
Tractable First-Order Golog with Disjunctive Knowledge Bases

Jens Claßen and Gerhard Lakemeyer
Department of Computer Science

RWTH Aachen University
Germany

〈classen|gerhard〉@cs.rwth-aachen.de

Abstract

While based on the Situation Calculus, current implemen-
tations of the agent control language Golog typically avoid
offering full first-order capabilities, but rather resort to the
closed-world assumption for the sake of efficiency. On the
other hand, realistic applications need to deal with incomplete
world knowledge including disjunctive information. Re-
cently Liu, Lakemeyer and Levesque proposed the logic of
limited belief SL, which lends itself to efficient reasoning
in incomplete first-order knowledge bases. In particular, SL
defines levels of belief which limit reasoning by cases in a
principled way. In this paper, we propose to apply SL-based
reasoning in the context of a Golog system. Central to our ap-
proach is a new search operator that finds plans only within
a fixed belief level k, and an iterative-deepening-style vari-
ant where instead of considering plans with increasing length,
the belief level k is incremented in each cycle. Thus, not the
shortest plans are preferred, but those which are the compu-
tationally cheapest to discover.

Introduction
The agent language Golog (Levesque et al. 1997) has al-
ready been applied in many application scenarios, including
the control of autonomous mobile robots (Ferrein and Lake-
meyer 2008). The language is based on the Situation Calcu-
lus (McCarthy and Hayes 1969; Reiter 2001), which in the
theoretical formalization is a dialect of first-order predicate
calculus. However, current implementations of Golog typi-
cally avoid to offer full first-order capabilities, but rather re-
sort to the closed-world and/or domain closure assumptions
for the sake of efficiency of reasoning. On the other hand,
in realistic applications such as mobile robotics, almost in-
evitably one has to cope with incomplete world knowledge,
in particular in the form of disjunctive information. Further-
more, as the task of an autonomous robot is usually open-
ended, not all individuals (persons or objects) it has or will
have to deal with are known in advance.
SL, the subjective logic of limited belief proposed by

Liu, Lakemeyer and Levesque (2004) is a formalism for
efficient reasoning with incomplete first-order knowledge
bases. They define a family of believe operators B0, B1,
B2,. . . where intuitively B0 corresponds to the agent’s ex-
plicit belief and implicit beliefs become only available at
higher belief levels, where the greater k, the computationally

more expensive, roughly measured in terms of the number
of nested case distinctions. When k is fixed, then whether
B0KB implies Bkφ is decidable, and when the KB is in a
certain form, reasoning is also tractable. Furthermore, the
inference is classically sound in the sense that when B0KB
implies Bkφ in SL, then KB entails φ in classical predicate
logic.

For the above mentioned reasons, we believe that it is ben-
eficial to apply SL-based reasoning in the context of a Golog
system. Apart from the fact that reasoning within a fixed
level k can be done efficiently, belief levels offer the pos-
sibility to define a new planning operator that prefers plans
with least computational costs. To illustrate the idea, con-
sider a Golog program of the following form:

ψ?; a | ϕ?; b; c

There is a nondeterministic choice (|) between two branches:
if formula ψ holds, action a can be executed, or when for-
mula ϕ holds, action sequence b; c could be performed.
Planning here means to resolve the nondeterminism and thus
commit to one or the other branch. A classical Golog sys-
tem will typically test the branches in the presented order,
meaning it first checks whether the action sequence 〈a〉 con-
stitutes a legal execution, which involves checking if ψ is
known to hold according to the system’s knowledge base.
Formula ϕ and sequence 〈b, c〉 will only be tested once
Golog found out that it is not possible to execute the left
branch successfully. Alternatively, the system might apply
some iterative deepening strategy, which always yields the
shortest action sequences. Still, when the left branch in the
above example is executable, the system would prefer it over
the right one. In any case, no attention is paid to the compu-
tational effort involved.

Now assume that ϕ can instantly be inferred from the
agent’s knowledge base (say if it is a fact that is explic-
itly known to be true), but ψ is quite complicated and re-
quires extensive reasoning. In particular when the decision
has to be made quickly (e.g. think of robot soccer) or when
the additional reasoning time outweighs the time saved by
performing fewer actions, it may pay off to prefer possibly
longer plans that however involve less reasoning.

