Horn Belief Contraction: Remainders, Envelopes and Complexity*

Kira Adaricheva Robert H. Sloan

Yeshiva University

Abstract

A recent direction within belief revision theory is to develop
a theory of belief change for the Horn knowledge represen-
tation framework. We consider questions related to the com-
plexity aspects of previous work, leading to questions about
Horn envelopes (or Horn LUB’s), introduced earlier in the
context of knowledge compilation.

A characterization is obtained of the remainders of a Horn be-
lief set with respect to a consequence to be contracted, as the
Horn envelopes of the belief set and an elementary conjunc-
tion corresponding to a truth assignment satisfying a certain
body building formula. This gives an efficient algorithm to
generate all remainders, each represented by a truth assign-
ment. On the negative side, examples are given of Horn belief
sets and consequences where Horn formulas representing the
result of most contraction operators, based either on remain-
ders or on weak remainders, must have exponential size.

Introduction

Belief revision deals with the question of how to update a
set of beliefs when new information is obtained that may
be inconsistent with the current beliefs (Hansson 1999;
Peppas 2008). The standard approach is to formulate pos-
tulates that need to be satisfied by rational agents perform-
ing belief revision, such as the AGM postulates (Alchourrén,
Girdenfors, and Makinson 1985), and then to characterize
all possible operations that satisfy these postulates. Until re-
cently, work on AGM-style belief revision focused on logics
at least as rich as full propositional logic, and assumed a lan-
guage that was closed under the basic operations of proposi-
tional logic: negation, disjunction, and conjunction.

Evolving knowledge bases and ontologies appear to be
interesting potential application areas for belief revision.
These applications require tractable knowledge representa-
tion formalisms, such as Horn logic or many versions of de-
scription logic. The logic underlying these formalisms does
not contain full propositional logic and thus it is of inter-
est to develop a belief change theory for these logics, and,
furthermore, for arbitrary logics in general.
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In recent years, there have been a number of papers con-
sidering logics that are not necessarily closed under the basic
operations. As far as we know, (Flouris, Plexousakis, and
Antoniou 2004) (see also (Flouris 2006)) were the first to
look into this question. Flouris et al. wanted to develop a the-
ory of belief revision that would apply to description logic.
In the case with closure under the basic propositional logic
operators, a contraction operator obeying the AGM postu-
lates always exists. This is not always the case for logics
not so closed. Flouris et al. formulate a property called de-
composability of the logic, and show that decomposability is
a necessary and sufficient condition for the existence of an
AGM-compliant belief contraction operator.

Starting in 2008, there has been a flurry of papers con-
sidering specifically the case of belief contraction for Horn
logic, that is, the subset of propositional logic consisting
of Horn formulas (Booth, Meyer, and Varzinczak 2009;
Booth et al. 2010; Delgrande 2008; Delgrande and Wasser-
mann 2010; Fotinopoulos and Papadopoulos 2009; Langlois
et al. 2008; Zhuang and Pagnucco 2010; 2011).

Horn logic is a fragment of (propositional and predicate)
logic which is of central importance in Al. Horn clauses
express rules which are natural and easy to understand for
humans. Another main reason for interest in Horn logic is
that reasoning in propositional logic is computationally in-
tractable, but reasoning in Horn logic is efficient.

(Langlois et al. 2008) apply the results of (Flouris, Plex-
ousakis, and Antoniou 2004; Flouris 2006) to characterize
for which Horn belief sets an AGM-compliant contraction
operator exists, and give a polynomial-time algorithm to
compute such a contraction when one exists. Their results
are on the notion of a complement introduced by (Flouris,
Plexousakis, and Antoniou 2004; Flouris 2006), which, in
standard belief revision terms, is a remainder of a belief set
with respect to itself.

The papers (Booth, Meyer, and Varzinczak 2009; Booth
et al. 2010; Delgrande 2008; Delgrande and Wassermann
2010; Fotinopoulos and Papadopoulos 2009; Zhuang and
Pagnucco 2010; 2011) ask the important question, “What
sort of contraction operator should we use for the full Horn
logic?” They consider variations of both the definition of re-
mainder set and of how to combine remainder sets to obtain
contraction operators that are defined for all Horn knowl-
edge bases K and consequences (, and give results relat-



ing those contraction operators to various sets of postulates.
A common feature is that the recovery postulate, which
is assumed in (Flouris, Plexousakis, and Antoniou 2004;
Flouris 2006), is replaced by others.

