer the less caloric courses.

2{in menu(X,C) : course(C) | less caloric[X]}3← meal(X).

Notice that less caloric is, according to Definition 3, a binary predicate. The notation
less caloric[X ] means that the comparison is on couples of distinct instances of vari-
able X . This specification is necessary as different domain predicates defined over dif-
ferent variables may occur in constraints: this requires to indicate which variable must
be considered for defining a p-set. Moreover, as Def. 4, to be seen, specifies, multiple
preference are allowed in a constrait. Here, the p-set actually occurring (implicitly) in
the constraint is

{pasta,meat, fruit, cake : less caloric}

i.e., the p-set is defined over the domain of the domain predicate course (cf., Def. 3).
We call this new kind of cardinality constraints p-constraints. P-constraints may

occur in the head of program rules.
As p-lists can be defined both on constants and atoms, we can extend our example

as follows, where, for instance, Italian food is preferred to Chinese food. In general,
for expressing preferences we may employ any variable occurring in the rule where the
constraint appears.

2{in menu(X,C) : course(C) : italian(C) > chinese(C)}3← meal(X).

The general form of non-ground p-constraints is the following

Definition 4. A p-constraint is of the form:

l{a1, . . . , an, . . . , not b1, . . . , not bm : D | Cp}u

where the ais and bjs are atoms, D is a set of atoms (concerning domain predicates),
andCp is a collection of preference specifications possibly including p-lists, cp-lists and
binary predicates defining p-sets. Each two preference specifications in Cp are defined
on distinct variables.

Notice that the purpose of the set of atoms D consists in defining the domains of the
variables occurring in the ais and bjs, as happens for the standard definition of weight
constraints [31, 34].
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In our extended ASP language, a program rule has the form:

C0 ← C1, . . . , Cn.

where C0 is a p-constraint and the Cis are (following [31, 34]) weight constraints. As
a special case, each of the Cs can be a plain literal. Let a preference-program (for short
p-program, or simply program) Π be a set of program rules. Notice that preferences
may occur only in the heads of rules, i.e., preferences might influence what should be
derived from a rule.

In future work, we intend to overcome the limitation of preference specifications in
Cp to be disjoint. We intend to admit interacting preferences, and even preferences (or,
better, priorities) among preferences. As a first step, we intend to allow p-lists and cp-
lists to be defined over p-sets. For instance, referring to the above example of preferring
less caloric courses, an extension would be to allow one to prefer less caloric courses in
the first place, the best in quality in the second place, and the less expensive in the third
place. I.e., we would allow expressions such as:

less caloric[X ] > better quality [X ] > less expensive[X ]

5 Semantics

In this section, we introduce an extension to the semantics of weight constraints as
specified in [34], so as to accommodate p-constraints. We implicitly consider the ground
version of given program Π .

By adapting to weight constraints the approach developed for RASP in [14, 16],
we introduce a function aimed at encoding the possible orderings on domain elements,
according to the preferences expressed through p-constraints. The key point of the se-
mantic modification that we propose is exactly to exploit such a function to reorder the
atoms occurring in the p-constraints of Π . Then a (candidate) answer set is accepted
only if it models the most preferred atoms.

We need the following preliminary definitions. Given a collection S of non-empty
sets, a choice function c(·) for S is a function having S as domain and such that for
each s in S, c(s) is an element of s. In other words, c(·) chooses exactly one element
from each set in S.

Let p be a binary predicate symbol p and I a set of ground atoms. Consider all
the atoms of the form p(a, b) in I . Let I| p denote the transitive closure of the set
{p(a, b) | p(a, b) ∈ I}. Namely, I| p is the smallest set such that for all a, b, c it holds
that

(
p(a, b) ∈ I ∨ (p(a, c) ∈ I| p ∧ p(c, b) ∈ I| p)

)
→ p(a, b) ∈ I| p.

A given answer set might satisfy one or more of the atoms occurring in a p-list
(resp., cp-list, p-set). Each atom q occurring in such a p-list has a degree of preference
i associated with. We introduce a function ch in order to represent each pair 〈q, i〉,
occurring in a p-list (resp., cp-list, p-set) of a p-constraint. In particular, for the case of
p-lists we put

ch(q1> · · ·>qk, I) =
{
{〈q1, 1〉, . . . , 〈qk, k〉}

}
.
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Due to the presence of the preconditions, the representation of cp-lists is parameterized
by a set I of p-atoms. Let r = q1> · · ·>qk pref when L1, . . . , Ln. We put:

ch(r, I)=

{
ch(q1> · · ·>qk, ∅) if I satisfies L1, . . . , Ln{

{〈q1, i1〉, . . . , 〈qk, ik〉} | {i1, . . . , ik}={1, . . . , k}
}

otherwise

A p-set ps = {q1, . . . , qk | p} represents a collection of alternative p-lists. Each of them
is potentially exploitable in a given answer set. Given a set I of ground atoms, let us
denote the set of p-lists represented by ps as follows:

PLists(ps, I) =
{
qi1> · · ·>qin | 〈1, . . . , n〉 is a maximal prefix of 〈1, . . . , k〉
such that ∀ j, h (j < h→ p(qih , qij ) /∈ I| p)