As our running example, consider a mobile robot work-
ing in an office environment. There is one employee, Carol,
who wants to have a look at a certain book. The department

possesses two copies, where one (book1) is usually located
in the library (lib) and the other one (book2) in the lab (lab).
She gives the robot the following orders: “If book1 is in the
library, bring it to me or if book2 is in the lab, bring it after
unlocking the lab door.” This might be expressed as follows
in a Golog program:

At(book1 , lib)?; get(book1 , lib) |
At(book2 , lab)?; unlock(lab); get(book2 , lab)

Now assume that the robot explicitly knows from a recent
observation that book2 actually is in the lab. On the other
hand, it only knows that it saw book1 yesterday in the of-
fice shared by Ann and Bob, meaning one of them borrowed
it. The robot also knows that whoever borrows a book will
return it to the library in the evening on the same day. As
working hours have just begun, all books that were bor-
rowed yesterday will now be in the library. Obviously, this
knowledge is sufficient to deduce that book1 is in the library,
but whereas retrieving the explicit fact At(book2 , lab) from
the knowledge base basically requires no reasoning at all,
deriving At(book1 , lib) involves one case distinction: Ei-
ther Ann or Bob borrowed the book, but in any case, it has
been returned. Therefore intuitively, At(book2 , lab) is al-
ready available at belief level zero, but At(book1 , lib) only
at greater levels.

In this paper we propose to apply the idea of iterative
deepening on belief levels instead of on action sequence
lengths. It will first be tested whether any of the program’s
possible execution traces can be verified to succeed by rea-
soning at level zero. Only if this is not the case, the level
will be increased to one etc. Thus, the first successful exe-
cution trace to be found will also be the one that needs the
least computational effort, which allows to obtain solutions
much quicker in many cases.

The remainder of the paper is organized as follows. In
the next section, we give the formal syntax and semantics of
the logic on which our approach is based. Next, we present
some results that relate the formalism to existing languages.
The following section contains the main contribution of this
paper in form of the new planning operator we propose. Fi-
nally, we sketch possible directions for future work.

Definitions
In this section, we introduce our new logic SLA formally.
The language is basically an extension of Liu, Lakemeyer
and Levesque’s (2004) logic of limited belief SL by aspects
of the modal Situation Calculus variant ES (Lakemeyer and
Levesque 2004) for modelling action and change.

Syntax
Terms The terms of the language come in two sorts: ob-
ject and action. A term of sort object is either an object vari-
able (x1, x2, . . .) or an object constant (d1, d2, . . ., e.g. lab).
An action term is either an action variable (a1, a2, . . .) or of
the form g(t1, . . . , tn), where g is an action function of arity
n (e.g. unlock) and the ti are object terms.

Formulas The objective formulas form the least set where

1. any atom of the form F (t1, . . . , tn) is an objective for-
mula, where F is a fluent predicate symbol of arity n
(e.g. At) and the ti are object terms;

2. when t1 and t2 are terms of sort object, then (t1 = t2) is
an objective formula;

3. when t is a non-variable term of sort action, x an object
variable, and φ, φ′ are objective formulas, then so are [t]φ,
Poss(t), ∃xφ, ¬φ, and φ ∨ φ′.

We read [t]φ as “φ holds after doing action t” and Poss(t)
as “action t is possible to execute”. We further call an ob-
jective formula static when it does not contain any action
terms. Note that we disallow equalities and quantification
over actions. The subjective formulas form the least set with

1. if φ is an objective formula and k ≥ 0, then Bkφ is a
subjective formula and called a believe atom at level k;

2. if t1 and t2 are terms of sort object, then (t1 = t2) is a
subjective formula;

3. if ϕ1 and ϕ2 are subjective formulas and x is a variable
of sort object, then ¬ϕ1, (ϕ1 ∨ ϕ2) and ∃xϕ1 are also
subjective formulas.

The language SLA is the set of all subjective formulas as de-
fined above. Therefore, very much similar to SL, all (fluent)
predicates other than equality must occur within the scope of
a Bk operator, which must not be nested. Here, we further
require that also [t] and Poss(t) operators do not appear out-
side of Bk. The fact that we only study formulas talking
about the agent’s beliefs about the world state is why the
language is called subjective logic, or in our case, subjective
logic of actions. (ϕ1 ∧ϕ2), ∀xϕ, (ϕ1 ⊃ ϕ2) and (ϕ1 ≡ ϕ2)
are treated as the usual abbreviations.

