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Abstract
In this paper, we use the notions of relative interpretations and
definable models from mathematical logic to compare differ-
ent ontologies and also to evaluate the limitations of particu-
lar ontologies. In particular, we characterize the relationship
between the theories within the first-order PSL Ontology and
two other ontologies – a first-order theory of time and Reiter’s
second-order axiomatization of situation calculus.

1 Introduction
Representing activities and the constraints on their occur-
rences is an integral aspect of commonsense reasoning, par-
ticularly in manufacturing, enterprise modelling, and au-
tonomous agents or robots. There have been a variety of pro-
cess ontologies developed within the artificial intelligence
community, particularly in the context of robotics and plan-
ning systems.

In this paper, we use the notions of relative interpretations
and definable models to compare different process ontolo-
gies and also to evaluate the limitations of particular ontolo-
gies. In particular, we characterize the relationship between
the theories within the first-order PSL Ontology and two
other ontologies – a first-order theory of time and Reiter’s
second-order axiomatization of situation calculus. There are
two major kinds of results – relative interpretation theorems
(which show the conditions under which two ontologies are
equivalent), and nondefinability theorems (which show that
one ontology is in some sense stronger since it is able to
define concepts that other ontologies cannot define).

2 Relationships between Theories
Different ontologies within the same language can be com-
pared using the notions of satisfiability, entailment, and in-
dependence. More difficult is to compare ontologies that are
axiomatized in different languages; in such cases, we need to
determine whether or not the lexicon of one ontology can be
interpreted in the lexicon of the other ontology. In this sec-
tion, we review the basic concepts from model theory that
will supply us with the techniques for comparing ontologies
in different languages.

2.1 Relative Interpretations of Theories
We will adopt the following definition from (Enderton
1972):

Definition 1 An interpretation π of a theory T0 with lan-
guage L0 into a theory T1 with language L1 is a function
on the set of parameters of L0 such that
1. π assigns to ∀ a formula π∀ of L1 in which at most v1

occurs free, such that

T1 |= (∃v1) π∀
2. π assigns to each n-place relation symbol P a formula πP

of L1 in which at most the variables v1, ..., vn occur free.
3. π assigns to each n-place function symbol f a formula πf

of L1 in which at most the variables v1, ..., vn, vn+1 occur
free, such that

T1 |= (∀v1, ..., vn) π∀(v1) ∧ ... ∧ π∀(vn)

⊃ (∃x)(π∀(x)∧((∀vn+1)(πf (v1, ..., vn+1) ≡ (vn+1 = x))))
4. For any sentence σ in L0,

T0 |= σ ⇒ T1 |= π(σ)

2.2 Definable Interpretations
Relative interpretations specify mappings between theories;
we are also interested in specifying mappings between mod-
els of the theories. Such an approach will also provide with
a means of proving that no relative interpretation exists be-
tween two particular theories.

We begin with the notion of definable sets within a struc-
ture.
Definition 2 Let M be a structure in a language L.

A set X ⊆ Mn is definable in M iff there is a formula
ϕ(v1, ..., vn, w1, ..., wm) of L and b ∈Mm such that

X = {a ∈Mn : M |= ϕ(a, b)}
X isA-definable if there is a formula ψ(v, w1, ..., wl) and

b ∈ Al such that

X = {a ∈Mn : M |= ϕ(a,b)}
Using this definition, we can adopt the following ap-

proach from (Marker 2002):
Definition 3 Let N be a structure in L0 and let M be a
structure in L. We say that N is definable in M iff we can
find a definable subset X of Mn and we can interpret the
symbols of L0 as definable subsets and functions on X so
that the resulting structure in L0 is isomorphic to N .



The relationship between relative interpretations of theo-
ries and definable interpretations of structures is captured in
a straightforward way by the following proposition:
Proposition 1 If there exists an interpretation of T1 into T2,
then every model of T1 is definable in some model of T2.

Our primary tool for proving that the models of one on-
tology are not definable in the models of another ontology
will be the following proposition from (Marker 2002):
Proposition 2 Let M be a structure. If X ⊂ Mn is A-
definable, then every automorphism of M that fixes the set
A pointwise fixesX setwise (that is, if σ is an automorphism
of M and σ(a) = a for all a ∈ A, then σ(X) = X).