}
Then, we define ch(ps, I) =

⋃
pl∈PLists(ps,I) ch(pl, I). The definition of ch is then

extended to rules by putting: ch(γ, I) = {ch(`, I) | ` in the head of γ}.
Finally, we associate to each rule γ, the set R(γ, I) of sets. Each X ∈ R(γ, I)

is a collection of sets, each one having the form {〈q1, 1〉, . . . , 〈qk, k〉}, where qi is an
atom and i is a degree of preference. Given such an X , we say that each q such that
〈q, 1〉 ∈ x for some x ∈ X is a most preferred element for X . Note that, each of the
sets {〈q1, 1〉, . . . , 〈qk, k〉} belonging to X encodes an ordering (i.e., a preference) on
the atoms of one of the pγ p-lists (resp., cp-lists, p-sets) occurring in γ. (Hence, for a
fixed rule γ, each of the sets X inR(γ, I) has cardinality equals to pγ .)

R(γ, I) =
{
{c(s) | s in ch(γ, I)} | for c choice function for ch(γ, I).

}
where c ranges on all possible choice functions for ch(γ).

Then, a candidate answer set S is actually an answer set if it chooses from each
ground p-constraint C of the form

l{g1, . . . , gn, . . . , not h1, . . . , not hm}u

that occurs in the head of a rule γ, the most preferred elements (whatever their number
is) according to some X ∈ R(γ, S). More formally:

Definition 5. A set of atoms S is an answer set for program Π if the following condi-
tions hold.

– S is an answer set of Π according to Definitions 2.7 and 2.8 in [34].
– For every p-constraint C, head of a rule γ ∈ Π , S includes all the most preferred

elements of C, w.r.t. at least one of the X ∈ R(γ, S).

Notice that we do not have to consider interaction among different rules: our prefer-
ences are in fact local to the p-constraint where they occur. Different p-constraints can
be defined over different, even contrasting, preferences.

It is easy to get convinced that function ch can be computed in polynomial time.
Therefore obtain the following results, that guarantee that the further modeling power
that we offer implies no computational expense.

Theorem 1. Deciding whether a ground preference-program P has answer sets is NP-
complete.
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Theorem 2. Deciding that a set of atoms is an answer set of a ground preference-
program P is NP-complete.

If one would now like to choose the “best preferred” answer sets, a preference cri-
terion should be provided to compare answer sets. Such a criterion should impose an
order on the collection of answer sets by reflecting the preference degrees in the p-lists.
In a sense, any criterion should aggregate/combine all “local” partial orders to obtain a
global one. Fundamental techniques for combining preferences (seen as generic binary
relations) can be found for instance in [1] (see also, among many, [32, 23, 24, 33], and
the references therein). Regarding combination of preferences in Logic Programming,
criteria are also given, for instance, in [3, 9, 8, 36]. However, the complexity of finding
the best preferred answer sets increases according to the selected criterion (see [14] for
a discussion).

6 Concluding Remarks

In this paper we have presented an approach to expressing preferences in ASP
cardinality constraints. Work is under way for implementing the proposed exten-
sion within our RASP implementation Raspberry (http://www.dmi.unipg.it/
formis/raspberry/). The implementation will allow us to experiment the actual
usefulness of the approach in practical problems.

Future work includes: the introduction of preferences among sets of options; the
extension of preference treatment to the general form of weight constraints.

The main point however is the full integration of weight constraints and other forms
of aggregates with RASP, i.e., the introduction of resource usage in p-constraints and
in their future evolutions. In fact, as mentioned, weight constraints have proved useful
in many applications, among which configuration. RASP is very promising in this di-
rection, as one may specify not only the qualitative aspects of processes, but also the
quantitative aspects that are in many cases of some or great importance. Preferences
are often related to resources, as an agent may prefer to consume (or, more generally,
to “invest”) some resources rather than others, and may also have preferences about
what one should try to obtain with the available resources. Consumption or produc-
tion of some resource may have a relevance, that can be expressed by the weights in
weight constraint. This kind of extended formalism can find suitable applications in the
realm in bio-informatics, where reactions involve quantities, weights and byproducts,
and may happen according to complex preferences. Exploring this field is an exciting
perspective of our work.

Also, though a full modal logic is at present beyond our reach, in [13] we have
introduced a (limited) form of reasoning about possibility and necessity by means of
ASP modules. We mean to extend this approach to reasoning about preferred worlds.
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[34] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model

semantics. Artificial Intelligence, 138(1-2):181–234, 2002.
[35] T. Soininen, I. Niemelä, J. Tiihonen, and R. Sulonen. Representing configuration knowl-

edge with weight constraint rules. In Proceedings of the AAAI Spring 2001 Symposium
on Answer Set Programming (ASP’01): Towards Efficient and Scalable Knowledge. AAAI
Press, Menlo Park, 2001. Technical report SS-01-01.

[36] T. Son and E. Pontelli. Planning with preferences using logic programming. Theory and
Practice of Logic Programming, 6(5):559–607, 2006.

[37] The Soar Group. SOAR: a general cognitive architecture for developing systems that ex-
hibit intelligent behavior. URL: http://sitemaker.umich.edu/soar/home, 2007. Documenta-
tion, download and publications.
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