Programs Programs are composed according to the fol-
lowing grammar:

δ ::= t | φ? | (δ1; δ2) | (δ1|δ2) | πx.δ | δ∗

Here, t is any (not necessarily ground) term of sort action,
φ can be any objective formula, and x an object variable. In
the presented order, the constructs mean a primitive action,
a test, sequence of programs, nondeterministic choice be-
tween programs, nondeterministic choice of argument, and
nondeterministic iteration.

Regression and Basic Action Theories
Before we define the logic’s formal semantics, we introduce
basic action theories and regression, following (Lakemeyer
and Levesque 2004). The language for basic action theo-
ries consists of the objective formulas defined above and ex-
tended by another modal operator �, where �α reads “α
holds after every sequence of actions.”, as well as equality
atoms (t1 = t2) among action terms, where at most one of
the ti is a variable. A formula without Poss(t) and [t], but
possibly containing such action equalities, is called quasi-
static.
Definition 1 (Basic Action Theory) Given a set of fluent
predicates F , a set of sentences Σ is called a basic action
theory over F iff it only mentions the fluents in F and is of
the form Σ = Σ0 ∪ Σd, where Σd = Σpre ∪ Σpost and

• Σ0 is a finite set of static sentences,
• Σpre is a singleton of the form �(Poss(a) ≡ π), where π

is quasi-static with a being the only free variable;
• Σpost is a finite set of successor state axioms of the form

�(([a]F (~x)) ≡ γF), one for each fluent F ∈ F , where
γF is a quasi-static formula whose free variables are
among ~x and a.

In our example, we might have an initial KB Σ0 containing
At(book2 , lab),
Borrowed(ann, book1) ∨ Borrowed(bob, book1),
∀x∀yBorrowed(x, y) ⊃ At(y, lib)

(1)

where Borrowed(x, y) means that person x borrowed y yes-
terday. The precondition axiom Σpre is given by:
�Poss(a) ≡ ∃x(a = unlock(x) ∨ a = lock(x)) ∨
∃x∃y((a = get(x, y) ∨ a = put(x, y)) ∧ ¬Locked(y))

That is locking or unlocking is always possible, but putting
or getting something only when the according location is not
locked. The successor state axioms in Σpost are
�[a]At(x, y) ≡ a = put(x, y) ∨ At(x, y) ∧ a 6= get(x, y)
�[a]Locked(x)≡a= lock(x)∨Locked(x)∧a 6=unlock(x)

Whereas Lakemeyer and Levesque (2004) provide a com-
plete model-theoretic semantics for � and [·] within their
logics ES, we here adapt a view similar to (Liu, Lakemeyer,
and Levesque 2004), i.e. we are interested in the implicit
conclusions an agent can draw, given certain explicit beliefs,
and the computational costs for doing so. In our encoding,
the precondition and successor state axioms of basic action
theories are part of the agent’s explicit belief, and conclu-
sions about future situations are drawn using regression.

Regression is a method for computing projections by syn-
tactically transforming a formula talking about future situ-
ations (after performing certain actions) into an equivalent
formula that only talks about the current situation. We use
an adaptation of Lakemeyer and Levesque’s ES variant of
Reiter’s (2001) regression operator as follows:
Definition 2 (Regression) Formally, for any objective for-
mula α, letR[Σd, α], the regression of α wrt Σd, be the for-
mulaR[Σd, 〈 〉, α], where for any sequence of action terms σ
(not necessarily ground), R[Σd, σ, α] is defined inductively
on α by:

1. R[Σd, σ, (t1 = t2)] = (t1 = t2),
where the ti are object terms;

2. R[Σd, σ, (g1(~t1) = g2(~t2))] = ⊥,
where g1 and g2 are distinct action symbols;

3. R[Σd, σ, (g(~t1) = g(~t2))] = (~t1 = ~t2);
4. R[Σd, σ,¬α] = ¬R[Σd, σ, α];
5. R[Σd, σ, (α ∨ β)] = (R[Σd, σ, α] ∨R[Σd, σ, β]);
6. R[Σd, σ, ∃xα] = ∃xR[Σd, σ, α];
7. R[Σd, σ, [t]α] = R[Σd, σ · t, α];
8. R[Σd, σ,Poss(t)] = R[Σd, σ, πat];
9. R[Σd, σ, F (~t)] is defined inductively on σ by:

(a) R[Σd, 〈 〉, F (~t)] = F (~t);
(b) R[Σd, σ · t, F (~t)] = R[Σd, σ, (γF)at

~x
~t
].