Using this proposition, we can show that a relation is not
definable in some structure if there exists an automorphism
of the structure that does not preserve the relation.

3 Definability and Time Ontologies
3.1 Linear Time with Endpoints
Consider the ontology Tlinear−time

1 of linear time without
endpoints (Hayes 1996). The countable models of this on-
tology are isomorphic to countably infinite linear orderings
with no initial or final element.
Lemma 1 Let T be a model of Tlinear time that is either dis-
crete or dense.

The set of automorphisms Aut(T ) does not fix any time-
points.
Proof: A model T of Tlinear time is discrete iff it con-

tains an elementary subordering that isomorphic to Z, and
Aut(Z) does not fix any elements of Z.
A model T of Tlinear time is dense iff it contains an ele-
mentary subordering that is isomorphic to Q, and Aut(Q)
does not fix any elements of Q. 2

In other words, for any timepoint in T , there exists an-
other timepoint which is the image of some automorphism
of T , whenever T is either discrete or dense.

3.2 Relationship to PSL-Core
The purpose of PSL-Core ((Gruninger 2004), (Bock &
Gruninger 2005)) is to axiomatize a set of intuitive seman-
tic primitives that are adequate for describing the funda-
mental concepts of manufacturing processes. Consequently,
this characterization of basic processes makes few assump-
tions about their nature beyond what is needed for describing
those processes, and it is therefore rather weak in terms of
logical expressiveness.

Within PSL-Core 2, there are four kinds of entities re-
quired for reasoning about processes – activities, activity oc-
currences, timepoints, and objects. Activities may have mul-
tiple occurrences, or there may exist activities which do not

1The axioms for Tlinear−time in CLIF (Com-
mon Logic Interchange Format) can be found at
http://www.stl.mie.utoronto.ca/colore/
linear-time.clif

2The axiomatization of PSL-Core (also re-
ferred to as Tpslcore) in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
psl core.html

occur at all. Timepoints are linearly ordered, forwards into
the future, and backwards into the past. Finally, activity oc-
currences and objects are associated with unique timepoints
that mark the begin and end of the occurrence or object.
Lemma 2 A model of Tpslcore in which the ordering over
timepoints is either discrete or dense is not definable in any
model of Tlinear−time.
Proof: Let T be a model of Tlinear time and let M be a

model of Tpslcore in which the ordering over timepoints is
either discrete or dense.
By Lemma 1, the set of automorphisms Aut(T ) does not
fix any timepoints, so that for any timepoint t there exists
ϕ ∈ Aut(T ) such that ϕ(t) 6= t.
Since beginof is a function, activity occurrences have
unique beginning timepoints, so that we have

〈o, t〉 ∈ beginof ⇒ 〈o, ϕ(t)〉 6∈ beginof

By Proposition 2, the beginof function is not definable
in T , and hence M is not definable in T . 2

Theorem 1 There does not exist an interpretation of Tpslcore

into Tlinear−time.
Proof: This follows from Proposition 1 and Lemma 1. 2

By Theorem 1, we cannot use a time ontology alone to
reason about activities and their occurrences.

4 Definability and Situation Calculus
In this section, we characterize the relationship between Re-
iter’s second-order axiomatization of the situation calculus
and three core theories within the first-order PSL Ontology.

4.1 Axiomatization of Situation Calculus
Consider the theory Tsitcalc which is Reiter’s second-order
axiomatization of the situation calculus ((Reiter 2001),
(Levesque et al. 1997)). Let Tsittime be Pinto’s axioma-
tization of time for situation trees ((Pinto & Reiter 1995))
and let Tsitfluent be Pinto’s axiomatization of the holds re-
lation3.

4.2 Relationship to PSL-Core
Theorem 2 There exists an interpretation of Tpslcore into
Tsitcalc ∪ Tsittime.
Proof: Suppose

πoccurrence of (s, a) = ((∃s1) s = do(a, s1))

πactivity(a) = ((∃s1, s2) s = do(a, s1))
πactivity occurrence(s) = ((∃a, s1) s = do(a, s1))

πtimepoint(t) = ((∃s) (start(s) = t))

3The axioms of Tsitcalc in CLIF can be found at
http://stl.mie.utoronto.ca/colore/
sitcalc.clif.