In this paper, we give some initial results about the com-
plexity of computing some of those contractions and of re-
lated problems. Previous, mostly negative, complexity the-
oretic results on classical belief revision are given in (Eiter
and Gottlob 1992; Liberatore 2000). It is important to point
out that while one of the main motivations of considering
Horn logic is to gain in efficiency, for example in reasoning
with the belief set, it may be the case that one has to pay
a price in the sense that some tasks become more difficult
due to the restricted nature of the logic. Some of our results
show that such a phenomenon does indeed occur.

Given a Horn belief set K and a Horn formula ¢ to be
contracted, remainder sets can be formed by enlarging the
set of truth assignments satisfying K by a single truth as-
signment falsifying ¢. However, as noted in (Delgrande
and Wassermann 2010), not all such truth assignments pro-
duce a remainder set, only those which, when intersected
componentwise with the truth assignments satisfying K, do
not produce any other truth assignments falsifying ¢. Weak
remainder sets are defined in (Delgrande and Wassermann
2010) similarly to remainder sets, except now an arbitrary
truth assignment falsifying ¢ can be added to the satisfying
truth assignments of K.

We give a logical characterization of those truth assign-
ments which do lead to a remainder set, using a general-
ization of the body building formula from (Langlois et al.
2008).! Using this characterization, an efficient listing algo-
rithm is given to list all such truth assignments. Thus, this
algorithm produces all possible remainder sets, represented
by their ‘generating’ truth assignment.

In the remainder of the paper we consider the question of
finding a Horn formula representation for Horn belief sets
produced by the various contraction operators. We construct
Horn belief sets and Horn clause consequences to be con-
tracted with the property that for certain contraction opera-
tors every Horn formula representing the new belief set must
be exponentially larger than the original belief set. In fact,
this holds for full meet contraction and, in an asymptotic
sense, for most maxichoice and most partial meet contrac-
tions, both based on remainders and on weak remainders.2
Our result is based on a new blow-up result for computing
Horn envelopes (also called Horn LUB’s), which was ob-
tained in connection with the study of D-bases of closure
systems (Adaricheva and Nation 2011). (A related earlier
blow-up result is given in (Kleine Biining and Lettmann
1987).) We also give some positive results on cases where
such a blow-up cannot occur.

As it is indicated by the connection to bases of closure
systems, Horn formulas are closely related to concepts in
algebra (lattices, closure systems, closure operators and im-

In other words, an efficiently computable syntactic criterion is
given to distinguish remainders from weak remainders.

2For our example, the two actually coincide as every weak re-
mainder is a remainder.

plicational systems). There is a large body of work on prob-
lems related to the ones studied in this paper (Bertet and
Monjardet 2010; Burosch, Demetrovics, and Katona 1987,
Caspard and Monjardet 2003; Freese 1995) and the study of
belief contraction for general logics in(Flouris, Plexousakis,
and Antoniou 2004; Flouris 2006) also uses a lattice theo-
retic framework. We plan to give an account of these useful
connections in the full version of this paper.

Proofs in the paper are either outlined or omitted due to
lack of space.

Preliminaries

It is assumed that there is a fixed finite set of propositional
variables. We use 0 and 1 for representing truth values. The
set of truth assignments satisfying (resp., falsifying) a propo-
sitional formula ) is denoted by T'(v) (resp., F()). For
formulas 1, ¢ it holds that ) = ¢ (i.e., ¢ is a consequence
of v) iff T(v)) C T(p). For a truth assignment a and a
variable = we sometimes write x(a) for the value of the z-
component of a.

Truth assignments are partially ordered by the relation
a < b, which holds for ¢« = (aj,...,a,) and b =
(by,...,by) iff a; < b; forevery i = 1,...,n. We write
a < bifa < band a # b. The (componentwise) in-
tersection of a = (a1,...,a,) and b = (by,...,b,) is
aNb= (a1 ANby,...,an ANby).

The elementary conjunction C, corresponding to a truth
assignment a contains a variable (resp., the negation of a
variable) iff the component corresponding to that variable in
a is set to 1 (resp., 0). Thus, for example, C, = 1 AZ2 Ax3
fora = (1,0, 1). Clearly T(C,) = {a}.

