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Abstract
Robotic manipulation is important for real, physical world
applications. General Purpose manipulation with a robot (eg.
delivering dishes, opening doors with a key, etc.) is demand-
ing. It is hard because (1) objects are constrained in posi-
tion and orientation, (2) many non-spatial constraints interact
(or interfere) with each other, and (3) robots may have multi-
degree of freedoms (DOF). In this paper we solve the problem
of general purpose robotic manipulation using a novel combi-
nation of motion planning and an action formalism (Situation
Calculus). Our approach integrates motions of a robot with
other actions (non-physical or external-to-robot) to achieve a
goal while manipulating objects. It differs from previous, hi-
erarchical approaches in that (a) it considers kinematic con-
straints in configuration space (CSpace) together with con-
straints over object manipulations; (b) it automatically gen-
erates high-level (logical) actions from a CSpace based mo-
tion planning algorithm; and (c) it decomposes a planning
problem into small segments, thus reducing the complexity
of planning.

Introduction
Algorithms for general purpose manipulations of daily-life
objects are still demanding (e.g. keys of doors, dishes in
a dish washer and buttons in elevators). It was shown that
planning with movable objects is P-SPACE hard (Chen and
Hwang 1991; Dacre-Wright, Laumond, and Alami 1992;
Stilman and Kuffner 2005). Nonetheless, previous works
examined such planning in depth (Likhachev, Gordon, and
Thrun 2003; Kuffner and LaValle 2000; Kavraki et al. 1996;
Brock and Khatib 2000; Alami et al. 1998; Stilman and
Kuffner 2005) because of the importance of manipulat-
ing objects. The theoretical analysis gave rise to some
practical applications (Alami et al. 1998; Cortés 2003;
Stilman and Kuffner 2005; Conner et al. 2007), but general
purpose manipulation remains out of reach for real-world-
scale applications.

Motion planning algorithms have difficulty to represent
non-kinematic constraints despite of its strength in planning
with kinematic constraints. Suppose that we want to let a
robot push a button to turn a light on. CSpace1 can repre-
sent such constraints. However, the CSpace representation
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1CSpace is the set of all possible configurations

could be (1) redundant and (2) computationally inefficient
because CSpace is not appropriate for compact representa-
tions. It could be redundant, because it always considers the
configurations of all objects beside our interests (i.e. a but-
ton and a light). Moreover, mapping such constraints into
CSpace would be computationally inefficient, because map-
ping a constraint among n objects could take O(2n) evalu-
ations in worst case. Thus, most of motion planning algo-
rithms assume that such mappings in CSpace are encoded.

AI planning algorithms and description languages (e.g.
PDDL (McDermott 1998)) have difficulty to execute real-
world robots despite of its strength in planing with logical
constraints. Suppose that we have a PDDL action for ‘push
the button’ which makes a button pushed and a light turned
on. However, the PDDL description could be (1) ambiguous
and (2) incomplete (require details). Given a robot with m
joints, it is ambiguous how to execute the robot to push the
button, because such execution is not given in the descrip-
tion. Instead, it assumes that there is a predefined action
which makes some conditions (e.g. a button pushed) satis-
fied whenever precondition is hold and the action is done.

Both methods solve this problem in different ways. Mo-
tion planning algorithms use abstractions to solve this prob-
lem. AI plannings use manual encodings. Although abstrac-
tion provides solutions in a reasonable amount of time in
many applications, abstraction lose completeness. Thus, it
has no computational benefit in worst cases. Although AI
plannings have no need to search the huge CSpace, it re-
quires manual encodings which are not only error-prone but
also computationally inefficient.

We solve this problem with combining a motion planning
and an AI planning in a model. We extend our previous
framework in PDDL (Choi and Amir 2009) into Situation
Calculus which provides logic formalisms. That is, Situa-
tion Calculus reflecting kinematic constraints are extracted
from a graph constructed by a resolution-complete motion
planning algorithm. In detail, our algorithm is composed of
three subroutines: (1) extracting a graph from a motion plan-
ner, (2) building new actions from abstract actions using the
built graph, (3) finding a solution in the built action theory,
and (4) decoding it into CSpace.

