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Abstract
We provide reformulations and generalizations of both the
semantics of logic programs by Faber, Leone and Pfeifer
and its extension to arbitrary propositional formulas by
Truszczyński. Unlike the previous definitions, our gener-
alizations refer neither to grounding nor to fixpoints, and
apply to first-order formulas containing aggregate expres-
sions. Similar to the first-order stable model semantics by
Ferraris, Lee and Lifschitz, the reformulations presented here
are based on syntactic transformations that are similar to cir-
cumscription. The reformulations provide useful insights into
the FLP semantics and its relationship to circumscription and
the first-order stable model semantics.

Introduction
The stable model semantics is the mathematical basis of an-
swer set programming, and is one of the most well-studied
knowledge representation formalisms. Lifschitz (2010) sur-
veys thirteen different definitions of a stable model pre-
sented in the literature. These definitions are equivalent to
each other when they are applied to normal logic programs,
but are not necessarily so for more general classes of pro-
grams. However, each of them deserves its own attention,
as it provides useful insights into the stable model semantics
and answer set programming.

The semantics defined by Faber, Leone and Pfeifer (2011)
(called the FLP semantics) deserves special attention since
it provides a simple satisfactory solution to the semantics of
aggregates, and is implemented in the system DLV1. It is
also a basis of some extensions of the answer set semantics
to integrate with external sources that have possibly hetero-
geneous semantics (e.g., HEX programs (Eiter et al. 2005)).
Dao-Tran et al. (2009) remark that the FLP semantics pro-
vides a more natural ground for their Modular Logic Pro-
grams (MLP) than the traditional Gelfond-Lifschitz seman-
tics (Gelfond and Lifschitz 1988).

The idea of the FLP semantics is based on an interesting
modification of the traditional definition of a reduct by Gel-
fond and Lifschitz (1988). The FLP-reduct of a program Π
relative to a setX of atoms is obtained from Π by simply re-
moving all rules whose bodies are not satisfied by X . Then
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the same minimality condition as in the original definition of
an answer set applies. For example, consider the following
program Π1:

p← not q
q ← not p
r ← p
r ← q .

(1)

The FLP-reduct of Π1 relative to X = {p, r} is

p← not q
r ← p,

(2)

and X is minimal among the sets of atoms satisfying (2),
and hence is an answer set of Π1. Theorem 3.6 from (Faber
et al. 2011) asserts that this definition of an answer set is
equivalent to the traditional definition when it is applied to
the syntax of usual disjunctive programs. For example, the
GL-reduct of Π1 relative to X (Gelfond and Lifschitz 1988)
is

p
r ← p
r ← q

(3)

and, again, {p, r} is minimal among the sets of atoms satis-
fying (3).

The FLP semantics was recently extended to arbitrary
propositional formulas by Truszczyński (2010), based on
the definition of a reduct that is similar to the one proposed
by Ferraris (2005). However, this extension is still limited;
it allows neither variables nor aggregates.

In this paper, we extend the FLP semantics and its exten-
sion by Truszczyński, both syntactically and semantically.
We consider the syntax of arbitrary first-order formulas al-
lowing aggregates. Instead of referring to grounding and
fixpoints, our generalized semantics are given in terms of
translations into second-order classical logic, in the same
spirit as the first-order stable model semantics by Ferraris,
Lee and Lifschitz (Ferraris et al. 2007; 2011). This allows
us to show how the FLP semantics and its extension are
related to circumscription by McCarthy (McCarthy 1980;
1986) and to the first-order stable model semantics. Inter-
estingly a simple modification of the definition of circum-
scription yields the first-order extension of the FLP seman-
tics. Truszczyński’s extension resembles the FLP semantics
on the one hand, and the first-order stable model semantics
on the other hand.