A clause is a disjunction of literals (unnegated and
negated variables). A clause is Horn if it contains at most
one unnegated variable, and it is definite if it contains ex-
actly one unnegated variable. (see, e.g., (Kleine Biining and
Lettmann 1999) for background on Horn formulas). A defi-
nite Horn clause C' is also written as Body(C') — Head(C),
where Body(C), resp., Head(C'), are the body, resp., the
head of the clause. For example, the definite Horn clause
C =Z VgV zcan be written as 2,y — z, and Body(C) =
{z,y},Head(C) = {z}. A (definite) Horn formula is a con-
junction of (definite) Horn clauses.

A clause C is an implicate of a formula ¢ iff ¢ = C, and
it is a prime implicate if none of its subclauses is an impli-
cate. Every prime implicate of a (definite) Horn formula is a
(definite) Horn clause. Forward chaining is an efficient pro-
cedure to decide ¢ = C, where ¢ is a definite Horn formula
and C is a definite Horn clause. It starts by marking all vari-
ables in the body of C'. While there is a clause in ¢ with all
its body variables marked, the head variable of that clause is
marked as well. Then ¢ |= C iff the head of C' gets marked.

A Boolean function f can be represented by a Horn
formula iff T'(f) is closed under intersection (Horn 1951;
McKinsey 1943). Given an arbitrary propositional formula
1, its Horn envelope Env(¢)) is the conjunction of all Horn
implicates of ¢. The Horn envelope is also referred to as
the Horn LUB (least upper bound) or the Horn closure of 1
(Selman and Kautz 1996). Then it holds that T'(Env(¢))) is
the closure of T'(1)) under intersection.



The closure Cl, (V') of a set of variables V' with respect
to a definite Horn formula ) is the set of all variables which
must be true in every truth assignment satisfying ¢) and hav-
ing all variables in V' set to 1, in other words

CL/,(V){U:@M:(/\ x%v)}

This is a closure operator on the set of all variables, which
can also be computed by forward chaining. Note that
Cly (V) depends only on the function represented by 1 and
not on the particular representation of 4. This can also be
seen by noting that closure consists of the variables set to 1
in the intersection of all satisfying truth assignments above
the truth assignment that has exactly the variables in V' set
to 1.

A Horn belief set K is a set of definite Horn clauses closed
under implication.> As we are working with a fixed finite set
of variables, belief sets are finite. A finite set of clauses in
the belief set can be also thought of as the conjunction of the
clauses in the set. For representational and computational
purposes we may represent K by a subset of its clauses
which imply all the others. Different logically equivalent
formulas are considered to represent the same belief set.
This is different from the belief base approach where clauses
explicitly represented in the base have a distinguished role,
and different logically equivalent representations are consid-
ered to be different as belief bases.

Body building: a characterization of
remainders

If K is a Horn belief set and Horn formula ¢ is a conse-
quence of K then a remainder set (or, briefly, a remainder)
of K with respect to  is a maximal subset K’ C K not im-
plying .* The set of all remainders of K with respect to ¢
is denoted by K | ¢. The following proposition is implicit
in (Delgrande and Wassermann 2010).

Proposition 1. K | ¢ is equal to
{Env(K V C,) : T(Env(K VvV C,)) N F(p) ={a}} .

Proposition 1 means that the remainders of the belief set
with respect to ¢ are obtained by picking a truth assignment
a falsifying ¢ and forming the Horn envelope of the function
obtained by adding the single new true point a to the belief
set assuming that the Horn envelope does not contain any
additional false points of .

Even though Proposition 1 gives a description of all re-
mainders, it does not give an efficient algorithm to find any
remainders as it does not tell how to find truth assignments a
with the required property. In order to provide a constructive
description let us introduce the following definition.

3In this paper we restrict our attention to definite Horn belief
sets for simplicity. The extension of the results to the general case
will be discussed in the final version.

“In the literature the term “remainder set” is sometimes used for
the set of all such sets (e.g., (Hansson 1999)).

Definition 2 (Body building formula).

oA A

Cep vgZClk (Body(C))

(Body(C),v — Head(C)).

This definition generalizes the notion of a body building
formula introduced in (Langlois et al. 2008). The defini-
tion in that paper corresponds to KX in the current notation.
Using Definition 2, remainders can be characterized as fol-
lows. (Due to lack of space we only include the proof of one
direction.)

Theorem 3.
Klo={Enw(KV(C,) :acT(K?)NF(p)}.

Proof. In order to prove the “C” part of the theorem we
show that if some a € F(y) falsifies K¥ then

IT(Env(K V Ca)) \T(#)] = 2, (1

and thus by Proposition 1 it is not a remainder of K with
respect to .