The axioms of Tsittime can be found at
http://stl.mie.utoronto.ca/colore/
sittime.clif. The axioms of Tsitfluent can be found at
http://stl.mie.utoronto.ca/colore/
sitfluent.clif.



πbeginof (s, t) = ((start(s) = t))
πendof (s, t) = ((∃a) (end(s, a) = t))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime entail the axioms of Tpslcore.
2

Of course, it is not surprising to see that there exists an
interpretation of Tpslcore into Tsitcalc ∪ Tsittime, since the
theory Tpslcore was designed to be the weakest process on-
tology that is shared by other process ontologies.

4.3 Relationship to Occurrence Trees
Within the PSL Ontology, the theory Tocctree extends the
theory of Tpslcore

4. An occurrence tree is a partially ordered
set of activity occurrences, such that for a given set of activi-
ties, all discrete sequences of their occurrences are branches
of the tree.

An occurrence tree contains all occurrences of all activ-
ities; it is not simply the set of occurrences of a particu-
lar (possibly complex) activity. Because the tree is discrete,
each activity occurrence in the tree has a unique successor
occurrence of each activity. Every sequence of activity oc-
currences has an initial occurrence (which is the root of an
occurrence tree).

Although occurrence trees characterize all sequences of
activity occurrences, not all of these sequences will intu-
itively be physically possible within the domain. We there-
fore consider the subtree of the occurrence tree that consists
only of possible sequences of activity occurrences; this sub-
tree is referred to as the legal occurrence tree.

Occurrence trees are closely related to situation trees,
which are the models of Reiter’s axiomatization of situation
calculus; the following theorems make this intuition more
precise.
Theorem 3 There exists an interpretation of Tocctree ∪
Tpslcore into Tsitcalc ∪ Tsittime.
Proof: Suppose

πearlier(s1, s2) = s1 < s2

πgenerator(a) = (∃s1, s2) s = do(a, s1)
πarboreal(s) = (∃a, s1) s = do(a, s1)

πsuccessor(a, s) = do(a, s)
πinitial(s) = (s = do(a, S0))
πlegal(s) = (executable(s))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime entail the axioms of Tocctree∪
Tpslcore. 2

What of the converse direction – does there exist an inter-
pretation of Tsitcalc ∪ Tsittime into Tocctree ∪ Tpslcore. The
primary difference between Tocctree and Tsitcalc is the ex-
istence of models of Tocctree that are occurrence trees with
branches that are not isomorphic to the standard models of
the theory Th(N, 0, S,<); such trees cannot be isomorphic
to situation trees.

4The axioms of Tocctree in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/occtree.th.html

Definition 4 WFAS is the first-order axiom schema

(∀s) (φ(s) ∧ arboreal(s))

⊃ ((∃x)φ(x)∧earlier(x, s)∧((∀y)earlier(y, x) ⊃ ¬φ(y)))
for any first-order formula φ(x).
This axiom schema is equivalent to saying that all first-order
definable sets of elements in an occurrence tree are well-
founded.
Theorem 4 Let ACA be a sentence of the form

(∀a, s1, s2) (s2 = do(a, s1)) ⊃ (a = A1) ∨ ... ∨ (a = An)

There exists an interpretation of Tsitcalc ∪ ACA into
Tocctree ∪ Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

π<(S0, s2) = (∃s) initial(s)∧(earlier(s, s2)∨(s = s2)

(s1 6= S0) ⇒ π<(s1, s2) = earlier(s1, s2)
πdo(a, S0) = (∃s) initial(s) ∧ occurrence of(s, a)

(s1 6= S0) ⇒ πdo(a, s) = successor(a, s)
πexecutable(s) = (legal(s))

Since the interpretation of theories is specified with re-
spect to first-order entailment, we only need to show that
the first-order consequences are preserved by the interpre-
tation.
The techniques introduced in (Doets 1989) and (Backofen,
Rogers, & Vijay-Shanker 1995) can be used to show that
the models of Tocctree∪Tpslcore∪WFAS are elementarily
equivalent to models of Tsitcalc ∪ACA. 2

4.4 Relationship to Discrete States
Most applications of process ontologies are used to rep-
resent dynamic behaviour in the world so that intelligent
agents may make predictions about the future and expla-
nations about the past. In particular, these predictions and
explanations are often concerned with the state of the world
and how that state changes. The PSL core theory Tdisc state

is intended to capture the basic intuitions about states and
their relationship to activities5.