Lemma 3 For any α,R[Σd, α] is static.

Semantics
For defining the logic’s semantics, we need the following
definitions from (Liu, Lakemeyer, and Levesque 2004):

Definition 4 (Unit Propagation) A clause is a disjunction
of literals, where a literal is either a ground atom F (~t) or its
negation ¬F (~t). In a unit resolution step, we infer a clause c
from a unit clause {l} and some clause {l}∪c, where l refers
to the complement of literal l. Let s be a (possibly infinite)
set of ground clauses. A unit derivation of a clause c from
s is given by a sequence c1, . . . , cn, where cn is c and each
ci is either an element from s or derivable from previous
clauses by unit resolution. We then denote the closure of s
under unit resolution by UR(s), which is the set of clauses c
such that there is some unit derivation of c from s. Further,
US(s) is the set of ground clauses c such that c is subsumed
by some clause in UR(s).

Definition 5 (Belief Reduction)
1. (Bkc)↓= Bkc, where c is a clause;
2. (Bk(t = t′))↓= (t = t′);
3. (Bk¬(t = t′))↓= ¬(t = t′);
4. (Bk¬¬φ)↓= Bkφ;
5. (Bk(φ ∨ ψ)) ↓= (Bkφ ∨ Bkψ), where φ ∨ ψ is not a

clause;
6. (Bk¬(φ ∨ ψ))↓= (Bk¬φ ∧Bk¬ψ);
7. (Bk∃xφ)↓= ∃xBkφ;
8. (Bk¬∃xφ)↓= ∀xBk¬φ.

We can now define the semantics of formulas. A semantic
model is given by two things: a setup s, which is a (possibly
infinite) set of nonempty ground clauses, and represents the
agent’s explicit beliefs about the current world state. Fur-
thermore we need some Σd = Σpre ∪Σpost, which represents
the agent’s explicit beliefs about the world’s dynamics.

Definition 6 (Semantics of Formulas)
1. s |=Σd

(d1 = d2) iff d1 and d2 are identical object con-
stants;

2. s |=Σd
¬ϕ iff s 6|=Σd

ϕ;
3. s |=Σd

ϕ1 ∨ ϕ2 iff s |=Σd
ϕ1 or s |=Σd

ϕ2;
4. s |=Σd

∃xϕ iff s |=Σd
ϕxd for some object constant d;

5. s |=Σd
Bkφ iff one of the following holds:

(a) subsumption:
k = 0, φ is a clause c, and c ∈ US(s);

(b) reduction:
φ is static, but not a clause and s |=Σd

(Bkφ)↓;
(c) splitting:

k > 0, φ is static and there is some c ∈ s such that for
all ρ ∈ c, s ∪ {ρ} |=Σd

Bk−1φ;
(d) regression:

φ is not static, and s |=Σd
Bk(R[Σd, φ]).

The notation ϕxt denotes ϕ with all free occurrences of x
replaced by t. Apart from item 5d and the extra Σd ar-
gument, the semantical definition is identical to the one in
(Liu, Lakemeyer, and Levesque 2004). Item 5a says that

anything derivable from s by unit propagation is also avail-
able at belief level zero, since unit derivations are computa-
tionally cheap. According to item 5b, something is believed
at level k when a corresponding simpler formula is already
believed. Item 5c encodes that case distinctions make rea-
soning computationally expensive: φ is believed at level k
when for some clause we can make a case distinction over
all its literals and φ holds at level k − 1 in any case. Finally,
our addition of item 5d means that a formula involving ac-
tions is believed at level k iff its regression is. Because the
regression is a static formula, one of the other three cases
needs to be applied subsequently.

A sentence α is valid wrt Σd, written |=Σd
α, if for ev-

ery setup s, s |=Σd
α. If α does not contain any actions,

we often also leave out the Σd subscript. Typically, we are
interested in checking whether, given a set of explicit be-
lief Σ0, some φ holds at believe level k. We therefore in-
troduce the notation Σ0 ∪ Σd |=k φ as an abbreviation for
|=Σd

B0Σ0 ⊃ Bkφ, again possibly leaving out Σd when no
actions are involved.