If K¥(a) = 0 then there is a definite clause C' in ¢
and a variable v ¢ Clg(Body(C)) such that a falsifies
Body(C),v — Head(C). Thus Body(C)(a) = 1, v(a) =
1 and Head(C)(a) = 0.

As v ¢ Clg(Body(C)), there is a b € T'(K) such that
Body(C)(b) = 1 and v(b) = 0. Butas K = @ and b €
T(K), it holds that b € T'(y), and thus b must satisfy C.
Hence Head(C)(b) = 1.

Now consider the truth assignment d = a A b. Claim (1)
follows if we show that d € T(Env(K Vv C,)) \ T(¢) and
d # a.

We know that Env(K V C,) is closed under intersection
and so b € T(K) implies that d € T(Env(K Vv C,)).
As Body(C)(a) = Body(C)(b) = 1 it follows that
Body(C)(d) = 1. On the other hand, Head(C)(a) = 0 im-
plies Head(C)(d) = 0. Thus d falsifies clause C' and so it
falsifies o as well. Furthermore, v(b) = 0 implies v(d) = 0,
thus from v(a) = 1 we get a # d. O

It is claimed above that Theorem 3 can be used to find re-
mainders. Indeed, a remainder can be obtained by finding a
truth assignment a € T'(K%) N F(y). Such a truth assign-
ment can be found by running an efficient Horn satisfiability
algorithm on K¥ A =C for each clause C in ¢. Actually, an
even stronger statement is true: al/l remainders can be listed
efficiently. As the number of remainders can be large, i.e.,
superpolynomial in the size of the belief set, we have to ex-
plain what is meant by efficient listing in general.

A listing algorithm (sometimes also called an enumera-
tion algorithm) is an algorithm to produce a list of objects.
For instance, a basic task in data mining is to produce a list
of potentially ‘interesting’ association rules in a transaction
database, for some specific definition of interestingness. Us-
ing this list, the user is supposed to select those rules which
are found to be truly interesting. For belief change, such al-
gorithms could be used to produce a list of possible results
of contraction operators, again, letting the user decide which
one is preferred. Another possible application is in the ex-
perimental study of belief change algorithms, suggested in



the last section as a topic for further research, where a list of
possible contractions could be necessary to compute various
statistics.

Different efficiency criteria for listing algorithms are de-
scribed in (Goldberg 1993; Johnson, Yannakakis, and Pa-
padimitriou 1988). Here we only define listing with polyno-
mial delay. An algorithm listing a set of objects works with
polynomial delay if the time spent before outputting the first
object and the time spent between outputting two succes-
sive objects (and between the final output and termination)
is bounded by a polynomial function of the input size.

Theorem 4. There is a polynomial delay algorithm which,
given a Horn belief set K and a consequence ¢ of K, out-
puts a list of all truth assignments a such that Env(K Vv C,)
isin K | ¢.

The algorithm does backtracking for subproblems ob-
tained by restricting variables to constants, and it uses Horn
satisfiability to check whether a new subtree contains any
remainders.

Note that the algorithm in Theorem 4 produces a list of
all remainders, where each remainder is represented by a
truth assignment, and not by a Horn formula for Env(K V
C.,). This begs the question, considered in the next section,
whether Horn formulas for Env(K V C,;) can be computed
efficiently?

Horn envelopes

As Proposition 1 shows, remainders are closely related to
Horn envelopes, introduced by (Selman and Kautz 1996) in
the context of knowledge compilation. It was shown in (Sel-
man and Kautz 1996) that Horn envelopes can blow up in
size or can be hard to compute. We have studied the com-
putational aspects of Horn envelopes recently in (Langlois,
Sloan, and Turdn 2009). The special case of computing
the Horn envelope of the disjunction of two Horn formu-
las has been considered in (Eiter, Ibaraki, and Makino 2001;
Eiter and Makino 2008). They showed negative results anal-
ogous to the general case. Proposition 1 suggests consider-
ing the special case where one of the Horn formulas is an
elementary conjunction, i.e., it is satisfied by a single truth
assignment.

Definition 5 (Singleton Horn Extension (SHE) problem).
Given a definite Horn belief set K and a truth assignment
a falsifying K, compute the Horn envelope Env(K V C,).

We formulate a simple proposition concerning envelopes
of disjunctions.

Proposition 6. Let 11,2 be arbitrary formulas and let
Horn clause C be a prime implicate of 1, and an implicate
of Ya. Then C' a prime implicate of Env (i1 V 19).