Within the PSL Ontology, state is changed by the occur-
rence of activities. Intuitively, a change in state is captured
by a state that is either achieved or falsified by an activ-
ity occurrence. Furthermore, state can only be changed by
the occurrence of activities. Thus, if some state holds af-
ter an activity occurrence, but after an activity occurrence
later along the branch it is false, then an activity must oc-
cur at some point between that changes the state. This also
leads to the requirement that the state holding after an ac-
tivity occurrence will be the same state holding prior to any
immediately succeeding occurrence, since there cannot be
an activity occurring between the two by definition.
Theorem 5 There exists an interpretation of Tdisc state ∪
Tocctree ∪ Tpslcore into Tsitcalc ∪ Tsittime ∪ Tsitfluent.

5The axioms of Tdisc state in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/disc state.th.html



Proof: Suppose

(s 6= S0) ⇒ πholds(f, s) = holds(f, s)

πprior(f, s) = (((∀s, s′, a) s = do(a, s′) ⊃ holds(f, s))
∧(((∃s, s′, a) s = do(a, s′)) ∨ holds(f, S0)))

It is straightforward to verify that these mappings and the
axioms of Tsitcalc∪Tsittime∪Tsitfluent entail the axioms
of Tdisc state ∪ Tocctree ∪ Tpslcore. 2

The interpretation of situation calculus into the PSL On-
tology requires an additional assumption that the set of flu-
ents in any model be finite and bounded.
Theorem 6 Let FCA be a sentence of the form

(∀f, s) holds(f, s) ⊃ (f = F1) ∨ ... ∨ (f = Fm)

There exists an interpretation of Tsitcalc ∪ Tsittime ∪
Tsitfluent ∪ ACA ∪ FCA into Tdisc state ∪ Tocctree ∪
Tpslcore ∪WFAS.
Proof: (Sketch) Suppose

πholds(f, s) = holds(f, s)

πholds(f, S0) = (∃s) initial(s) ∧ prior(f, s)
As with Theorem 4, the techniques introduced in (Doets
1989) and (Backofen, Rogers, & Vijay-Shanker 1995) can
be used to show that the models of Tdisc state ∪Tocctree ∪
Tpslcore ∪WFAS are elementarily equivalent to models
of Tsitcalc ∪ Tsittime ∪ Tsitflent ∪ACA ∪ FCA. 2

Although Tsitcalc ∪ Tsittime ∪ Tsitfluent cannot be inter-
preted into Tdisc state∪Tocctree∪Tpslcore without the axiom
schema, we can show that the two theories are equivalent
with respect to a restricted class of first-order sentences.
Theorem 7 Let Q(s) be a simple state formula in the lan-
guage of Tsitcalc and let Q′(s) be the the image of the for-
mula under the interpretation into Tdisc state ∪ Tocctree ∪
Tpslcore.

For any model M of Tsitcalc ∪Tsittime ∪Tsitfluent there
exists a modelN of Tdisc state∪Tocctree∪Tpslcore such that

Th(M) |= (∀s)Q(s) ⇔ Th(N ) |= (∀s)Q′(s)

and

Th(M) |= (∃s)Q(s) ⇔ Th(N ) |= (∃s)Q′(s)

Proof: (Sketch) Axioms 6 and 7 of Tdisc state are logi-
cally equivalent to the instantiation of the axiom schema
WFAS for positive and negative holds literals, respec-
tively. Since simple state formulae are finite boolean
combinations of positive and negative holds literals with
the same activity occurrence variable, the instantiation of
WFAS for a simple state formula is logically equivalent
to a finite boolean combination of sentences that are en-
tailed by Tdisc state ∪ Tocctree ∪ Tpslcore. 2

The first sentence in Theorem 7 corresponds to the clas-
sical planning problem, while the second sentence corre-
sponds to the entailment of state constraints. By this the-
orem, the PSL Ontology entails the same set of plans and
state constraints as Tsitcalc.

5 Nondefinability Theorems
In this section, we show that the remaining core theories
in the PSL Ontology cannot be interpreted in Tsitcalc ∪
Tsittime.

