
Autonomous Learning of Commonsense Simulations
Benjamin Johnston and Mary-Anne Williams

University of Technology, Sydney
Ultimo, Sydney, New South Wales, Australia

johnston@it.uts.edu.au

Abstract
Parameter-driven simulations are an effective and efficient
method for reasoning about a wide range of commonsense
scenarios that can complement the use of logical formaliza-
tions. The advantage of simulation is its simplified knowl-
edge elicitation process: rather than building complex logical
formulae, simulations are constructed by simply selecting
numerical values and graphical structures. In this paper, we
propose the application of machine learning techniques to
allow an embodied autonomous agent to automatically con-
struct appropriate simulations from its real-world experience.
The automation of learning can dramatically reduce the cost
of knowledge elicitation, and therefore result in models of
commonsense with breadth and depth not possible with tra-
ditional engineering of logical formalizations.

Introduction
Comirit is an open-ended hybrid architecture for common-
sense reasoning. We have previously described (Johnston
and Williams 2008) how Comirit is a generalization of the
method of analytic tableaux; combining rich 3D simulation
with formal logic. In this paper we extend the architecture so
that it supports autonomous learning in addition to deduc-
tion. We demonstrate the system by implementing stochastic
search and an auto-associative network in the framework:
this enables our experimental system to autonomously ac-
quire and maintain reliable knowledge of novel objects and
their behaviors.

At Commonsense 2007 (Johnston and Williams 2007),
we argued that simulations are a potentially rich resource
of commonsense knowledge and are an expressive and effi-
cient mechanism for commonsense reasoning. The potential
for breadth and depth is clearly evident when one considers
the advances in modern animations and computer games:
modern games offer realistic open-ended ‘sandbox’ envi-
ronments for unlimited experimentation and interaction. We
showed that a generic graph-based representation can be
used to rapidly create similarly rich and realistic simulations
with minimal software development, and thereby produce
the possibility of extracting and directly reasoning with the
knowledge that would otherwise be only implicitly repre-
sented in simulation. Generic graph-based representations
further simplify the knowledge elicitation process to a task
that can be performed as a routine software development
process without the expense (or concern for a shortage) of
skilled logicians or philosophers.

While simulation may be seen as a powerful heuristic
for deducing possible and likely future states from current
conditions, a weakness of simulation is that it must follow
the ‘arrow-of-time’. That is, it is impossible to simulate a

complex situation in reverse to deduce likely causes or pre-
cursors of a situation: one cannot simulate spilled milk in
reverse to discover a likely cause—it is far easier to simu-
late the outcome from a particular cause such as dropping
an open milk carton onto the floor. When greater deductive
power is required than that of forward-running simulations,
it is therefore necessary to augment simulation with other
mechanisms.

We proposed (Johnston and Williams 2008) the integra-
tion of simulation and logical deduction as a way of combin-
ing the efficiency and richness of simulation with the power
of logic. Our framework generalized the method of analytic
tableaux to allow both logical terms and simulation objects
within a single search structure. A single unifying principle
based on the idea of searching through spaces of possible
worlds enabled these disparate mechanisms to be harmoni-
ously combined in a single system.

While our framework offers a mechanism for common-
sense reasoning, we acknowledge that an effective system
includes not only a reasoner, but also a comprehensive com-
monsense knowledge-base. The 20-year Cyc project (Pan-
ton et al. 2006) to create a commonsense knowledge-base
serves as a clear demonstration that such engineering can be
exorbitantly expensive. We therefore wondered, “is it pos-
sible to automate knowledge acquisition?” Our graph-based
simulations simplify the engineering process, so we initially
expected that powerful semi-automatic engineering tools
could permit rapid knowledge elicitation. In designing these
tools, it soon became apparent that the graph representation
could allow fully autonomous learning and generalization of
aspects of the behavior of novel objects.

The purpose of this paper is therefore to explain how
learning may be incorporated into our commonsense rea-
soning framework. We view cumulative learning as an it-
erative process of hypotheses generation and selection: this
perspective can be elegantly incorporated into a tableaux
reasoning framework by ranking branches of the search tree
and allowing for factoring of sub-problems. The purpose of
these modifications is to allow branches of a tableau to con-
tain hypotheses, and for the search algorithm to focus only
on those branches with the best hypothesis.

This paper begins with a brief overview of the existing
framework: the underlying representation used by simula-
tion, and the hybrid reasoning strategy. We then explain how
the framework is extended to allow learning, and conclude
with a concrete exploration into how stochastic hill-climb-
ing and auto-associative networks may be incorporated into
this framework to allow a system to autonomously learn
simulations of novel objects.