Later in this section we show that the SHE problem is in-
tractable in general, as it may be the case that every Horn
formula representing the output must be exponentially large
compared to the input size. This negative result does not
depend on any unproven complexity theoretic assumptions.
On the other hand, it assumes that the output has to be rep-
resented as a Horn formula. In view of the negative result

it is of interest to identify cases where the problem has an
efficient solution. We begin with such positive results.

Positive results

The following proposition shows that Env(K Vv C,) has
an explicit description in terms of the prime implicates of
K. Let PI(K) denote the set of prime implicates of K,
and PI'(K, a), resp., PI°(K,a) be the set of prime im-
plicates of K satisfied, resp., falsified by a. We write
a=(ay,...,a,)and 2! = 2,2° = 7.

Proposition 7. Env(K V C,) can be written as

A oclnt A A

CePI'(K,a) CePIY(K,a) {i:xz;(a)=0}

(CV )

Proof. We show that Env(K V C,) is logically equivalent

to
A (CV ) . 2)

CePI(K),CVz;? definite

This, then, can be rewritten in the form stated in the propo-
sition. The ‘=’ direction follows by noting that by distribu-
tivity, every clause in (2) is a Horn implicate of K V C,, and
thus it is an implicate of Env(K V C,). For the other direc-
tion, consider a Horn prime implicate D of K V C,. Then
D is an implicate of K. Let D’ C D be a prime implicate of
K. As C,(a) = 1, itholds that D(a) = 1 and so D contains
aliteral ;. But then D’ V z{* occurs in (2), and so D is an
implicate of (2). O

Proposition 7 does not lead to an efficient algorithm for
computing Env(K V C,) in general, as K can have expo-
nentially many prime implicates compared to its size. An
example is given in (Khardon 1995), and a similar example
is given in the next subsection. Nevertheless, one can draw
positive algorithmic consequences, and we formulate two of
those. We use the fact that the prime implicates of a Horn
formula can be listed efficiently (Boros, Crama, and Ham-
mer 1990).

Corollary 8. The SHE problem can be solved in time poly-
nomial in the size of K and the number of prime implicates
of K.

Proof. The algorithm first runs Boros et al.’s algorithm to
generate the prime implicates of K and then uses Proposi-
tion 7 to produce Env(K V C,). O

Corollary 8 provides efficient algorithms for any class of
belief sets with small number of prime implicates. One such
class is quadratic Horn formulas. A definite Horn formula is
quadratic if its clauses are of size two, i.e., they are of the
form a — b.

Corollary 9. The SHE problem can be solved efficiently for
quadratic belief sets K.

Proof. Resolution of size two clauses is again of size two,
and hence an n-variable quadratic belief set has O(n?)
prime implicates. O
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Figure 1: The belief set K3

Quadratic Horn formulas are one of the tractable sub-
classes of Horn formulas for problems which are hard for
Horn formulas in general, such as minimization. The other
tractable class is acyclic formulas: a definite Horn formula
is acyclic if the directed graph over the set of variables, ob-
tained by adding a directed edge from every body variable to
the head variable, has no directed cycles (Boros et al. 2010).
It is tempting to conjecture that the SHE problem might also
be tractable for acyclic formulas. The next subsection shows
that this is not the case.

Variants of Proposition 7 can be formulated for formulas
over other sets of clauses satisfying some general conditions,
along the lines of (del Val 2005). This may be of interest for
belief change over other restricted logics.

A negative result

Consider variables u; j,v; and w, where 1 < ¢ < n,1 <
7 < 2, and let the Horn belief set K, be given by the 2n + 1
Horn clauses

Ui 5 — Vi, 1§i§n,1§j§2

and
Viyeooy Up — W.

The belief set K3 is shown in Figure 1. Note that K, is
acyclic. Furthermore, let a,, be the truth assignment setting
all u-variables to 1, all v-variables to 0 and w to 1. Clearly
a,, falsifies K,,.

Now we turn to the negative result.

Theorem 10. Every Horn formula representing Env(K,, V
C,,,) has at least 2" clauses.

We prove a stronger statement which will be used in the
next section in the discussion of partial meet contractions.

Let A be a set of truth assignments to the variables u; ;, v;
and w (where 1 < ¢ < n,1 < j < 2) such that in every
a € A the u-variables and w are set to 1 and vy is set to
0. Assume, furthermore, that there are altogether £ > 1
variables which are set to O in at least one @ € A. It can be
assumed w.l.o.g. that these variables are vy, . . ., vg.

Theorem 11. Every Horn formula representing

Env (Kn v/ Ca>

a€cA

contains at least 2% clauses.