In detail, our algorithm unifies a general purpose (logi-
cal) planner and a motion planner in one algorithm. Our
algorithm is composed of three subroutines: (1) extracting
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Figure 1: This figure shows an example of manipulating objects
with a robotic arm. The goal is to take care of beans in a glasshouse.
Beans require water and light everyday. The robot will provide
water and light for beans. To accomplish this goal, the arm needs
to manipulate objects such as doors and switches.

logical actions from a motion planner, (2) finding an ab-
stract plan from the logical domain, and (3) decoding it into
CSpace. It extracts Situation Calculus actions (McCarthy
and Hayes 1987; Reiter 2001) from a tree constructed by a
motion planner in CSpace. Then, it combines extracted ac-
tions with a given BAT (Basic Action Theory explained in
Section ) that has propositions, axioms (propositional for-
mulae) and abstract Situation Calculus actions. To find an
abstract plan efficiently, we automatically partitioned the
domain by a graph decomposition algorithm before plan-
ning. In the planning step, an abstract plan is found by a
factored planning algorithms (Amir and Engelhardt 2003;
Brafman and Domshlak 2006) which are designed for the
decomposed domain. In decoding, a motion plan is found
from the abstract plan.

Section provides a motivational example. Section ex-
plains our encoding to build a theory in Situation Calculus.
Sections and show our algorithm. Section presents related
works. Finally, section provides experimental results fol-
lowed by the conclusion in section .

A Motivating Example
Figure 1 shows a planning problem. The goal is to provide
water and light to beans. The robotic arm should be able to
manipulate buttons in the spatial space to provide water and
light. There are also non-spatial constraints. At any time
either the shower is off or door3 is closed or both.

The planner requires both a general purpose (logical)
planner and a motion planner. It requires general pur-
pose planner because the arm needs to revisit some points
of CSpace several times in a possible solution. The way
points may include ‘Open door1’, ‘Close door1’, and
‘Turn light on’. Note that the internal state (values of
propositions) can be different, whenever the robot revisits
the same point in the CSpace. It is certainly motion planning
problem because the kinematic constraints of the arm should
be considered. For example, the arm should not collide with
obstacles, although the hand of the arm may contact objects.

Hierarchical planners have been classical solutions for
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Figure 2: This is a possible tree decomposition for the toy prob-
lem of figure 1. The shared propositions appear on edges between
subgroups. For example, a proposition (‘@door3 lock’) is shared
by two subgroups (‘Main Room’ and ‘Small Room’) because
the proposition is used by actions of two subgroups (respectively
‘Open(Close) door3’ and ‘Turn shower on(off)’). The the-
ory is decomposed into small groups based on the geometric infor-
mation (eg. the configurations of the room).

these problems. A hierarchical planner takes in charge of
high level planning. A motion planner takes in charge of low
level planning. However, researchers (or engineers) need
to define actions of the robot in addition to axioms among
propositions for objects. Without the manual encodings, the
hierarchical planner may need to play with the large number
of propositions (O(exp(DOFrobot))=|discretized CSpace|)
, when DOFrobot is the DOF of the robot. With such naive
encoding, computational complexity of planning become
(O(exp(exp(DOFs)))).

Moreover, naive hierarchical planners often have diffi-
culty to find solutions for the following reason. Firstly, it
requires interactions between subgoals. For example, the
arm must go into the “Bean room” and turns the “light”
on (subgoal) before it goes into the “small room” and turns
the “shower” on (subgoal). This is essentially the ‘Susman
anomaly’ which means that the planner dose one thing (be-
ing in the Bean room) and then it has to retract it in order to
achieve other goal (turning the shower on). Thus, it may re-
quire several backtrackings in planning. Secondly, there are
two ways of (in principle) achieving “on(light)”: (1) going
through the small room; and (2) opening door to the Bean
room from the Arm-base room. Unless manual encoding
is given by an engineer, The latter way (going through the
small room) is fine from the perspective of hierarchical plan-
ning. However, it will not work in practice because the arm
is not long enough (kinematics). Formally, there is no down-
ward solution.