Simulation
In the Comirit framework, simulations are used as the un-
derlying mechanism and representation for large scale
commonsense knowledge. Not all knowledge can be rep-
resented efficiently in simulations (e.g., ‘What is the name
of the Queen of England?’), but simulation works well in
problems governed by simple laws (such as physics) and so
simulation is used in the framework wherever possible.

Comirit simulations are a sophisticated generalization of
an early proposal by Gardin and Meltzer (1989); extended
to support 3D environments and non-physical domains.
Comirit simulations are constructed from a graph-based rep-
resentation. The fundamental structure of a problem is first
approximated by a graph. The graph is then annotated with
frame-like structures, and simulation proceeds by the itera-
tive update of the annotations by update functions.

The formal details of simulation are not needed to under-
stand this paper, so we will use illustrative examples. Read-
ers interested in the formal details should refer to our previ-
ous publication (Johnston and Williams 2007).

A Comirit simulation consists of the following parts:
a system clock that increments by finite intervals1.
a (relatively) static graph representation that models 2.
the underlying structure of a problem domain,
a set of highly dynamic annotations that record the 3.
state of a simulation, and
a static set of computable functions or constraints that 4.
update the annotations with each iteration of the sys-
tem clock and thereby drive the computation of the
simulation.

This representation is intentionally generic. We claim that
it can be used to represent simulations from any rule-driven
problem domain including physical, social, legal, economic
and purely abstract realms. Our research has emphasized
physical reasoning and naïve physics, so we will illustrate
simulation and learning through examples based upon 3D
simulations of physical models.

Consider a simple domestic robot facing a physical rea-
soning problem: given a mug filled with coffee, is it ‘safe’ to
perform fast movements to carry the mug? In the Comirit
framework, the robot considers the problem by internal sim-

ulations of the scenario; testing whether a simulated mug is
damaged by fast movement, or if such motion causes dam-
age to the environment by spilling coffee.

The generic graph structure is used to represent the un-
derlying structure of the problem. For example, the mug of
coffee can be approximated as a mesh of point masses con-
nected by semi-rigid beams. A visualization of such a graph
appears in Figure 1. Note that both the spheres and beams
are vertices of the underlying graph, their connectivity is
recorded by edges in the graph.

Each vertex of the simulation graph (i.e., each point mass
and each semi-rigid connecting bar) is annotated with a
set of frame-like attributes such as the current 3D position,
local mass distribution, rigidity, physical state, tempera-
ture and whether the local structure has been broken (due
to over-stressing). Examples of particular annotations and
values also appear in Figure 1. Note that these annotations
represent only local properties of the simulation. The total
mass of the mug of coffee is equal to the sum of all of the
mass attributes.

Simulation proceeds by the iterative update of annotation
values. Newton’s laws of motion are applied to each of the
point masses, and Hooke’s law (describing the behavior of
a spring) is applied to the connecting beams. Figure 1 il-
lustrates update functions for the laws of momentum and
gravity. Note that these functions have only short-term and
local effects.

The combined effect of iteratively computing local up-
dates on the annotations is emergent behavior that closely
resembles the actual behavior of real world scenarios. Laws
of physics are simple at the microscopic scale. The macro-
scopic shape of an object, its centre of mass, its rotational
inertia and its viscosity or brittleness vastly complicate the
physical laws of motion of large bodies, but these simply
emerge from iteration of simple laws at the microscopic
scale. Indeed, this method of simulation may be seen as
a variation on the Euler method of numerical integration.
Simulation effectively performs numerical integration over
the fundamental laws of physics that are expressed as step-
wise differential equations in the update functions.

If we run a mug of coffee simulation we may result in an
outcome such as that depicted in Figure 2. Symbolic results
are reported by simple routines that inspect the state of the
simulation to determine if, for example, any semi-rigid bars
have broken (in the case of a ‘broken’ symbol), or if any
liquid is no longer contained by the mug (in the case of a
‘mess’ symbol). This outcome would imply that the robot
should not use fast movements with the mug.