Proof. Let x be a Horn formula representing
Env (Kn VVaea C’a). Note that K, is definite, so it
is satisfied by the all ones vector. Thus x is also satisfied by
the all ones vector and so it is definite as well.

For every s = (s1,...,8%) such that 1 < s; < 2 for
1 =1,..., k consider the clause
ws - (Ul,sla ceoy Uk sy Vk+1y -+ Un — w)

The theorem follows if we show that x contains ;.

The clause 1, is an implicate of K, as after marking
its body variables, we can mark v1, . .., v; and then we can
mark w. Also, 1) is satisfied by all @ € A. Thus 15 is an
implicate of x as well.

It also holds that 1) is a prime implicate of K. Indeed, if
C' = s \ {uis, } forsome 1 <4 < k,orif C" = 9, \ {v;}
for some k£ + 1 < ¢ < n, then the truth assignment setting
U;,1, U;,2,v; and w to 0, and setting all other variables to 1,
satisfies K, and falsifies C’". If C" = v, \ {w} then the all
ones truth assignment satisfies K, and falsifies C".

Let b be the truth assignment for which every body vari-
able in 1) is set to 1 and all other variables are set to 0. As
b falsifies 1), it also falsifies , and so there is a clause C' in
X such that C'(b) = 0. Thus it must be the case that

BOdy(C) Q {ule, e 7uk,8kavk+17 ey Un}.
Furthermore, C' is an implicate of K, thus its head is in
Clk, (Body(C)) \ Body(C) C {vy,..., vk, w}.

Now C'is satisfied by every a € A. Butevery a € A satisfies
the body of C, and every v;(1 < i < k) is falsified by some
a € A. So the head of C' cannot be a v-variable and thus
it must be w. So C' must be a subclause of v, and as
was shown to be a prime implicate of K, it must be equal
to 5. O

A remark on characteristic models

For every Horn formula v the set T'(1) of satisfying truth
assignments is closed under intersection. Those satisfying
truth assignments which cannot be obtained as the intersec-
tion of others are called the characteristic models or char-
acteristic vectors of 1 (Kautz, Kearns, and Selman 1995;
Khardon and Roth 1996). Representing a Horn function by
its set of characteristic vectors is an alternative to the stan-
dard clausal representation. This representation has various
advantages and disadvantages. The clausal and character-
istic set representations are incomparable in the sense that



there are examples where one has polynomial size and the
other has exponential size (Khardon and Roth 1996).

Possible connections of characteristic models to Horn be-
lief contraction are discussed in (Delgrande and Wasser-
mann 2010). Let us assume that the Horn belief set K is
represented by its set of characteristic vectors Char(K).
Then every truth assignment b € T'(K Vv C,) is obtained
as an intersection of vectors in Char(K) U {a}, hence
Char(K V C,) C Char(K) U {a}. The set Char(K V C,)
can be found efficiently by eliminating those vectors from
Char(K) U {a} which can be obtained as the intersection of
vectors above them in the set.

In view of the negative results of the previous section one
may ask whether Env(K Vv C,) has a short Horn formula
representation if, in addition, it holds that Char(K) is small.
Unfortunately, this is not the case as the characteristic set of
the belief set K,, considered above turns out to be small.

Proposition 12.

| Char(K,,)| = ©(n).
Proof. The characteristic models are the following: those
with a single u; ; = 0 and all other variables set to 1, those
with u; 1 = u; 2 = v; = w = 0 for a single 7 and all other
variables set to 1, and those with u; 1 = u; 2 = v; = O fora
single 7 and all other variables set to 1. O

Complexity of Horn belief contraction
In this section we draw conclusions from Theorem 11 for
Horn belief contraction.
A partial meet contraction K~ is an intersection of re-
mainders, thus by Theorem 3 it is of the form

Env <K v/ C’a> 7 3)

acA
where
ACT(K?)NF(p). “)
A maxichoice contraction corresponds to a singleton subset
in (4) and full meet contraction corresponds to equality in
4).

If K is a Horn belief set and Horn formula ¢ is a con-
sequence of K then a weak remainder is a belief set of the
form Env(K V C,) for any a € F() and so the set of weak
remainders is

Kllo={Env(KVC,) :a€F(p)}.

A partial meet contraction based on weak remainders
K~ is of the form (3) where
AC F(p). )

A maxichoice contraction based on weak remainders corre-
sponds to a singleton subset in (5) and full meet contraction
based on weak remainders corresponds to equality in (5).