Thus, this toy problem shows that (1) hierarchical plan-
ning does not work with a naive (simple) encoding, and (2)
a complete encoding is too complex to encode manually. We
are interested in general principles that underlie a solution to
this problem.

In motion planning literature, hybrid planners are used to
address these issues (Alami, Siméon, and Laumond 1989;
Alami, Laumond, and Siméon 1997; Alami et al. 1998;
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Figure 3: This figure illustrates a process to encode a motion plan
into ATM (Action Theory with Motion). The process is follows:
(1) a motion plan (a tree) is built by a motion planning algorithm;
(2) actions which changes the states of objects are found; (3) propo-
sitions are generated (and grouped) based on the found actions; and
(4) a ATM is created. Here, we assume that we have a function
which provides discrete states of objects given the configuration of
an object in finding actions (2). In this figure, the door1 in figure 1
and 2 is closed in a set of states (A). The door1 is moved little in
B. However, the door1 is not fully opened. Thus, configurations in
the area D is not connected. The area C corresponds to the pushed
light button on figure 1 and 2.

Conner et al. 2007; Plaku, Kavraki, and Vardi 2008). How-
ever, these are either hard to build due to manual encodings,
or infeasible to conduct complex tasks due to the curse of di-
mensionality of expanded CSpace. The size of CSpace of a
hybrid planner exponentially increases with additional mov-
able objects and given propositions. Thus, solving a com-
plex problem may require extensive searches.

Here, we seamlessly combine the general purpose plan-
ning and the motion planning. Our planner finds all re-
searchable locations and possible actions that change states
of object, states of propositions, or the reachable set of ob-
jects.2 Thus, high-level planner can start to plan based on
actions extracted by a motion planner.3

However, the number of actions and states can be still
intractable. To solve this problem, we partition the do-
main into the smaller groups of actions and states. For
example, the domain can be partitioned as shown in fig-
ure 2. It is composed of three parts: (1) operating the
shower switch; (2) operating the light switch; and (3) oper-
ating in between. The partition can be automatically done
with approximate tight bound (Becker and Geiger 1996;
Amir 2001).

A factored planner (Amir and Engelhardt 2003) effi-
ciently finds a plan with the partitioned domain. The par-
titioned groups are connected as a tree shape. In each par-
titioned domain, our factored planner finds all the possible
effects of the set of actions in each factored domain. Then,
the planner passes the planned results into the parent of the
partition in the tree. In the root node, all the valid actions
and effects are gathered. The planner finds a plan for the
task, if it exists.

Then, we use a local planner to find a concrete path in
CSpace at the final step. However, there is no manual (ex-
plicit) encoding (eg. ‘turning the switch A’) between two
layers, except logical constraints and mapping functions
provided as input.

2Here, we assume that we know states of objects without un-
certainty as in (Conner et al. 2007).

3Our planner may have more actions and states than the hand-
encoded case.
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Figure 4: This shows an operation (or algorithm) to combine the
extracted ATM with pre-existing BAT . BAT is independently
given in a general form to a robot. Thus, ATM can be reusable
for robots with different configurations space. Meanwhile, BAT
is specific to a robot. Thus, some actions (e.g. act7 and act8) in
BAT are invalidated, thus excluded in BAT .

Problem Formulation
Preliminaries
Situation Calculus The Situation Calculus is an action
formalism which describes the precondition and the effect of
each action with First-Order predicate logic formulae. We
describe desirable constraints, if it is represented by First-
Order formulae.

The Situation Calculus (McCarthy and Hayes 1987; Re-
iter 2001) is a sorted first order language for representing
domains by means of actions, situations, and fluents. Ac-
tions and situations are first order terms, and situation-terms
stand for history of actions, compound with a function sym-
bol do: do(a, s) return the situation obtained by executing
the action a in a situation s, which is a sequence of actions.

The dynamic domain is described by a Basic Action The-
ory BAT = (Σ, DS0 , Dss, Duna, Dap). Σ includes a set of
foundational axioms for situations. DS0 is a set of first-order
sentences that are valid in S0. Dssa is a set of successor state
axioms for functional and relational fluents. Duna is the set
of unique names axioms for actions. Dap is a set of action
precondition axioms. Please, refer the (Reiter 2001) for de-
tail.