PointMassVertex #37
x: 5.592 y:0.271 z:3.661
mass: 2.1 rigidity: 51
temp: 22 type: porcelain

SemiRigidBeamVertex #189
broken: false spring-constant: 900
length: 1.2 crack-at: 101%
type: porcelain

MomentumUpdateFunction
x´´ := x´ + (x´-x)
y´´ := y´ + (y´-y)
z´´ := z´ + (z´-z)

GravityUpdateFunction
z´ := z + z + ½ × g × (∆t)²

Connectivity Graph Annotations

Update Functions

Figure 1: Examples of the components of a simulation

‘mess’ symbol generated from simulation

Figure 2: Simulating a ‘fast move’ on a mug of coffee

Hybrid Architecture
Simulation is a powerful and efficient tool for commonsense
reasoning, but it only supports a ‘forward chaining’ infer-
ence mode: it is therefore an incomplete solution for general
purpose commonsense reasoning. We integrate simulation
with logical deduction in a hybrid architecture in order to
combine the strengths and complement the weaknesses of
each mechanism. That is, we use the deductive power of a
general-purpose logical reasoner to make up for the inflex-
ibility of simulation.

In combining simulation and logic, blackboard architec-
tures, tuple spaces and agent architectures serve as obvi-
ous choices for implementation: they have a long history
of application to problems of integration in intelligent sys-
tems. Unfortunately, our experience is that the conceptual
mismatch between simulation and logic is such that appli-
cation of these integration techniques eventually results in
systems that are unworkably complex and difficult to main-
tain. Instead, a clear and unifying abstraction is required to
harmonize the semantics of the reasoning mechanisms. We
claim that this can be achieved by our hybrid architecture
that performs logical deduction with the method of analytic
tableaux, and interprets both simulation and logical deduc-
tion as operations over spaces of worlds.

The method of analytic tableaux (Hähnle 2001) is an ef-
ficient method of mechanizing logical theorem proving.
Analytic tableaux have been successfully applied to large
problems on the semantic web, and there is a vast body
of literature on their efficient implementation (ibid.). The
method constructs trees (tableaux) through the syntactic
decomposition of logical expressions, and then eliminates
branches of the tree that contain contradictions among the
decomposed atomic formulae. Each branch of the resultant
tableau may be seen as a partial, disjunction-free description
of a model for the input formulae. The crucial insight is that
if a tableau algorithm is given knowledge of the world and
a query as logical input, then the conjuction of the atomic
formulae in a branch of the resultant tree represents a space
of worlds that satisfy the query.

The tableau method and simulation can thereby be uni-
fied through this common abstraction. The tableau algo-
rithm generates spaces of worlds, and simulation expands
upon knowledge of spaces of worlds (i.e., forward chains to
future states based on current states). In our framework, we
perform commonsense reasoning by generalizing the tableau
so that it can contain non-logical terms such as simulations,
functions and data-structures in addition to the standard
logical terms of traditional tableaux. Deduction proceeds by
application of both tableau rules that expand, fork or close
branches of the tree, and simulations that can expand and
close branches of the tree.

The full details of this method appear in our earlier pub-
lications, but we will review the principles here by way of a
simplified example. Consider the following scenario:

A household robot needs to move an object across a
table. Its actuators can perform a soft or a hard move-
ment. It is unsafe to move any object ‘quickly’. What
commands may be sent to the actuators?

For the convenience of our example calculations, let us as-

sume that the mass of the object is 1kg, the soft force is 1N,
the hard force is 2N, the object is simply pushed for 1s and
unsafe speeds are 1.5ms-1 or higher. Furthermore, we assume
the following highly simplified and abstracted simulation1:
function simulate(Mass, Force, Time):
 set Speed := Time * Force / Mass
 return {speed = Speed}

We can then convert the scenario to a logical form:
time=1 ˄ mass=1 ˄ safe ˄
 (command=hard-force ˅ command=soft-force)

With this logical form, we may then apply the method of
analytic tableau and simulation to find models that satisfy
1Note that while highly simplified, this algorithm has similar
constraints to real simulations: the inputs are numerical and
fully specified, and the algorithm can only be used in the
‘forward’ direction.

time=1
mass=1
safe
command=hard-force ∨ command=soft-force

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

command=hard-force command=soft-force
force=1force=2

time=1
mass=1
safe
command=hard-force ∨ command=soft-force
speed < 1.5

command=hard-force command=soft-force
force=1force=2
speed=1speed=2

Figure 3a: First, each conjunct in the original query is
expanded into separate nodes.

Figure 3b: The term ‘safe’ is expanded per its definition.

Figure 3c: The tableau is forked into two branches: one
branch for each disjunct in the fifth node. ‘Hard-force’ and
‘soft-force’ are then expanded per their definitions. Logical
deduction has now ‘stalled’: no more logical rules apply.