Properties
When restricted to static formulas, SLA is identical to SL:
Theorem 7 Let φ be static. Then

B0Σ0 |=Σd
Bkφ iff |=SL B0Σ0 ⊃ Bkφ.

Furthermore, we have the following soundness result in
terms of entailment of ES formulas:
Theorem 8 If Σ0 ∪ Σd |=k φ, then Σ0 ∪ Σd |=ES φ.
This result also establishes the connection to the classical
Situation Calculus, of which ES may be considered a modal
dialect. For the details of the two formalisms’ relation,
we refer the interested reader to (Lakemeyer and Levesque
2005).

We can now reuse results related to these two logics,
in particular concerning efficient reasoning with proper+
knowledge bases as defined in (Liu and Levesque 2005):
Definition 9 (Proper+ KBs) A KB is proper+ if it is a non-
empty set of formulas of the form ∀(e ⊃ c), where e is an
ewff and c is a disjunction of literals whose arguments are
distinct variables. An ewff is a static, quantifier-free formula
without fluents and equalities among action terms.
It is easy to see that the example Σ0 (1) can be represented
in proper+ form. Reasoning with such KBs is tractable in
the following sense:
Theorem 10 ((Liu and Levesque 2005)) If Σ0 is proper+,
φ static, and Σ0 and φ use at most j different variables, then
whether Σ0 |=k φ can be decided in time O((lnj+1)k+1),
where l is the size of φ, and n the size of Σ0.
That is, reasoning is only exponential in the number of vari-
ables used and the belief level. When the φ in question is
not static, it first needs to be regressed. As the result again is
a static formula, the same reasoning procedure can be used.
It should however be noted that in the worst case, the length
l of the regression result may be in turn exponential in the
number of nested occurrences of [t], since in each regression
step, a fluent atom is replaced by an entire formula.

Programs
Our program semantics follows the one in (Claßen and
Lakemeyer 2008), which is an adaptation of the single
step semantics of (De Giacomo, Lespérance, and Levesque
2000). Given a setup s, some Σd, a believe level k, and a se-
quence z of already executed actions, a program δ is mapped
to a set of action sequences z′, which we call program ex-
ecution traces. The definition uses the notion of program
configurations (δ, z), where δ is a program (intuitively what
remains to be executed) and z a sequence of ground actions
(that have already been performed). A final configuration is
one where program execution may legally and successfully
terminate, and single step transitions t turn a configuration
(δ, z) into a new configuration (δ′, z · t).

Formally, the set of final configurations FΣd

s,k is the
smallest set such that for all δ, δ1, δ2, static φ and z:

1. (φ?, z) ∈ FΣd

s,k if s |=Σd
Bk([z]φ);

2. (δ1; δ2, z) ∈ FΣd

s,k if (δ1, z) ∈ FΣd

s,k and (δ2, z) ∈ FΣd

s,k ;

3. (δ1|δ2, z) ∈ FΣd

s,k if (δ1, z) ∈ FΣd

s,k or (δ2, z) ∈ FΣd

s,k ;

4. (πx.δ, z) ∈ FΣd

s,k

if (δxd , z) ∈ F
Σd

s,k for some object constant d;

5. (δ∗, z) ∈ FΣd

s,k .

Thus, a configuration (φ?, z) whose remaining program is a
test is final wrt s,Σd and k if the formula1 [z]φ is believed
at level k in s and Σd. From the above it also follows that
(t, z) 6∈ FΣd

s,k for atomic t, i.e. if some action t remains to be
done, the configuration cannot be final. Further, sequences
are only final when the involved subprograms are both final
etc. The transition relation among program configurations
is given as follows (the empty program nil abbreviates >?):

1. (t, z) →
s,Σd,k

(nil, z · t);

2. (δ1; δ2, z) →
s,Σd,k

(γ; δ2, z · t) if (δ1, z) →
s,Σd,k

(γ, z · t);

3. (δ1; δ2, z) →
s,Σd,k

(δ′, z · t)

if (δ1, z) ∈ FΣd

s,k and (δ2, z) →
s,Σd,k

(δ′, z · t);

4. (δ1|δ2, z) →
s,Σd,k

(δ′, z · t)
if (δ1, z) →

s,Σd,k
(δ′, z · t) or (δ2, z) →

s,Σd,k
(δ′, z · t);

5. (πx.δ, z) →
s,Σd,k

(δ′, z · t)
if (δxd , z) →

s,Σd,k
(δ′, z · t) for some object constant d;

6. (δ∗, z) →
s,Σd,k

(γ; δ∗, z · t) if (δ, z) →
s,Σd,k

(γ, z · t).