FLP Semantics
Review: Original FLP Semantics
A disjunctive rule is an expression of the form

A1 ; . . . ; Al ← Al+1, . . . , Am, not Am+1, . . . , not An

(4)
(n ≥ m ≥ l ≥ 0) where each Ai is an atomic formula
(possibly containing equality and 0-place connectives> and
⊥). A disjunctive program is a set of disjunctive rules. The
FLP semantics for a disjunctive program is defined in terms
of grounding and reduct. By σ(Π) we denote the signature
consisting of the object, function and predicate constants oc-
curring in Π. We denote by Ground(Π) the ground instance
of Π, that is the program obtained from Π by replacing every
occurrence of object variables with every ground term that
can be constructed from σ(Π), and then replacing equality
t = t′ with > or ⊥ depending on whether term t is the same
symbol as term t′. Given a set X of ground atoms of σ(Π),
the reduct of Π relative to X , denoted by ΠX , is obtained
from Ground(Π) by removing all rules whose body is not
satisfied by X . Set X is called an FLP-answer set of Π if X
is minimal among the sets of atoms that satisfy ΠX (viewed
as a formula in propositional logic). For example, for Π1

and X = {p, r} in the introduction, Π
X
1 is (2) and X is an

FLP-answer set of Π1.

Extension: First-Order FLP Semantics
We present a reformulation of the FLP semantics in the first-
order case. First, we consider a program that does not con-
tain aggregates, but that allows rules of a more general form
than (4). We assume the following set of primitive proposi-
tional connectives and quantifiers for forming formulas:

⊥, ∧, ∨, →, ∀, ∃ .
¬F is an abbreviation for F → ⊥, symbol > stands for
⊥ → ⊥, and F ↔ G stands for (F → G) ∧ (G→ F ).

A (general) rule is of the form

H ← B (5)

where H and B are arbitrary formulas in first-order logic.
Rule (4) is a special case of (5) when we identify not with
¬, the head H with the disjunction of atomic formulas and
the body B with the conjunction of atomic formulas, possi-
bly preceded by negation. A (general) program is a set of
(general) rules.

Let p be a list of distinct predicate constants p1, . . . , pn,
and let u be a list of distinct predicate variables u1, . . . , un.
By u ≤ p we denote the conjunction of the formulas
∀x(ui(x)→ pi(x)) for all i = 1, . . . , n where x is a list of
distinct object variables of the same length as the arity of pi,
and by u < p we denote (u ≤ p)∧¬(p ≤ u). For instance,
if p and q are unary predicate constants then (u, v) < (p, q)
is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x))
∧¬(∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))).

For any formula G, formula G(u) is obtained from G by
replacing all occurrences of predicates from p with the cor-
responding predicate variables from u.

Let Π be a finite program whose rules have the form (5).
The FOL-representation ΠFOL of Π is the conjunction of
the universal closures of B → H for all rules (5) in Π. By
FLP[Π;p] we denote the second-order formula

ΠFOL ∧ ¬∃u(u < p ∧Π4(u)) (6)

where Π4(u) is defined as the conjunction of

∀x(B ∧B(u)→H(u)) (7)

for all rules H ← B in Π, where x is the list of all (free)
variables in H ← B.2

We will often simply write FLP[Π] instead of FLP[Π;p]
when p is the list of all predicate constants occurring in Π,
and call a model of FLP[Π] an FLP-stable model of Π.

Example 1 Consider the program Π1 in the introduction.
Its FOL-representation ΠFOL

1 is

(¬q → p) ∧ (¬p→ q) ∧ (p→ r) ∧ (q → r)

and Π41 (u, v, w) is

(¬q∧¬v → u)∧(¬p∧¬u→ v)∧(p∧u→ w)∧(q∧v → w).

Formula

ΠFOL
1 ∧ ¬∃uvw((u, v, w) < (p, q, r) ∧Π41 (u, v, w))

can be equivalently rewritten without second-order vari-
ables as ¬(p↔ q) ∧ (r ↔ p ∨ q).

Though implications are allowed even in the head and
in the body, the outermost implications (the rule arrow ex-
plicitly shown in (5)) are distinguished from them due to
the presence of ’B∧’ in the definition of Π4. If we drop
’B∧’ from (7), then (6) becomes exactly CIRC[ΠFOL;p]
(McCarthy 1980; 1986). Interestingly, this small difference
accounts for many differences in the properties of the two
semantics, one leading to stable models and the other lead-
ing to minimal models. For instance, classically equivalent
transformation preserves the minimal models, but not FLP-
stable models. For example, p ← not q and q ← not p are
classically equivalent to each other (when we identify them
with their FOL-representations), but their FLP-stable mod-
els are different.