Configuration Space Given a robot and objects, a config-
uration describes the pose of the robot (r) and objects (O).
Configuration space, CSpace is the set of all possible con-
figurations.

The set of configurations that has no collision with ob-
stacles is called the free space Cfree. The complement of
Cfree in C is called the obstacle region.

Here, we use a sampling-based motion planner (e.g. PRM
(Kavraki et al. 1996) or RRT (Kuffner and LaValle 2000))
which extracts a connectivity graph among sampled config-
urations.

Combining Planning and Motion Planning
Inputs of problem is described as follows.

• CSpace: The configuration space of the robot and ob-
jects.

• BAT : The Basic Action Theory regarding to actions of
the robot over objects.



• Cinit: The initial configuration of the robot and objects.
• Goal: A first-order formula describing the goal condition.
• Shared Fluents: Predicates and functions shared by the

Situation Calculus and the CSpace.
Here, if CSpace has n-dimensions, CSpace is C1 × C2

× . . . × Cn. We can represent CSpace as CShared ×
CMotion. CShared is the cross product of dimensions which
become inputs to BAT of Situation Calculus. CMotion is the
cross product of dimensions which are used only in motion
planning. Thus, some dimensions become an input to BAT
of the Situation Calculus. For theses dimensions, we write
Fluents as follows.

P (c) ≡ P ′(s)(c ∈ CShared)
f(c) = f ′(s)(c ∈ CShared)

P and P ′ are predicates. f and f ′ are functions. P and
f include dimensions of CSpace, although P ′ and f ′ re-
place the dimensions with a situation s. c is a configuration.
Thus, such predicates and functions relate configurations in
CSpace with situations in Situation Calculus.

Definition Dmap: is defined with following axioms. With
a configuration c and a situation s, we build a predicate as
follows

Pconsistent(c, s) ≡
(∧

i

Pi(c) = P ′i (s)

)

When i is the index for each predicate. In addition, we call
the set of axioms with two Fluents as Dmap.

Thus, our goal is to find a path which achieves the goal
conditions while satisfying the action theory and avoiding
collision in CSpace.

Combining Planning and Motion Planning
(CPMP)

Action Theory with Motion (ATM)
Definition Dmotion: We build a new theory based on the
graph extracted from a motion planning algorithm. A
resolution-complete motion planner builds a connectivity
graph in CSpace. Based on the graph (V,E), we build two
Predicates as follows.

Pfree(c) ≡ > if c ∈ V

Pfree(c) ≡ ⊥ otherwise

Pmove(c, c′) ≡ > if (c, c′) ∈ E

Pmove(c, c′) ≡ ⊥ otherwise

Pstable(c, c′) ↔
(∀s(Pconsistent(c, s) ↔ Pconsistent(c′, s))

∧ (Pmove(c, c′) ∨ ∃c′′(Pstable(c, c′′) ∧ Pstable(c′′, c′))))

A hand

Light button

<p R3, light_off> <p’ R3, light_off> <p R3, light_on>

Light

Figure 5: This example shows a situation in which one position
in the workspace can correspond to two different states in the com-
bined space (CPMP). Although the physical locations of the arm
and button are same in the workspace, an internal state (eg. light
is on) is different. The situation can be represented when CSpace
and state space in KB are combined (CPMP), even though it is not
possible to represent in the classical CSpace alone.

∀c (Pstable(Cinit, c) → Prealize(c, S0))
Cinit is the initial configuration. S0 is the initial situation in
the BAT.

We call these sets of predicates as Dmotion.
Definition D∗

ap: We change the set of precondition axioms
in Dap. Suppose that we have a following precondition ax-
iom for an action act in a situation s.

Poss(act, s) ≡ ϕposs

We change it into following
Possmotion(act, s) ≡ ϕposs

∧ ∃c, c′(Prealize(c, s) ∧ Pconsistent(c′, do(act, s))

∧ Pmove(c, c′) ∧ Pfree(c) ∧ Pfree(c′))
We call the set of modified precondition axioms as D∗

ap.
Definition D∗

eff: We add the set of effect axioms in Deff.
Suppose that we have a following effect axiom for an action
act in a situation s.