If ∗→
s,Σd,k

is the reflexive transitive closure of →
s,Σd,k

, then

{z′ | (δ, z) ∗→
s,Σd,k

(δ′, z · z′) and (δ′, z · z′) ∈ FΣd

s,k}

is the set ||δ||s,kΣd
(z) of execution traces of δ, given s, k,Σd, at

z. Such a trace therefore corresponds to a (possibly empty)
sequence of transition steps that lead into a final configura-
tion. Note that because of rule 1, the actions contained in the

1We extend [·] to sequences: [〈 〉]φ def
= φ, [z · t]φ def

= [z][t]φ.

trace are not necessarily all executable according to Poss, to
allow for reasoning about hypothetical situations including
non-reachable ones. In case we are only interested in the ac-
tually executable traces of our program δ, we simply have to
substitute each occurrence of an action t by Poss(t)?; t in δ.

Given an initial KB Σ0, we further define

||δ||Σ0,k
Σd

(z)
def
=

⋂
{||δ||s,kΣd

(z) | s |= B0Σ0}

to be the set of execution traces common to all setups s
where Σ0 is explicitly believed. Our program semantics is
sound (but not complete) wrt the program semantics of ESG
as presented in (Claßen and Lakemeyer 2008) as follows:

Theorem 11 If z′ ∈ ||δ||Σ0,k
Σd

(z), then for any semantic
model w of ESG such that w |= Σ0 ∪Σd, also z′ ∈ ||δ||w(z).

Again the relation to classical Golog is given by the results
presented in (Claßen and Lakemeyer 2008) and (Lakemeyer
and Levesque 2005).

Execution of Programs
In classical Golog, programs are executed off-line, mean-
ing the interpreter first analyzes the entire program to search
for a conforming execution trace before performing any ac-
tions in the real world. This soon becomes infeasible, in
particular when the program is large, the agent has only in-
complete world knowledge and has to use sensing to gather
information at run-time. IndiGolog (Sardina et al. 2004)
therefore executes programs on-line, which means that there
is no general look-ahead, but the system just does the next
possible action in each step, treating nondeterminism like
random choices. Look-ahead is only applied to parts of the
program that are explicitly marked by the search operator
Σ(δ), thus giving the programmer the control over where
the system should spend computational effort for searching.
However the search does not pay attention to the computa-
tional costs of plans. The main contribution of this paper is
to propose the following two new offline search operators:

• Λk(δ, z),
where the set of solution traces is ||δ||Σ0,k

Σd
(z);

• Λ∗(δ, z),
where the set of solution traces

⋃∞
k=0 ||δ||

Σ0,k
Σd

(z).

Whereas Λk only finds solutions obtainable by reasoning up
to belief level k, Λ∗ considers all belief levels, where the
idea is that lower level solutions will be tested before ones
at higher levels, thus preferring plans that require the least
computational costs.

The algorithms we are going to present here for comput-
ing according solutions make use of the notion of character-
istic program graphs as presented in (Claßen and Lakemeyer
2008). Due to space reasons, we will not repeat the (entire)
definition here. Intuitively, a program δ is mapped to a graph
Gδ = 〈V,E, v0〉, with2

2Here we assume that the program in question does not contain
any π operators, which keeps things much simpler. In the future
work section we discuss how to extend our approach to this case.

v0

get(book1 , lib)/At(book1 , lib)

v2

v1

get(book2 , lab)
unlock(lab)/At(book2 , lab)

Figure 1: Characteristic Graph of Example Program

• V is a set of vertices of the form 〈δ′, ϕ′〉, where the δ′ is
some remaining subprogram and ϕ′ is an objective for-
mula encoding a condition under which program execu-
tion might terminate at that node.

• E is a set of labelled edges of the form v′
t/φ→ v′′, where

the intuition is that a transition with ground action t may
be taken from node v′ to node v′′ when the objective for-
mula φ holds.

• v0 = 〈δ, ϕ0〉 ∈ V is the initial node.
The graph for the example program δ from the introduction
is shown in Figure 1. The nodes are v0 = 〈δ,⊥〉, v1 =
〈nil,>〉, and v2 = 〈get(book2 , lab),⊥〉, where > denotes
truth (definable as ∀x(x = x)) and ⊥ falsity (¬>).