Theorem 1 Let Π be a finite disjunctive program (consist-
ing of rules of the form (4)) containing at least one object
constant. The FLP-answer sets of Π in the sense of (Faber
et al. 2011) are precisely the Herbrand models of FLP[Π]
whose signature is σ(Π).

It is known that the FLP semantics from (Faber et al.
2011) has the anti-chain property: no FLP-answer set is a
proper subset of another FLP-answer set. This property is
still preserved in our generalized semantics.
Proposition 1 For any finite general program Π, if I is an
Herbrand interpretation of σ(Π) that satisfies FLP[Π], then
I is a subset-minimal model of Π.3

2Note that we assume that Π is finite in order to avoid infinite
conjunctions in the FOL representation.

3We identify an Herbrand interpretation I with the set of ground
atoms that are satisfied by I .



Clearly, circumscription can be viewed as a special case
of the FLP semantics.

Proposition 2 For any first-order sentence F and any finite
list p of predicate constants, CIRC[F ;p] is equivalent to
FLP[F ← >; p].

The FLP semantics can be represented by circumscription
in the following way.

Proposition 3 For any finite general program Π, formula
FLP[Π;p] is equivalent to

∃u(CIRC[Π4(u);u] ∧ (u = p)).

Extension: First-Order FLP Semantics for
Programs with Aggregates
The semantics given in the previous section can be extended
to allow aggregates by simply extending the notion of satis-
faction to cover aggregate expressions. Below we adopt the
definitions of an aggregate formula and satisfaction as given
in (Lee and Meng 2009; Ferraris and Lifschitz 2010).

Following (Ferraris and Lifschitz 2010), by a number we
understand an element of some fixed set Num. For exam-
ple, Num is Z∪{+∞,−∞}, where Z is the set of integers.
An aggregate function is a partial function from the class of
multisets to Num. The domain of an aggregate function is
defined as usual. For instance, COUNT is defined for any
multisets; SUM, TIMES, MIN and MAX are defined for multi-
sets of numbers; SUM is undefined for multisets containing
infinitely many positive integers and infinitely many nega-
tive integers.

We assume that the signature σ contains symbols for all
numbers, and some collection of comparison operators that
stands for binary relations over numbers. We assume that
symbols for aggregate functions are not part of the signature.

An aggregate expression of signature σ is of the form 4

OP〈x : F (x)〉 � b (8)

where

• OP is an aggregate function;

• x is a nonempty list of distinct object variables;

• F (x) is a first-order formula;

• � is a comparison operator;

• b is a term.

We define an aggregate formula as an extension of a first-
order formula by treating aggregate expressions as a base
case like (standard) atomic formulas (including equality and
⊥). In other words, aggregate formulas are constructed from
atomic formulas and aggregate expressions using connec-
tives and quantifiers as in first-order logic. For instance,

(SUM〈x : p(x)〉 ≥ 1 ∨ ∃y q(y))→ r(x)

is an aggregate formula.

4The syntax of aggregate expression considered in Ferraris and
Lifschitz (2010) is more general. The results in this paper can be
extended to the general syntax, which we omit for simplicity.

We say that an occurrence of a variable v in an aggregate
formula H is bound if the occurrence is in a part of H of the
form 〈x : F (x)〉 where v is in x, or in a part of H of the
form QvG. Otherwise it is free. We say that v is free in H if
H contains a free occurrence of v. An aggregate sentence is
an aggregate formula with no free variables.

The definition of an interpretation is the same as in first-
order logic. Consider an interpretation I of a first-order sig-
nature σ that may contain any function constants of positive
arity. By σ|I| we mean the signature obtained from σ by
adding distinct new object constants ξ∗, called names, for
all ξ in the universe of I . We identify an interpretation I of
σ with its extension to σ|I| defined by I(ξ∗) = ξ.