Poss(act, s) → ϕeff

We change it into following axiom.
Possmotion(act, s) → ϕeff

∧ (∀c, c′, c′′(Prealize(c, s) ∧ Pconsistent(c′, do(act, s)))

→ (Prealize(c′, do(act, s))

∧ (Pstable(c′, c′′) → Prealize(c′′, do(act, s)))))
We call the set of added effect axioms as D∗

eff.
We define the unified actions theory, (Combining Plan-

ning and Motion Planning)
CPMP = (Σ, DS0, Dss, Duna, Dmotion, Dmap, D

∗
ap, D

∗
eff)

Lemma 1. The complexity of planning problem in the
CPMP is as hard as P-SPACE.

Proof. Any motion planning problem (P-SPACE hard) with
movable objects can be reduced to a planning problem in
CPMP . Suppose that CPMP includes only external
propositions which are extracted from the motion planning
algorithm.



Building Actions
We register an action (an edge between two points extracted
from a motion planner) into CPMP in when two points have
different states in CPMP with regard to mapping function
as shown in figure 3. We validate abstract PDDL actions
which are realized by the action. Thus, we build a hyper-
graph whose nodes are sets of modes (CSpace) which have
the same state in terms of mapping functions and reachable
objects. Our algorithm extensively searches actions with a
resolution complete motion planner (i.e. PRM) until no new
action is found in the hypergraph given a specified resolu-
tion.

Lemma 2. The size of the discretized CSpace for a robot
manipulating n objects with given propositions in CPMP is
bounded by O(exp(|objects| + n + p)), when |objects| is
the number of objects, n is the DOF (Degree of Freedom) of
the robot, and p is the number of propositions.

Lemma 3. The number of possible actions (edges) in
the discretized CSpace for objects is only bounded by
O((|objects|) · exp(|objects|)), when the robot moves one
object with an action.

Proof. From a point in CSpace of object O(exp(|objects|)),
we can choose an object O(|objects|) to change states.

Finding a Solution in CPMP
We provide a naive algorithm that solves a task in CPMP.
Then, we provide two improvements: (1) that solves the
problem in the (smaller) factored KBs; and (2) that reduces
the number of propositions in CPMP using workspace.

A Naive Solution
Given a task of CPMP, NaiveSolution finds a solution. It
may use a general purpose planner (GeneralP lanner) to
find an abstract solution. Then, (LocalMotionP lan) en-
codes a path in CSpace.

Algorithm:NaiveSolution
Input: r(a robot), BAT (Basic Action Theory), sstart(initial

state), and sgoal(goal condition)
Output: pathconcrete(Solution)
ATM ← FindActionFromMP(r)
CPMP = Γ(ATM, BAT )
pathabstract ← GeneralPlanner( CPMP , sstart, sgoal)
pathconcrete ← LocalMotionPlan( pathabstract )

Algorithm 1: NaiveSolution provides a path for a robot. It
uses a general planner (GeneralP lanner) to find an abstract
solution. Then, it is encoded into the path in the CSpace by a
motion plan (LocalMotionP lan).

Tree Decomposition of KB with Objects
Given a KB, finding a tree-decomposition of the minimum
treewidth is a NP-hard problem. However, the complex-
ity is only bounded by the treewidth of CPMP, if a tree-
decomposition is found by an efficient heuristic (Becker and
Geiger 1996; Amir 2001).

C-Space
EF-Space

p1

p2

p3

P’

f()

Figure 6: This figure shows a mapping function (f()) from a
CSpace to an EF-Space. p1, p2, and p3 in CSpace are mapped
into p′ in EF-Space. The connected lines ((p1, p2) and (p2, p3))
represent the first condition of Theorem 3. The circles represent
the second condition.

Theorem 4. The complexity of planning in CPMP
is bounded by O(exp(tw(CPMP ))) if the tree-
decomposition is given.4

Proof. Proofs in (Brafman and Domshlak 2006; Amir 2001)
can be easily modified to prove this theorem.