Definition 12 Let ξ be a path in the characteristic graph.
The path formula PF (ξ) is defined inductively on its length:
• PF (v) = ϕ′, if v = 〈δ′, ϕ′〉;

• PF (ξ) = ψ ∧ [t]PF (ξ′), if ξ = v
t/ψ→ ξ′.

Further, the path trace PT (ξ) is defined as
• PT (v) = 〈 〉;

• PT (ξ) = t · PT (ξ′), if ξ = v
t/ψ→ ξ′.

For a fixed believe level k, our method now tests paths of
increasing lengths.

Procedure 1 COMPΛk(δ, z)
Determine Gδ = 〈V,E, v0〉
for l = 0, 1, 2 . . . do

for all paths ξ of length l starting in v0 do
if Σ0 ∪ Σd |=k [z]PF (ξ) then

return PT (ξ)

When the set of possible paths is finite like in our example,
COMPΛk(δ, z) will always terminate for any k and z. In this
case we can call that procedure for increasing belief level k:

Procedure 2 COMPΛ∗(δ, z)
for k = 0, . . . ,∞ do

COMPΛk(δ, z)

Let us apply COMPΛ∗(δ, 〈 〉) to our example program δ, and
let us assume that no actions have been performed so far by
the agent, i.e. z = 〈 〉. We first call COMPΛ0(δ, 〈 〉) for belief
level k = 0. The program graph contains four different paths

that start in the initial node: the only path of length zero,
ξ0 = v0, further two paths of length one, ξ11 = v0 → v1 and
ξ12 = v0 → v2, and finally one path of length two, namely
ξ2 = v0 → v2 → v1. Their respective path formulas are:

PF (ξ0) = ⊥
PF (ξ11) = At(book1 , lib) ∧ [get(book1 , lib)]>
PF (ξ12) = At(book2 , lab) ∧ [unlock(lab)]⊥
PF (ξ2) = At(book2 , lab)∧

[unlock(lab)](> ∧ [get(book2 , lab)]>)

Then we need to check for each ξ whether Σ0 ∪ Σd |=0

PF (ξ), which is the same as |=Σd
B0Σ0 ⊃ B0PF (ξ),

which according to rule 5d of the semantics means |=Σd

B0Σ0 ⊃ B0(R[Σd,PF (ξ)]). The regressed versions of the
path formulas are, with simplifications:

R[Σd,PF (ξ0)] =⊥ R[Σd,PF (ξ11)] = At(book1 , lib)
R[Σd,PF (ξ12)] =⊥ R[Σd,PF (ξ2)] = At(book2 , lab)

To see that both 6|=Σd
B0Σ0 ⊃ B0At(book1 , lib) as well as

6|=Σd
B0Σ0 ⊃ B0⊥, let s be the setup given by

{At(book2 , lab),
Borrowed(ann, book1) ∨ Borrowed(bob, book1),
¬Borrowed(d, book1) ∨ At(book1 , lib)|d an obj. const.}.

Then s |= B0Σ0. As both ⊥ and At(book1 , lib) are clauses
(⊥ is the empty clause), the only possibility is that they are
believed by subsumption. However, in this case UR(s) = s
(no unit propagation is possible) and there is no clause in
s that subsumes ⊥ or At(book1 , lib), hence s 6|= B0⊥ and
s 6|= B0At(book1 , lib). On the other hand, when s is some
arbitrary setup with s |= B0Σ0, then s |= B0At(book2 , lab)
by reduction (treating a set as a conjunction), therefore |=Σd

B0Σ0 ⊃ B0At(book2 , lab). COMPΛ0(δ, 〈 〉) thus returns

PT (ξ2) = 〈unlock(lab), get(book2 , lab)〉.

When k = 1, we get |=Σd
B0Σ0 ⊃ B1At(book1 , lib) as

follows. Let again s be a setup with s |= B0Σ0. Then s will
contain a clause that subsumes Borrowed(ann, book1) ∨
Borrowed(bob, book2), and we can split over this
clause. As s also must contain a clause subsuming
¬Borrowed(ann, book1) ∨ At(book1 , lib), At(book1 , lib)
can be obtained from s ∪ {Borrowed(ann, book1)} by unit
propagation. Similarly for Borrowed(bob, book1), there-
fore s |= B1At(book1 , lib). Only the k = 1 cycle of
COMPΛ∗(δ, 〈 〉) will hence yield the solution

PT (ξ11) = 〈get(book1 , lib)〉.