The definition of satisfaction in first-order logic is ex-
tended to aggregate sentences as follows. We consider
“standard” interpretations only, in which symbols for num-
bers and comparison operators are evaluated in the standard
way.5 Let I be an interpretation of signature σ. Consider
any aggregate expression (8) that has no free variables. Let
SI be the multiset consisting of all ξ∗[1] in the universe of I
where
• ξ∗ is a list of object names of σ|I| whose length is the

same as the length of x, and
• I satisfies F (ξ∗).
(For any list of object constants c, by c[1] we denote the first
element of c.)

An interpretation I satisfies the aggregate expression if
SI is in the domain of OP, and OP(SI) � bI . With this ex-
tension, the recursive definition of satisfaction for an aggre-
gate sentence is given in the same way as in first-order logic.
We say that an aggregate sentence F is logically valid if ev-
ery standard interpretation satisfies it. For instance, an Her-
brand interpretation {p(a)} satisfies COUNT〈x : p(x)〉 > 0
but does not satisfy SUM〈x : p(x)〉 > 0 because multiset
{{a}} is not in the domain of SUM. Consider the aggregate
expression

SUM〈x : p(x)〉 ≥ 0

and an Herbrand interpretation I = {p(−1), p(1)}. SI

is {{−1, 1}} and SUM(SI) = 0 ≥ 0, so I satisfies
SUM〈x : p(x)〉 ≥ 0.

Once we extend the definition of satisfaction to aggre-
gate sentences, we can simply extend the FLP semantics in
the previous section to a general program with aggregates,
which allows aggregate formulas in the head and in the body
of a rule. The AF-representation (“Aggregate Formula rep-
resentation”) of a finite general program Π with aggregates
is the conjunction of the universal closures of the aggregate
formulas

B → H (9)
for all rules H ← B in Π. FLP[Π;p] is defined the same
as (6) except that Π is now understood as a general program
with aggregates.

5For instance, we assume that, when both x and y are integer
constants, x ≤ y evaluates to true iff x is less than y, and x + y
is the sum of the integers. On the other hand, when x or y are not
integers, x ≤ y evaluates to false, and x + y has an arbitrary value
according to the interpretation.



Example 2 Consider the following aggregate sentence F :

(¬(SUM〈x :p(x)〉<2)→ p(2))
∧ (SUM〈x :p(x)〉≥0→ p(−1))
∧ (p(−1)→ p(1)) .

(10)

The FLP-stable models of (10) are the models of

F ∧ ¬∃u(u < p ∧Π4(u)) (11)

where Π4(u) is

(¬(SUM〈x :p(x)〉<2) ∧ ¬(SUM〈x :u(x)〉<2)→ u(2))
∧ (SUM〈x :p(x)〉≥0 ∧ SUM〈x :u(x)〉≥0→ u(−1))
∧ (p(−1) ∧ u(−1)→ u(1)) .

(12)

Below we show how this semantics is related to the orig-
inal semantics in (Faber et al. 2011). Faber et al. (2011)
defined their semantics for disjunctive programs with aggre-
gates, whose rules have the form

A1; . . . ;Al ← E1, . . . , Em, not Em+1, . . . , not En (13)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atomic formula
and eachEi is an atomic formula or an aggregate expression.
For example, the following is a disjunctive program with
aggregates, whose AF-representation is (10):

p(2) ← not SUM〈x : p(x)〉 < 2
p(−1) ← SUM〈x : p(x)〉 ≥ 0
p(1) ← p(−1) .

(14)

As before, the original FLP semantics is defined in terms
of grounding and fixpoints. Let us assume that b in every
aggregate expression (8) is a constant. We extend the no-
tion Ground(Π) to a disjunctive program Π with aggregates
by replacing every free occurrence of a variable with every
ground term that can be constructed from σ(Π) in all possi-
ble ways.