From Exponential CSpace to Polynomial EF-Space
In this section, we provide a generalized method which
project CSpace into much smaller workspace. It is an ex-
tension of our previous work (Choi and Amir 2007). it ef-
ficiently finds a solution when the projection method is ap-
plicable. Here, we want to transform CSpace into a smaller
space, EF-Space, using a mapping function f(). The func-
tion (f()) maps each point (p) in CSpace into a point (p′) in
EF-Space with satisfying following conditions.

1. When P is a set of points whose image are p′ in EF-Space
(f(p) = p′), any pair of two elements (p1, p2 ∈ P ) is
connected each other in CSpace;

2. When two points (p and q) are mapped into two points (p′
and q′) in EF-Space. p and q are connected neighbor if
and only if p′ and q′ are connected neighbor.

Two points are connected neighbor means when they are di-
rectly connected in the space.
Theorem 5. The complexity of motion planning in EF-
Space is bounded by following

O(EF-Space) ·O(maxep∈EF-Space(ball(Pep))).

Pep is a set of points whose image is ep. (That is, Pep =
{p|f(p) = ep}) The ball(P ) is volume of the ball which
includes P.

Proof. Given a motion planning problem (an initial config-
uration and goal one), a path in EF-Space can be found in
O(EF-Space) with a graph search algorithm. Given the path
in EF-Space, one needs to search the whole ball in worst
case.

One simple example of EF-Space is the workspace of end-
effector. Suppose that the points in CSpace are mapped into

4tw(KB) is the treewidth of KB.



the points of end-effector in workspace. One can build an al-
gorithm that finds all the neighboring points from the inner-
most joint (or wheel) to the outermost joint with a dynamic
programming. If points of the previous joint are connected
to all neighboring points, the neighboring points of the cur-
rent joint are found by a movement of current joint (current
step) or a movement of any previous joint (previous steps).
The found connected points in workspace satisfy the second
conditions, if the first condition holds in the workspace.

In worst case, the first condition is hard to satisfy. In the
environment, the mapping function (f ) should be bijective.
Thus, the EF-Space is nothing but the CSpace. However, the
first condition holds in many applications where the distance
between obstacles (or objects) and the robot is far enough.
That is the theoretical reason why the planning problem in
the sparse environment is easy even in CSpace.

Moreover, one can find another EF-Space considering
topological shape of robot (Choi and Amir 2007). In the
space, two points (p1 and p2) are mapped into the same point
p′1 if two configurations (p1 and p2) are homotopic, and they
indicate the same end point. Otherwise, another point p′2
is generated in the EF-Space. In 2D, an island obstacle di-
vides configurations into two groups for each side (left or
right). Thus, the EF-Space is exponentially proportional to
the number of island obstacles. However, EF-Space itself is
bounded by the workspace whose size is polynomial to the
number of joints. Thus, it is much smaller than the CSpace
and rather larger than the workspace.

A Unified Motion Plan
We present our algorithms in this section. The main algo-
rithm , UnifiedMotionPlanner (Algorithm 2), is composed
of three parts: FindActionFromMP (Algorithm 3); Factored-
Plan (Algorithm 4); and LocalPlanner. The goal of Unified-
MotionPlanner is to find a solution to achieve a goal situa-
tion.

Algorithm:UnifiedMotionPlanner
Input: r(a robot), BAT (Basic Action Theory), sstart(initial

state), sgoal(goal condition)
Output: pathconcrete(Solution)
ATM ← FindActionFromMP(r)
CPMP = Γ(ATM, BAT )
KBTree ← PartitionKBtoTree(CPMP )
pathabstract ← FactoredPlan( KBTree, sstart, sgoal )
pathconcrete ← LocalPlan( pathabstract )
return pathconcrete

Algorithm 2: UnifiedMotionPlaner finds all the reach-
able locations and actions in each location with FindAc-
tionFromMP. A motion planner is embedded in FindAction-
FromMP to extract abstracted actions in CSpace. Then, Parti-
tionKBtoTree partitions the CPMP into a tree. FactoredPlan
finds a solution given the pair of initial and goal condition in
the partitioned tree domain. The LocalPlan finds a concrete
path for the robot.