Figure 3d: Simulation is now invoked. As a result, the left
branch becomes inconsistent (speed=2 and speed<1.5).
The right branch remains open and therefore describes a
scenario satisfying the original query (i.e., the robot can

safely use soft-force).

quire knowledge of a novel object (say a mug of coffee) by
building a wireframe model from a robust 3D shape recon-
struction algorithm, and then searching for annotations that
match the observed behaviour of the object. Observations
can be used to test hypotheses about annotation values by
simulating the behaviour of the novel object and comparing
them to the observation. In our framework, the robot auto-
matically and continuously learns object and annotations in
a background ‘process’ by constantly simulating from re-
cent observations, and testing that expectations match the
current observation. This is illustrated in Figure 4.

The relationship between input and output in a simulation
is difficult to compute analytically (indeed, if there were sim-
ple analytical solutions, it is unlikely that simulation would
be applied to the problem in the first place). Annotations
must be computed by numerical optimization or machine
learning algorithms. In particular, we intend to use a greedy
search to find these values (any other generate-and-test al-
gorithm can be used, as appropriate to the problem: genetic
programming, beam search or simulated annealing).

How then, can optimization be incorporated into our uni-
fying abstraction of search over spaces of possible worlds?
Optimization requires comparison of separate spaces of
worlds, and therefore involves comparing separate parts of
the search space or separate branches of a tableau. Unfortu-
nately, the standard tableau algorithm only permits manipu-
lation or inspection of a single branch. We avoid this prob-
lem by introducing an (incomplete) ordering over branches,
and then modifying the tableau algorithm so that it searches
for minimal models. A branch in a tableau is no longer con-
sidered ‘open’ simply if it is consistent—it is open if it is ei-
ther consistent and unordered, or else it has an ordering and
is minimal among all other consistent and ordered branch-
es. That is, the algorithm considers all unordered branches,
and only one ordered branch. (Note also that if the minimal
ordered branch is found inconsistent, the next most minimal
branch is then considered again.)

We could define the ordering outside of the tableau. For
example: “Branch a is smaller than branch b if the error of
the first hypothesis in a is smaller than that of the first hy-
pothesis in b. If the first hypothesis in a and b are equal,
then the ordering is determined by the second hypothesis
(and so on)”. However, such ordering rules are inconvenient
because they are defined outside the tableau.

the formula. The algorithm proceeds in the steps illustrated
in Figures 3a–3d.
When the algorithm terminates there is a tree with only one
open branch. Reading atomic formulae along that remain-
ing branch, we see that it describes a world in which the
command=soft-force action is applied and the object moves
safely at 1ms-1.

Thus, we have used both simulation and logical deduction
in a single mechanism to solve a (simplified) commonsense
reasoning problem. Details such as data structures, methods
for prioritizing computation, search strategies and output
variables have been omitted from this example for clarity,
however these can be found in our earlier publication (John-
ston and Williams 2008).

Integrating Learning
Commonsense reasoning requires more than a hybrid
method of deduction: it depends on the availability of rich
and accurate knowledge of the world. In contrast to logical
methods that depend on highly skilled logicians painstak-
ingly encoding their intuitions into formal axiomatizations,
a small number of fundamental laws are first implemented
in a simulation, and then descriptions of the world can be
readily added to a simulation in a simple two stage process:

Structuring the underlying simulation graph to match 1.
the observed structure of the situation to be simulated
(such as creating a 3D wire-frame model),
Configuring the annotations on the graph so that the 2.
simulations closely predict reality.

In our own experiences with constructing simulations, we
observed that these tasks involved little mental effort but
were a tedious process of careful tuning of parameters to
match reality (e.g., trial-and-error to determine an appropri-
ate spring constant to simulate a rubber ball). We begun cre-
ating tools to support this process, but quickly realized that
tedious and undemanding tasks are ideal candidates for full
automation. Consider the following:

The update functions in a simulation are static: they are 1.
easily implemented manually, and are rarely changed.
For example, once the laws of Newtonian physics have
been implemented, they can be used in simulations of
almost all mechanical systems. While we currently
view this as outside the realm of feasible automation,
we do not consider this effort to be substantial.
The underlying static graph can often be directly ob-2.
served from the environment. In the case of physical
simulations, a wire-frame approximation can be auto-
matically assembled from the 3D volumes reconstruct-
ed from moving camera images, stereoscopic vision,
LASER sensing, 3D scanning, LIDAR, Z-cameras,
direct physical contact or other scanning/imaging tech-
niques.
The annotations that guide the dynamic behaviour of 3.
simulations are typically numeric so their values may
be learnt with standard machine learning techniques
(i.e., by search for parameters that minimize the error
between simulation and observed reality).