For any disjunctive program Π with aggregates and any
Herbrand interpretation I whose signature is σ(Π), the FLP-
reduct of Π relative to I is obtained from Ground(Π) by re-
moving every rule whose body is not satisfied by I . Set I
is an FLP-answer set of Π if it is minimal among the sets
of atoms that satisfy the FLP-reduct of Π relative to I . For
example, in program (14) above, the FLP-reduct of (14) rel-
ative to {p(−1), p(1)} contains the last two rules only. Set
{p(−1), p(1)} is minimal among the sets of atoms that sat-
isfy the reduct, and thus is an FLP-answer set of (14). In
fact, this is the only FLP-answer set. Also one can check
that {p(−1), p(1)} is the only Herbrand model of σ(Π) that
satisfies (11) in Example 2. The following theorem tells us
that our semantics is a proper generalization of the semantics
from (Faber et al. 2011).

Theorem 2 Let Π be a finite disjunctive program with ag-
gregates that contains at least one object constant. The FLP-
answer sets of Π in the sense of (Faber et al. 2011) are pre-
cisely the Herbrand models of FLP[Π] whose signature is
σ(Π).

Truszczyński Semantics
Review: Truszczyński Semantics
Truszczyński (2010) defined an extension of the FLP seman-
tics to arbitrary propositional formulas, similar to the exten-
sion of the stable model semantics to arbitrary propositional
formulas proposed by Ferraris (2005).

For any propositional formula F , the FLPT-reduct FX

relative to a set X of atoms is defined recursively:

• AX =

{
A if X |= A,

⊥ otherwise;

• ⊥X = ⊥;

• (G�H)X =

{
GX �HX if X |= G�H,
⊥ otherwise;

(� ∈ {∧,∨});

• (G→ H)X =


G→ HX if X |= G, and X |= H,

> if X 6|= G,

⊥ otherwise.

Set X is an FLPT-answer set of F if X is minimal among
the sets of atoms that satisfy FX .

As noted in (Truszczyński 2010), this definition of a
reduct is similar to the definition of a reduct by Ferraris
(2005), except for the case G→ H .

Extension: FLPT Semantics for First-Order
Formulas with Aggregates
We extend the FLPT semantics to arbitrary first-order for-
mulas that allow aggregates.

For any first-order formula F with aggregates and any fi-
nite list of predicate constants p = (p1, . . . , pn), formula
FLPT[F ;p] is defined as

F ∧ ¬∃u(u < p ∧ F�(u)) (15)

where F�(u) is defined recursively, as follows:

• pi(t)� = ui(t) for any tuple t of terms;

• F� = F for any atomic formula F that does not contain
members of p;

• (G�H)� = G� �H�, where � ∈ {∧,∨};
• (G→ H)� = (G(u) ∧G→ H�) ∧ (G→ H);

• (QxG)� = QxG�, where Q ∈ {∀,∃};
• (OP〈x : G(p)〉 � t)� =

(OP〈x : G(u)〉 � t) ∧ (OP〈x : G(p)〉 � t);

Similar to FLP[Π], we will often simply write FLPT[F ]
instead of FLPT[F ;p] when p is the list of all predicate
constants occurring in F , and call a model of FLPT[F ] an
FLPT-stable model of F .

The following theorem asserts that our semantics is
a proper generalization of the answer set semantics by
Truszczyński which covers first-order formulas with aggre-
gates. For any formula F , by σ(F ) we denote the signature
consisting of object, function and predicate constants occur-
ring in F .



Theorem 3 For any propositional formula F , the FLPT-
answer sets of F are precisely the interpretations of σ(F )
that satisfy FLPT[F ].

Also the semantics above coincides with our extension of
the FLP semantics in the previous section when it is applied
to disjunctive programs with aggregates.

Proposition 4 For any finite disjunctive program Π with ag-
gregates and the AF-representation F of Π, FLP[Π;p] is
equivalent to FLPT[F ;p].

However, the statement of the proposition does not apply
to general programs.

Example 3 For general program Π = {p ∨ ¬p ← >}
and its FOL-representation F , formula FLP[Π] has only one
model, ∅, and FLPT[F ] has two models, ∅ and {p}.

In comparison with Proposition 1, this example illustrates
that, unlike the FLP semantics, the FLPT semantics does
not keep the anti-chain property. This has to do with the fact
the FLP semantics distinguishes between rule arrows and the
other implications, while the FLPT semantics does not.