FindActoinFromMP
FindActionFromMP searches all the reachable locations and
actions in CSpace or EF-Space. In both cases, it has a dra-

Algorithm:FindActionFromMP
Input: r(a robot)
Output: ATM (extracted actions)
MPTree ← a random tree in CSpace built by a motion
planner (e.g. Probabilistic Roadmap, Factored-Guided Motion
Planning)
for each edge (eij) ∈MPTree do

if state(pi) 6= state(pj) then
KBM ←KBM

⋃
D∗

ap (as in section
KBM ←KBM

⋃
D∗

eff (as in section

return KBM

Algorithm 3: . FindActionFromMP finds all abstract ac-
tions for a robot. A motion planner (eg. FactorGuidedPlan
or RoadmapMethod) recursively finds all the reachable loca-
tions and actions. Then, the algorithm insert actions of each
configuration (cij) of objects in the workspace. It assume that
the object is in the configuration (cij). Thus, the condition
(configuration of objects) is combined into the actions (actij).
The union of all actions becomes the KBM .

matically reduced space.

FactoredPlan
FactoredPlan finds a solution after factoring the domain (the
space of end-effector in workspace) into small domains. It
decomposes the domain into a tree in which each partitioned
group becomes nodes, and shared axioms appear on a link
between nodes. Then, it finds partial plans for a node and
its children nodes with assuming that the parents nodes may
change any shared states in between. After all, it finds a
global solution in the root node.

Algorithm:FactoredPlan
Input: KBTree (partitioned KB as a tree), sstart (initial

states), sgoal (goal condition)
Output: pathabstract (An abstract plan)
depth← (predefined) number of interaction between domains.
for each node(KBpart) in KBTree from leaves to a root do

Actab ← PartPlan( KBpart, depth) .
SendMessage( Actab, the parent node of KBpart )

pathab ← a solution from sinit to sgoal in the root node of
KBtree

return pathab

Algorithm 4: FactoredPlanning algorithm automatically
partitions the domain to solve the planning problem (from sinit

to sgoal). It iterates domains from leaves to the root node with-
out backtracks. In each node, PartPlan finds all possible ac-
tions that change shared states in the parents node. PartPlan
assumes that the parent node may change any states in the
shared states in between. The planned actions in the subdo-
main become an abstract action in the parent node. They are
sent by SendMessage.

Related Works
Here, we review the related works in two aspects: (1) using
logical representation in robot planning; and (2) modifying
the motion planning algorithm to achieve complex task (eg.



manipulating objects). One may see the former way as top-
down and the latter way as bottom-up.

(Alami et al. 1998) presents a well-integrated robot archi-
tecture which controls multiple robots. It uses logical repre-
sentations in higher level planners and CSpace based motion
planners in lower-level planning. However, the combination
of two planners is rather naive (manual).

Recently, (Conner et al. 2007) provides an improved way
to combine the Linear Temporal Logic (LTL) to control con-
tinuously moving cars in the simulated environment.5 How-
ever, their model is a nondeterministic automata, while our
model is deterministic. Due to the intractability of nondeter-
ministic model, their representation is restricted to a subset
of LTL to achieve a tractable (polynomial time) algorithm.
Experiments are focused on controlling cars instead of ma-
nipulating objects.

Motion planning research has a long-term goal of build-
ing a motion planning algorithm that finds plans for com-
plex tasks (eg. manipulating objects). (Stilman and Kuffner
2005) suggests such a planning algorithm based on a heuris-
tic planner (Chen and Hwang 1991) which efficiently relo-
cates obstacles to reach a goal location. Recently, it was
extended to embed constraints over objects into the CSpace
(Stilman 2007). In fact, the probabilistic roadmap method
(Kavraki et al. 1996) of the algorithm is highly effective in
manipulating objects. However, we argue that our algorithm
(factored planning) is more appropriate in terms of gener-
ality and efficiency than a search-based (with backtracks)
heuristic planner.