In order to make use of Theorem 11 in the context of con-
tractions we also need to specify a consequence to be con-
tracted.

Let the implicate ¢,, to be contracted from K,, be

UL Ly ees Uiyjye ey Un2, W — V1.

It is clear that ¢,, is an implicate as after marking uy,; we
can already mark v;.

Proposition 13.
Ky,lon=K, | p,={Eav(K,VC,) : a€Fp,)}

Proof. This follows from Theorem 3 noting that
Clg, (Body(¢n)) is the set of all variables, thus the
body building formula K¢ is the empty conjunction, and so
it is identically true. O

In the following theorem a size lower bound is said to hold
for almost all contractions if the fraction of contractions with
at least that size approaches 1 as n grows.

Theorem 14. Let us consider contractions, or weak remain-
der based contractions of the consequence ,, from the be-
lief set K,,.

a) Every Horn formula representation of the full meet con-
traction contains at least 2™ clauses.

b) For every € > 0 and for almost all maxichoice
contractions, every Horn representation contains at least
2((/2)=n clgyses.

¢) For almost all partial meet contractions, every Horn
representation contains at least 2" clauses.

Further remarks

We have shown that every Horn representation of the full
meet contraction, and most maxichoice and partial meet
contractions of the belief set K, with respect to its conse-
quence @, must be exponentially large. This belief set is
simple and natural in the sense that it can be thought of as
consisting of observable propositions u;_ ;, intermediate con-
clusions (hidden nodes?) v; and a final conclusion w, where
each u; ; is sufficient to cause v; and all v;’s are necessary
to cause w. The fact that contractions of such a simple belief
set may blow up in size may indicate that this phenomenon
occurs more often than just for an artificially constructed
pathological example. It would be interesting to perform
experiments exploring this. More generally, it would be
of interest to gather computational experience about vari-
ous other aspects of Horn belief contractions (some initial
results are given in (Langlois et al. 2008)).

In view of the fact that fully AGM-compliant Horn-
contractions do not exist in the sense of (Flouris, Plex-
ousakis, and Antoniou 2004; Flouris 2006) it was suggested
in (Langlois et al. 2008) that one might study the possibili-
ties of approximating them. The negative results in the cur-
rent paper give a different motivation for such an approach:
when the result of a contraction is too large, approximate it
with a smaller one. This may be related to anytime belief
revision algorithms (Williams 1997).

The results of this paper also suggest several specific
questions for further study, such as considering the com-
plexity of infra-remainders (Booth, Meyer, and Varzinczak
2009) and package contraction (Delgrande and Wassermann
2010), and proving complexity-theoretic hardness results
for the SHE problem analogous to the results of (Eiter and
Makino 2008).



References

Adaricheva, K., and Nation, J. B. 2011. Ordered direct
implication basis of a finite closure system. Preprint, 18
pages.

Alchourrén, C. E.; Girdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. J. Symb. Logic 50(2):510-530.

Bertet, K., and Monjardet, B. 2010. The multiple facets of
the canonical direct unit implicational basis. Theoret. Com-
put. Sci. 411(22-24):2155-2166.

Booth, R.; Meyer, T.; Varzinczak, I.; and Wassermann, R.
2010. A contraction core for Horn belief change: Prelimi-
nary report. In Proc. 13th Int. Workshop on Non-Monotonic
Reasoning (NMR).

Booth, R.; Meyer, T.; and Varzinczak, I. 2009. Next steps in
propositional Horn contraction. In Proc. IJCAI, 702-707.

Boros, E.; Cepek, O.; Kogan, A.; and Kucera, P. 2010. Ex-
clusive and essential sets of implicates of Boolean functions.
Discrete Appl. Math. 158(2):81 — 96.

Boros, E.; Crama, Y.; and Hammer, P. L. 1990. Polynomial-
time inference of all valid implications for Horn and related
formulae. Annals of Mathematics and Artificial Intelligence
1(1):21-32.

Burosch, G.; Demetrovics, J.; and Katona, G. O. H. 1987.
The poset of closures as a model of changing databases. Or-
der 4(2):127-142.

Caspard, N., and Monjardet, B. 2003. The lattices of closure
systems, closure operators, and implicational systems on a
finite set: a survey. Discrete Appl. Math. 127(2):241-2609.

del Val, A. 2005. First order LUB approximations: charac-
terization and algorithms. Artificial Intelligence 162(1-2):7—
48.