The notion of strong equivalence is important. Similar
to the relationship between HT-models and strong equiv-
alence under the stable model semantics (Ferraris et al.
2011), Truszczyński (2010) related the FLPT-reduct to
“FLP-models,” and used them to characterize the strong
equivalence between propositional formulas under the FLPT
semantics. In the following we extend the result to arbitrary
first-order formulas with aggregates.6

Following the definition of strong equivalence in the first-
order stable model semantics in (Ferraris et al. 2011), about
first-order formulas with aggregates F and G we say that F
is FLPT-strongly equivalent to G if, for any formula H
with aggregates, any occurrence of F in H , and any list p
of distinct predicate constants, FLPT[H;p] is equivalent to
FLPT[H ′;p], whereH ′ is obtained fromH by replacing the
occurrence of F by G.

Theorem 4 Let F andG be first-order formulas with aggre-
gates, let pFG be the list of all predicate constants occurring
in F or G and let u be a list of distinct predicate variables.
The following conditions are equivalent to each other.

• F and G are FLPT-strongly equivalent to each other;
• Formula

u ≤ pFG → (F�(u)↔ G�(u))

is logically valid.

This theorem is a proper extension of Theorem 7
from (Truszczyński 2010), which does not consider aggre-
gates. As a special case, Theorem 4 can be applied to check-
ing strong equivalence under the FLP semantics between the
programs whose rules have the form (13).

Theorem 4 is similar to Theorems 9 from (Ferraris et al.
2011), which is about strong equivalence under the stable
model semantics.

6Due to lack of space, we do not present the extension of FLP
models, but instead an alternative characterization in terms of F�.

Comparing FLP, FLPT and the First-Order
Stable Model Semantics

In (Ferraris et al. 2011) the stable models are defined in
terms of the SM operator with intensional predicates: For
any first-order sentence F and any finite list of intensional
predicates p = (p1, . . . , pn), formula SM[F ;p] is defined
as

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where F ∗(u) is defined recursively:
• pi(t)∗ = ui(t) for any list t of terms;
• F ∗ = F for any atomic formula F that does not contain

members of p;
• (G�H)∗ = G∗ �H∗, where � ∈ {∧,∨};
• (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);
• (QxG)∗ = QxG∗, where Q ∈ {∀,∃};
• (OP〈x : G(x)〉 � b)∗ =

(OP〈x : G∗(x)〉 � b) ∧ (OP〈x : G(x)〉 � b).
We often simply write SM[F ] instead of SM[F ;p] when

p is the list of all predicate constants occurring in F , and
call a model of SM[F ] simply a stable model of F .

Disregarding aggregate expressions, the main difference
among FLP, FLPT and SM has to do with the treatment of
an implication. It is known that they coincide for programs
whose rules have the form (4) (Faber et al. 2011, Theo-
rem 3.6), (Truszczyński 2010, Theorem 3). However, this
is not the case for more general classes of programs (hav-
ing rules of the form (5)), or for arbitrary formulas. In fact,
no one is stronger than another, as shown in the following
example.

Example 4 For propositional signature {p} and pro-
gram Π1 = {p← p ∨ ¬p}, whose FOL-representation is
F1 = p ∨ ¬p→ p, each of FLP[Π1] and FLPT[F1] has {p}
as the only model, and SM[F1] has no models.

Formula F1 is strongly equivalent (in the sense of (Fer-
raris et al. 2011)), but not FLPT-strongly equivalent to
F2 = (p→ p) ∧ (¬p→ p). Again, SM[F2] has no models.
Neither does FLP[Π2] nor FLPT[F2], where Π2 is the pro-
gram corresponding to F2.

For program Π3 = {p ∨ ¬p← >}, whose FOL-
representation is F3 = > → p ∨ ¬p, both SM[F3] and
FLPT[F3] have two models, ∅ and {p}, while FLP[Π3] has
only one model, ∅.