Other works also make efforts in this direction to build
a motion planning algorithm for complex tasks. (Plaku,
Kavraki, and Vardi 2008) solves a motion planning problem
focused on safety with logical constraints represented with
LTL . (M. Pardowitz 2007) focuses on learning actions for
manipulating objects based on the explanation based learn-
ing (Dejong and Mooney 1986). They use a classical hier-
archical planner in planning. (J. Van den Berg 2007) pro-
vides an idea that extracts the propositional symbols from a
motion planner. The symbols are used to check the satisfi-
ability of the planning problems. (S. Hart 2007) uses a po-
tential field method to achieve complex tasks with two arms.
However, the main interests of these works are not planning
algorithm, or are limited to the rather simpler tasks.

An Experiment in Simulation
We build our algorithm for a task that pushes buttons to call
numbers. There are 8 buttons in total. 4 buttons (key1(P1),
key2(P2), unlock(P3), and lock(P4)) are used to lock (and
unlock) the buttons. Other 4 buttons (#A(P5), #B(P6),
#C(P7) and Call(P8)) are used to make phone calls. Ini-
tially, the button is locked, the robot needs to push unlock
buttons after pushing both key buttons (P1 and P2). Then,
the robot can make a phone call with pushing the Call
button (P8) after selecting an appropriate number among
#A(P5), #B(P6), and #C(P7). After a call, the buttons

5Any First Order Logic (FOL) sentences can be reduced to Lin-
ear Temporal Logic (LTL). Thus, LPL is a superset of FOL.

Figure 7: This is a capture of the motion of push button in the
wall in experiments. The robot has 5 DOFs (rotational joints on
the base and 4 revolute joints on the arm). We do experiment with
increasing the number of joints from 2 to 9.

are automatically unlocked. We encode such constraints and
action in a PDDL.6

We build a tree from a randomized algorithm with 80000
points in CSpace. With a labeling function that returned the
states of buttons, we found 33 edges in the tree7. They are
encoded into 8 actions for 8 buttons. Then, the combined KB
(CPMP ) is used to find a goal (calling all numbers (#A,
#B, and #C). The returned abstract actions are decoded
into a path on the tree of motion plan. Figure 7 is a snapshot
of the simulation.8

In this experiment, we focus on extracting actions from a
motion planning algorithm, because the factored planer it-
self is not a contribution of this paper. Theoretical and ex-
perimental benefits of FactoredPlan is shown in the previous
papers (Amir and Engelhardt 2003; Brafman and Domshlak
2006). We run our simulation on a general purposed planner
(Fourman 2007). Thus, the NaiveSolution algorithm is used
in this simulation.

Conclusions and Future Research
We present an algorithm that combines the general purpose
(logical) planner and a motion planner. Our planner is de-
signed to manipulate objects with robot. To solve the prob-
lem, previous works used a hierarchical planner (high-level)
and a motion planner (low-level). Most of them used man-
ual encodings between two layers. That was one of technical
hardness of this problem.

Theoretically, combining such planners is hard for the
following reasons: (1) hierarchical planner is hard and not
feasible sometime; and (2) direct combination of CSpace
and state space gives an doubly exponential search problem.

6Situation Calculus encoding is not impleted yet
7We simplify the manipulations for attaching and detaching

buttons
8The details of encoded actions and movies are available at

http://reason.cs.uiuc.edu/jaesik/cpmp/supplementary/.



Moreover, we can loss the geometric motion planning in-
formation, if we translate everything to PDDL (McDermott
1998) without a motion planner.

We combine the CSpace and state space in a KB, CPMP
(Combining Planning and Motion Planning). Moreover, we
provide the computational complexity of the problem. We
also argue that the treewidth of CPMP determines the hard-
ness of a manipulation task.

However, the suggested algorithm still has some lim-
itations that need to be improved in future research.
The exploration steps in FindActionFromMP may take
long time due to the large cardinality of state space
(O(n + |objects| + p) as in lemma 2. Assumptions of
EF-space would inappropriate for cluttered environments
where O(maxep∈EF-Space(ball(Pep)) of theorem 5 are in-
tractable.
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