Delgrande, J. P., and Wassermann, R. 2010. Horn clause
contraction functions: Belief set and belief base approaches.
In Proc. Twelfth Int. Conf. Principles of Knowledge Repre-
sentation and Reasoning (KR).

Delgrande, J. P. 2008. Horn clause belief change: Contrac-
tion functions. In Proc. 11th Int. Conf. Principles of Knowl-
edge Representation and Reasoning (KR), 156—165.

Eiter, T., and Gottlob, G. 1992. On the complexity of propo-
sitional knowledge base revision, updates, and counterfactu-
als. Artificial Intelligence 57:227-270.

Eiter, T., and Makino, K. 2008. New results for Horn cores
and envelopes of Horn disjunctions. In Proc. ECAI: 18th
European Conference on Artificial Intelligence, 60—64.

Eiter, T.; Ibaraki, T.; and Makino, K. 2001. Disjunctions of
Horn theories and their cores. SIAM Journal on Computing
31(1):269-288.

Flouris, G.; Plexousakis, D.; and Antoniou, G. 2004. Gen-
eralizing the AGM postulates: Preliminary results and ap-
plications. In Proc. 10th Int. Workshop on Non-Monotonic
Reasoning (NMR), 171-179.

Flouris, G. 2006. On Belief Change and Ontology Evolution.
Ph.D. Dissertation, Dept. of Computer Science, University
of Crete.

Fotinopoulos, A. M., and Papadopoulos, V. 2009. Seman-
tics for Horn contraction. In Proc. 7th Panhellenic Logic
Symposium, 42—47. Patras University Press.

Freese, R. 1995. Free Lattices. American Mathematical
Society.

Goldberg, L. A. 1993. Efficient Algorithms for Listing Com-
binatorial Objects. Distinguished Dissertations in Computer
Science. Cambridge University Press.

Hansson, S. O. 1999. A Textbook on Belief Dynamics: The-
ory Change and Database Updating. Kluwer.

Horn, A. 1951. On sentences which are true on direct unions
of algebras. J. Symb. Logic 16:14-21.

Johnson, D. S.; Yannakakis, M.; and Papadimitriou, C. H.
1988. On generating all maximal independent sets. Infor-
mation Processing Letters 27:119-123.

Kautz, H. A.; Kearns, M. J.; and Selman, B. 1995. Horn
approximations of empirical data. Artificial Intelligence
74(1):129-145.

Khardon, R., and Roth, D. 1996. Reasoning with models.
Artificial Intelligence 87(1-2):187-213.

Khardon, R. 1995. Translating between Horn represen-
tations and their characteristic models. J. Artif. Intell. Re-
search (JAIR) 3:349-372.

Kleine Biining, H., and Lettmann, T. 1987. Representation
independent query and update operations on propositional
definite Horn formulas. In Computation Theory and Logic,
volume 270 of LNCS. Springer. 208-223.

Kleine Biining, H., and Lettmann, T. 1999. Propositional
Logic: Deduction and Algorithms. Cambridge University
Press.

Langlois, M.; Sloan, R. H.; Szorényi, B.; and Turédn, G.
2008. Horn complements: Towards Horn-to-Horn belief re-
vision. In Proc. AAAI 2008, 466—471.

Langlois, M.; Sloan, R. H.; and Turdn, G. 2009. Horn up-
per bounds and renaming. JSAT: Journal on Satisfiability,
Boolean Modeling and Computation 7:1-15.

Liberatore, P. 2000. Compilability and compact represen-
tations of revision of Horn knowledge bases. ACM Trans.
Computational Logic 1(1):131-161.

McKinsey, J. C. C. 1943. The decision problem for some
classes without quantifiers. J. Symb. Logic 8:61-76.

Peppas, P. 2008. Belief revision. In Handbook of Knowl-
edge Representation, volume 3 of Foundations of Artificial
Intelligence. Elsevier. chapter 8, 317-359.

Selman, B., and Kautz, H. 1996. Knowledge compilation
and theory approximation. Journal of the ACM 43:193-224.

Williams, M. A. 1997. Anytime belief revision. In Proc.
1JCAI, volume 15, 74-81.

Zhuang, Z., and Pagnucco, M. 2010. Horn contraction
via epistemic entrenchment. Logics in Artificial Intelligence
339-351.

Zhuang, Z., and Pagnucco, M. 2011. Two methods for con-
structing Horn contractions. In Proc. Al 2010: Advances in
Artificial Intelligence, volume 6464 of LNCS, 72-81.