Future Work
The approach presented here is work in progress. We are
currently working on implementing the method by integrat-
ing a corresponding reasoner and search operator into the
IndiGolog agent framework (Sardina et al. 2004) to be able
to also evaluate it empirically against existing techniques.

There are furthermore many directions for future work
at the conceptual level. Instead of solely using regression-
based reasoning, we might extend our approach using recent
tractability results for the progression of proper+ knowledge

bases (Liu and Lakemeyer 2009). As the naive loop of Λk
obviously will not terminate once the program δ contains an
iteration, Λ∗ will in this case get stuck at belief level zero,
even if there are possibly solutions at higher levels. One may
try to apply some sort of dove-tailing technique here, where
for any k, only solutions up to a length l(k) are considered.

It is further conceivable to combine our language with an
appropriate model for action time costs to be able to study
trade-offs between the required reasoning and actual execu-
tion time of plans. Also, a variant of our method that com-
putes conditional plans may be useful. In particular, it might
be necessary to adapt the notion of epistemic feasibility as
discussed in (Sardina et al. 2004): Consider a conditional
plan in the form of the following program:

φ?; a | ¬φ?; b

where at plan time, the truth value of φ was unknown. To
be able to execute this program we have to ensure that φ
will become known at run time, or the executor gets stuck
not knowing what step to take next. We therefore also need
to extend our formalism appropriately to allow for sens-
ing actions that the agent can use in order to gather the
necessary information at run time, possibly in combination
with knowledge-based programs as described in (Claßen and
Lakemeyer 2006).

Finally, integrating the π operators we omitted in the pre-
vious section is straightforward in principle, but somewhat
tedious. The idea is that whenever some πx is encountered
on a path, the corresponding x in the path formula is substi-
tuted by a fresh variable x′ as different quantifiers may use
identical variable names. The obtained path formula then
contains a number of free variables. The tractable reasoning
procedure presented in (Liu and Levesque 2005) is able to
deal with open queries for which it computes a set of vari-
able substitutions. Each such substitution, applied to a path
trace with free variables, then corresponds to one possible
solution trace.

Conclusion
In this paper we introduced a new logic called SLA for
tractable reasoning with limited beliefs in the presence of
action and change. Based on this, we proposed a new plan-
ning operator that considers increasing levels of belief, thus
preferring solution plans that are the computationally cheap-
est to discover.

Acknowledgements
This work was supported by the German National Science
Foundation (DFG) under grant La 747/14-1. We also thank
the anonymous reviewers for their helpful comments.

References
Claßen, J., and Lakemeyer, G. 2006. Foundations for
knowledge-based programs using ES. In Doherty, P.; My-
lopoulos, J.; and Welty, C. A., eds., KR, 318–318. AAAI
Press.

Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Brewka, G., and Lang, J.,
eds., KR, 589–599. AAAI Press.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
Ferrein, A., and Lakemeyer, G. 2008. Logic-based robot
control in highly dynamic domains. Robot. Auton. Syst.
56(11):980–991.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In KR, 516–526. AAAI Press.
Lakemeyer, G., and Levesque, H. J. 2005. Semantics for
a useful fragment of the situation calculus. In Kaelbling,
L. P., and Saffiotti, A., eds., IJCAI, 490–496. Professional
Book Center.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31:59–84.
Liu, Y., and Lakemeyer, G. 2009. On first-order definabil-
ity and computability of progression for local-effect actions
and beyond. In IJCAI.
Liu, Y., and Levesque, H. J. 2005. Tractable reasoning in
first-order knowledge bases with disjunctive information.
In AAAI, 639–644. AAAI Press.
Liu, Y.; Lakemeyer, G.; and Levesque, H. 2004. A logic of
limited belief for reasoning with disjunctive information.
In KR, 587–597.
McCarthy, J., and Hayes, P. 1969. Some philosophi-
cal problems from the standpoint of artificial intelligence.
In Machine Intelligence 4. New York: American Elsevier.
463–502.
Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.
Sardina, S.; De Giacomo, G.; Lespérance, Y.; and
Levesque, H. J. 2004. On the semantics of deliberation
in Indigolog—from theory to implementation. Annals of
Mathematics and Artificial Intelligence 41(2-4):259–299.