5.1 Automorphisms of Situation Trees
All of the nondefinability theorems rest on the characteriza-
tion of the automorphisms of situation trees and the failure
of these automorphisms to preserve the sets that correspond
to the extensions of the functions and relations in models of
the PSL Ontology. We introduce three lemmas that char-
acterize properties of the automorphisms of situation trees
which will be used in later proofs.
Lemma 3 Let R be a model of Tsitcalc ∪ Tsittime and let
Aut(R) be the set of automorphisms of R.

For any ϕ ∈ Aut(R) and any element o of the situation
tree, o and ϕ(o) must be on different branches of the situa-
tion tree.
Lemma 4 Let R be a model of Tsitcalc ∪ Tsittime.

The set of automorphisms Aut(R) of a situation tree is
transitive on the set of situations that are the successors of a
situation in the tree.
Lemma 5 Let R be a model of Tsitcalc ∪ Tsittime.

The set of automorphisms Aut(R) of a situation tree is
transitive on the set of actions in R.

5.2 Relationship to Subactivities
The theory Tsubactivity in PSL Ontology uses the
subactivity relation to capture the basic intuitions for the
composition of activities6. This relation is a discrete par-
tial ordering, in which primitive activities are the minimal
elements.
Lemma 6 A model M of Tsubactivity ∪ Tpslcore with non-
primitive activities is not definable in any model of Tsitcalc∪
Tsittime.
Proof: We will show that the subactivity relation in M is

not definable in any model of Tsitcalc ∪ Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of actions in R; thus,
there exists ϕ ∈ Aut(R) and distinct actions a1,a2 such
that ϕ(a1) = a2. By the following axiom of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a1,a2〉 ∈ subactivity ⇒ 〈ϕ(a1), ϕ(a2)〉 6∈ subactivity

By Proposition 2, the subactivity relation is not defin-
able in R, and hence M is not definable in R. 2

Theorem 8 There does not exist an interpretation of
Tsubactivity ∪ Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 6 and Lemma 1. 2

6The axioms of Tsubactivity in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/subactivity.th.html



5.3 Relationship to Atomic Activities
The primary motivation behind the core theory Tatomic in
the PSL Ontology is to capture intuitions about the occur-
rence of concurrent activities7. The core theory Tatomic in-
troduces the function conc that maps any two atomic activ-
ities to the activity that is their concurrent composition. Es-
sentially, an atomic activity corresponds to some set of prim-
itive activities, so that every concurrent activity is equivalent
to the composition of a set of primitive activities.
Lemma 7 A model M of Tatomic ∪ Tsubactivity ∪ Tpslcore

with nonatomic activities is not definable in any model of
Tsitcalc ∪ Tsittime.
Proof: We will show that the conc function and atomic

relation in M are not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 5, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of actions in R; thus
there exists ϕ ∈ Aut(R) and actions a1,a2,a3 such that
a3 = conc(a1,a2) and

ϕ(a1) = a1, ϕ(a2) = a2, ϕ(a3) = a3

It is easy to see that

ϕ(conc(a1,a2)) 6= conc(ϕ(a1), ϕ(a2))

There also exists ϕ ∈ Aut(R) and distinct actions a1,a2

such that ϕ(a1) = a2 and

〈a1,a2〉 ∈ subactivity

〈a1〉 ∈ atomic, 〈a2〉 6∈ atomic
By the following axiom of Tsubactivity

(∀a1, a2)subactivity(a1, a2)∧subactivity(a2, a1) ⊃ (a1 = a2)

we have

〈a〉 ∈ atomic ⇒ 〈ϕ(a)〉 6∈ atomic

By Proposition 2, the conc function and atomic relation
are not definable inR, and henceM is not definable inR.
2

Theorem 9 There does not exist an interpretation of
Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into Tsitcalc ∪
Tsittime.
Proof: This follows from Lemma 7 and Lemma 1. 2

5.4 Relationship to Complex Activities
The core theory Tcomplex characterizes the relationship be-
tween the occurrence of a complex activity and occurrences
of its subactivities8. Occurrences of complex activities cor-
respond to sets of occurrences of subactivities; in particular,
these sets are subtrees of the occurrence tree. An activity

7The axioms of Tatomic in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/atomic.th.html

8The axioms of Tcomplex in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/complex.th.html

tree consists of all possible sequences of atomic subactivity
occurrences beginning from a root subactivity occurrence.
In a sense, activity trees are a microcosm of the occurrence
tree, in which we consider all of the ways in which the world
unfolds in the context of an occurrence of the complex ac-
tivity.