Formula F3 is strongly equivalent, but not FLPT-strongly
equivalent to F4 = ¬¬p → p. Both FLP[Π4] (Π4 is the
program corresponding to F4) and FLPT[F4] have only one
model, ∅, while SM[F4] has the same models as SM[F3] .

Note that, in the examples above, when “choice formula”
p ∨ ¬p is in the body, FLPT yields a formula that is equiv-
alent to the one that FLP yields, and when p ∨ ¬p is in the
head, FLPT yields a formula that is equivalent to the one that
SM yields. This is not a coincidence; below we describe the
classes of formulas for which each pair of the semantics co-
incide.

But before that, we remark that FLPT-strong equivalence
involves some unintuitive results. We would expect that



F ∧G and F ∧ (F → G) have the same FLPT-stable mod-
els. Indeed, they are strongly equivalent to each other in
the sense of (Ferraris et al. 2011), but not FLPT-strongly
equivalent. The two formulas may not even have the same
FLPT-stable models.

Example 5 For propositional signature {p} and F = ¬¬p
andG = p∨¬p, formulas SM[F ∧G] and FLPT[F ∧G] are
equivalent to each other, having only one model, {p}. On
the other hand, SM[F ∧ (F → G)] has only one model {p},
but FLPT[F ∧ (F → G)] has no models.

We now show the relationships among the three seman-
tics. Roughly speaking, the FLPT semantics is in between
the two others in the sense that it treats a “non-strictly pos-
itive” occurrence of a subformula same as in the FLP se-
mantics, and treats a “strictly positive” occurrence of a sub-
formula same as in the first-order stable model semantics.
This is related to the fact that the definition (F → G)� is
similar to the (F → G)4 on the one hand and is similar to
(F → G)∗ on the other hand.

The following theorem presents a class of programs for
which the FLP semantics and the FLPT semantics coincide.
Following (Ferraris and Lifschitz 2010), we say that an ag-
gregate function OP is monotone w.r.t. � if for any multisets
α, β such that α ⊆ β,

• if OP(α) is defined then so is OP(β), and

• for any n ∈ Num, if OP(α) � n then OP(β) � n.

For an occurrence of a predicate constant or any other
subexpression in a formula F with aggregates, we consider
two numbers, k and m.

• k: the number of implications in F that contain that oc-
currence in the antecedent;

• m: the number of aggregate expressions (8) containing
that occurrence such that OP is not monotone w.r.t. �.

We call an occurrence of a subexpression in F strictly
positive if k +m for that occurrence in F is 0.

The following theorem presents a class of programs for
which the FLP semantics and the FLPT semantics coincide.

Theorem 5 Let Π be a finite general program with aggre-
gates, and let F be the AF-representation of Π. For every
rule (5) in Π, if every occurrence of p from p in H is strictly
positive in H , then FLP[Π;p] is equivalent to FLPT[F ;p].

The theorem is a generalization of Proposition 4. For ex-
ample, the FLP and the FLPT semantics coincide on the pro-
grams whose heads have the form of a disjunction of atoms,
regardless of the form of the formulas in the body. In Ex-
ample 4, programs Π1, Π2 and Π4 satisfy the condition of
Theorem 5. Also program (14) satisfies the same condition.

Next we show the class of programs for which the FLP
semantics and the stable model semantics coincide. We
first define two notions. We call an aggregate formula
semi-positive relative to p if, for every aggregate expres-
sion OP〈x : G〉 � b in it, every occurrence of every predi-
cate p from p is strictly positive in G. We say that an aggre-
gate formula F is canonical relative to a list p of predicate
constants if

• F is semi-positive relative to p;
• for every occurrence of every predicate constant p from p

in F , we have that k +m ≤ 1;
• if a predicate constant p from p occurs in the scope of a

strictly positive occurrence of ∃ or ∨ in F , then the occur-
rence of p is strictly positive in F .

Theorem 6 Let Π be a finite general program with aggre-
gates and let F be the AF-representation of Π. For every
rule (5) in Π, if B is canonical relative to p and every oc-
currence of p from p in H is strictly positive in H , then
FLP[Π;p] is equivalent to SM[F ;p].