For example, if we have a household robot that uses simula-
tion as an underlying representation, then the robot can ac-

Observation

Compare

Expectations

Errors

Hypothesise

Simulate

Hypotheses

Hypotheses

Current Beliefs

Experiences

Figure 4: Background learning process

Instead, we define an ordering with symbols stored
within the tableau. We hold the set of propositions
minimize(VariableName, Priority) as tautologically true in
the standard tableau algorithm, but use them in evaluating
the order of the branch. The Priority is a value from a total-
ly-ordered set (such as the integers) and indicates the order
in which the values of variables are sorted: branches are first
sorted by the highest priority variable, then equal values are
sorted using the next highest priority variable, and so on.

Consider our household robot example again. If the robot
encounters a novel object it will need to find suitable param-
eters to simulate and therefore reason about the object. If
there is another agent or a designated ‘teacher’ demonstrat-
ing how to handle the object, it has a ready stream of obser-
vations for learning. If the object is simply sitting alone, it
may need to apply its most conservative and gentle action
to the object to gather some initial data. The robot can then
use a stochastic hill-climbing strategy on its observations to
learn about the object:

Initially, a default hypothesis about the values of an-1.
notations is assigned to the novel object.
When a new observation arrives, the robot generates a 2.
set of alternate hypotheses (random perturbations, in
the case of a stochastic hill-climbing strategy) as a dis-
junction in the tableau: this disjunction produces new
branches in the tableau.
The alternate hypotheses are each simulated from the 3.
prior observation in order to generate predictions for
the current observation. The error between expectation
and reality is computed.
The best hypothesis is implicitly chosen by the tableau 4.
algorithm, due to its preference for minimally ordered

branches. The algorithm continues again with step 2.
Note also that because our tableaux can contain logic, simu-
lations and functions, the system may use logical constraints
or ad-hoc ‘helper functions’ even when searching for values
in a simulation (e.g., a constraint such as mass > 0, or a cus-
tom hypothesis generator that samples the problem space in
order to produce better hypotheses).

An example of learning the behaviour of a falling ball by
hypothesis search in a tableau appears in Figure 5:
Step 1: The tableau initially contains the first observation

of a ball and the initial hypothesis generated (many other
control objects, meshes, functions and other data will be
in the tableau, but these are not shown for simplicity).

Step 2: The system observes movement in the ball. It gener-
ates new hypotheses, seeking to find a hypothesis with
minimal error.

Step 3: The system simulates from hypothesis0. The result
of the simulation is compared with observation1 to de-
termine the error in the hypothesis. The right branch has
smaller error so the left branch is no longer open.

Step 4: As with Step 2, the system observes more move-
ment and generates new hypotheses, further refining the
current hypothesis.

Step 5: The system then simulates as with Step 3, but this
time the left branch is minimal. In the following steps,
the algorithm continues yet again with more new obser-
vations and further hypothesizing…

Experimental Results
We tested an implementation of this technique in a sim-
ple virtual environment: boxes and balls of varying sizes,
masses and elasticity (some were rigid, others quite elas-
tic), were pushed by variable forces for variable periods of
time2. A virtual 2D ‘camera’ observed the interactions, and
the Comirit learning algorithm was used to construct mod-
els from observations, generate hypotheses and simulations,
and compare observation with simulations. The accuracy (as
tested across many experiments) was surprisingly high:

A single observation pair is sufficient to learn annota-1.
tions for simulating with 94% pixel-by-pixel accuracy.
Four observation pairs bring this accuracy up to 97.5% 2.
accuracy.
Further observations result in small, incremental im-3.
provements, approximately halving the error with each
doubling of the number of new observations.