Lemma 8 A modelM of Tcomplex∪Tatomic∪Tsubactivity∪
Tpslcore with nonatomic activities such that not all activity
occurrences are elements of nontrivial activity trees is not
definable in any model of Tsitcalc ∪ Tsittime.
Proof: We will show that the root and min precedes re-

lations in M are not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of situations that are the
successors of any situation in the tree.
There exists ϕ1 ∈ Aut(R) such that for any s1, s2 that are
successors of the same element of the situation tree such
that ϕ1(s1) = s2 and such that s1 is not an element of any
nontrivial activity tree and s2 is an element of a nontrivial
activity tree.
If s2 is a root of an activity tree, then there exists ϕ1 ∈
Aut(R) such that

〈s,a〉 ∈ root ⇒ 〈ϕ1(s),a〉 6∈ root

If s2 is not a root of an activity tree, then there exists ϕ2 ∈
Aut(R) such that

〈s1, s2,a〉 ∈ min precedes ⇒

〈ϕ2(s1), ϕ2(s2), ϕ2(a)〉 6∈ min precedes

By Proposition 2, the root and min precedes relations
are not definable inR, and henceM is not definable inR.
2

Theorem 10 There does not exist an interpretation of
Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪ Tpslcore into
Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 8 and Lemma 1. 2

5.5 Relationship to Complex Activity
Occurrences

Within Tcomplex, complex activity occurrences correspond
to activity trees, and consequently occurrences of complex
activities are not elements of the legal occurrence tree. The
axioms of the core theory Tactocc ensure complex activity
occurrences correspond to branches of activity trees9. Each
complex activity occurrence has a unique atomic root oc-
currence and each finite complex activity occurrence has a
unique atomic leaf occurrence. A subactivity occurrence
corresponds to a sub-branch of the branch corresponding to
the complex activity occurrence.

9The axioms of Tactocc in CLIF can be found at
http://www.mel.nist.gov/psl/psl-ontology/
part12/actocc.th.html



Lemma 9 A model M of Tactocc ∪ Tcomplex ∪ Tatomic ∪
Tsubactivity ∪ Tpslcore with occurrences of nonatomic activ-
ities is not definable in any model of Tsitcalc ∪ Tsittime.
Proof: We will show that the subactivity occurrence

relation in M is not definable in any model of Tsitcalc ∪
Tsittime.
Let R be a model of Tsitcalc ∪ Tsittime.
By Lemma 4, the set of automorphisms Aut(R) of a sit-
uation tree is transitive on the set of situations that are
the successors of any situation in the tree. Furthermore,
Aut(R) only acts on elements of the situation tree, so that
it fixes occurrences of complex activities.
By Lemma 3, any ϕ ∈ Aut(R) maps elements of a branch
of the situation tree to another branch of the situation tree;
however, the axioms of Tactoc entail that all subactivity
occurrences of a complex activity occurrences must be on
the same branch of the tree. Thus, for any activity occur-
rence o1 that is an element of the situation tree and any
complex activity occurrence o2, there exists ϕ ∈ Aut(R)
such that

〈o1,o2〉 ∈ subactivity occurrence ⇒

〈ϕ(o1),o2〉 6∈ subactivity occurrence

By Proposition 2, the subactivity occurrence relation
is not definable in R, and hence M is not definable in R.
2

Theorem 11 There does not exist an interpretation of
Tactocc ∪ Tcomplex ∪ Tatomic ∪ Tsubactivity ∪ Tocctree ∪
Tpslcore into Tsitcalc ∪ Tsittime.
Proof: This follows from Lemma 9 and Lemma 1. 2

6 Summary
In this paper we have characterized the relationship between
the PSL Ontology and two other ontologies – a time ontol-
ogy and Reiter’s second-order axiomatization of situation
calculus. With the addition of a first-order axiom schema
and the restriction to finite domains of activities and fluents,
elements of the PSL Ontology are elementarily equivalent
to models of the situation calculus axiomatization. Further-
more, the core theories in PSL Ontology that axiomatize
subactivities and complex activities are not definable in the
situation calculus.
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