Among the programs in Example 4, only Π2 satisfies the
condition of Theorem 6. For another example, in program
(14), ¬(SUM〈x : p(x)〉 < 2) is not canonical relative to
{p}. In fact, {p(−1), p(1), p(2)} is an Herbrand interpreta-
tion that satisfies SM[(10)], but it does not satisfy FLP[(14)].

Next we show the class of formulas F for which
FLPT[F ;p] coincides with SM[F ;p].

Theorem 7 Let F be a semi-positive aggregate formula rel-
ative to p such that every subformula that has a non-strictly
positive occurrence in F is canonical relative to p. Then
FLPT[F ;p] is equivalent to SM[F ;p].

In Example 4, relative to {p}, formulas F2 and F3 satisfy
the condition of Theorem 7, but formulas F1 and F4 do not.
In Example 5, relative to {p}, formula F ∧ G satisfy the
condition, but F ∧ (F → G) does not. Also formula (10)
does not satisfy the condition. Again, {p(−1), p(1), p(2)}
is an Herbrand interpretation that satisfies SM[(10)], but it
does not satisfy FLPT[(14)].

Conclusion
We presented a reformulation of the FLP semantics by a sim-
ple modification to circumscription, and presented a refor-
mulation of the FLPT semantics using the recursive defini-
tion similar to the one used in the first-order stable model
semantics. Our reformulations are more general than the
original semantics, and provide useful insights into the re-
lationships among the FLP semantics, the FLPT semantics,
circumscription and the first-order stable model semantics.

The FLP semantics is a basis of HEX programs that in-
tegrate logic programs with external source of information.
In HEX programs, the external atoms are treated similar to
aggregates. Our work suggests that HEX programs can be
generalized without the need to refer to grounding. While
in general the FLP semantics does not coincide with the
first-order stable model semantics, the mismatch is usually
avoided in practice because the FLP semantics is applied to
the rules (13) with complex atoms instead of the syntax of
complex formulas, thereby satisfying the condition of the
theorem under which the two semantics coincide.

Acknowledgements
We are grateful to anonymous referees for their useful com-
ments on this paper. The authors were partially supported by
the National Science Foundation under Grants IIS-0916116
and by the IARPA SCIL program.



References
Minh Dao-Tran, Thomas Eiter, Michael Fink, and Thomas
Krennwallner. Modular nonmonotonic logic programming
revisited. In Proceedings of International Conference on
Logic Programming (ICLP), pages 145–159, 2009.
Thomas Eiter, Giovambattista Ianni, Roman Schindlauer,
and Hans Tompits. A uniform integration of higher-order
reasoning and external evaluations in answer-set program-
ming. In IJCAI, pages 90–96, 2005.
Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. Se-
mantics and complexity of recursive aggregates in answer
set programming. Artificial Intelligence, 175(1):278–298,
2011.
Paolo Ferraris and Vladimir Lifschitz. On the stable model
semantics of firsr-oder formulas with aggregates. In NMR,
2010.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
new perspective on stable models. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 372–379, 2007.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Sta-
ble models and circumscription. Artificial Intelligence,
175:236–263, 2011.
Paolo Ferraris. Answer sets for propositional theories.
In Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pages
119–131, 2005.
Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Robert Kowalski
and Kenneth Bowen, editors, Proceedings of International
Logic Programming Conference and Symposium, pages
1070–1080. MIT Press, 1988.
Joohyung Lee and Yunsong Meng. On reductive semantics
of aggregates in answer set programming. In Procedings of
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 182–195, 2009.
Vladimir Lifschitz. Thirteen definitions of a stable model.
In Andreas Blass, Nachum Dershowitz, and Wolfgang
Reisig, editors, Fields of Logic and Computation, volume
6300 of Lecture Notes in Computer Science, pages 488–
503. Springer, 2010.
John McCarthy. Circumscription—a form of non-mono-
tonic reasoning. Artificial Intelligence, 13:27–39,171–172,
1980.
John McCarthy. Applications of circumscription to for-
malizing common sense knowledge. Artificial Intelligence,
26(3):89–116, 1986.
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