In our subsequent experiment, we used a broader concept
of ‘hypothesis’. Rather than learning the isolated annota-
tions of individual objects, the hypothesis space was a self-
organizing map (SOM) with feature vectors that include
observable appearance and hidden parameters. The system
retrieves an initial hypothesis for the annotations of a new
object by searching the self-organizing map with a partial
vector describing only the object’s observable appearance.
When the system observes errors between observation and
simulated expectation, a new and complete feature vector is

2i.e., Two observable object parameters (shape, size), two
hidden parameters to be learnt (mass, elasticity) and two
known observation parameters (force, duration)

observation0=

hypothesis0={friction=1,elastic=1}

observation1=

minimize(error1,0)

hypothesis1={friction=2,elastic=1} hypothesis1={friction=1,elastic=2}

simulation1= simulation1=

error1=80% error1=20%

observation2=

minimize(error2,1)

hypothesis2={friction=2,elastic=2} hypothesis2={friction=1,elastic=3}

simulation2= simulation2=

error2=5% error2=15%

observation3=

minimize(error3,2)

Step 1

Step 2

Step 4

Step 3

Step 5

Figure 5: An example of learning in a tableau

generated and this is updated into the self-organising map.
We hoped to demonstrate an ability to generalize knowl-

edge, so we added structure to our learning problem:
Color was inversely correlated with elasticity (we ob-1.
serve a similar effect in real life when shiny metallic
objects in the real world are usually rigid).
Heavy (dense) objects were generally inelastic (as we 2.
often observe in real life).
Round objects were generally inelastic (we also ob-3.
serve similar correlations between shape and behavior
in real life: a mug is generally rigid so that it may safely
hold hot liquids).

To our surprise, not only did the system build a self-organiz-
ing map that captured the problem structure (and therefore
allowed it to correctly generalize its learning about previ-
ously unseen ‘heavy boxes’), but the self-organizing map
improved the speed at which the algorithm learnt. This im-
provement is due to the map offering better hypotheses dur-
ing early learning by generalizing from similar cases. The
ability of the framework to rapidly learn from very few ob-
servations, meanwhile prevented it from being committed to
its SOM hypothesis when it encountered ‘outlier’ objects.

In this latter trial we used a less aggressive hill-climbing
strategy to allow greater exploration of the search space and
better test the advantage of a SOM. With this weaker strat-
egy, learning on a single object requires up to 8 observations
to achieve 90% accuracy. A randomly initialized SOM has
less than 5% accuracy, but after observing 14 objects once
each, it achieved 60% accuracy, and then reached 90% ac-
curacy after just six sets of observations and the whole map
converged after 15 sets of observations at 94% accuracy.

We consider these trials as early demonstrations of the
soundness of the basic concept. In future, we will identify
and adapt a robust 3D reconstruction technology, and run
these experiments on real world objects within real world
settings. We have skimmed over many of the details of au-
to-associative learning with self-organizing maps because
we expect to make dramatic changes when we fine-tune
the technique to real world problems. We are, however,
extremely encouraged by the success of our relatively na-
ïve implementation. In future, we plan to extend the use of
SOMs to assist in constructing the graph-based models (i.e.,
by extrapolating the obscured shape of the object from ob-
served shape) and for allowing rich shape-based and affor-
dance-based indexing, retrieval and similarity testing.

Performance Considerations
While placing an ordering on branches enables the tableau
algorithm to emphasise optimal consistent branches and
discontinue search on suboptimal branches, the suboptimal
branches cannot be discarded from memory. This is because
an optimal branch may later be found inconsistent, and
therefore cause a previously suboptimal branch to become
the most optimal consistent branch that remains.

In many cases, however, it may be known that this cannot
happen. For example, it may be known that any inconsis-
tency will apply to all ordered branches, or it may be known
that ordered branches will never contain inconsistency. In
this case it is possible to introduce Prolog-style ‘cuts’ into the

tableau: special terms to indicate that non-optimal branches
may be dropped. Of course, care must be taken to ensure
that cuts are genuinely free of unintended side-effects—that
they are ‘green cuts’, to use the terminology of Prolog.

Another concern is that robots will need to simultaneous-
ly learn while engaged in action. If action and learning oc-
curs in the same tableau, there is a need to prevent branching
in decision-making from causing the same learning problem
to repeat in multiple branches of the tableau. This can be
solved by careful factoring: continuous online learning is
performed in a separate tableau, but the contents of that tab-
leau are implicitly read in logical conjunction with the con-
tents of the primary action and decision making tableau.

Such optimizations have straightforward implementation,
however we will provide full details in future publication.

Conclusion
Parameter-driven simulations are not only an effective mech-
anism for rich commonsense reasoning, but they lend them-
selves to rapid and autonomous acquisition. We have shown
how models of learning can be elegantly incorporated into
the Comirit framework (and potentially other tableau-based
systems). The extended framework thus simulateously com-
bines the effectiveness and efficiency of simulation with the
ability for autonomous knowledge acquisition, and with the
full power and generality of logical formalisms.

To date, we have demonstrated the system on simple (but
useful and plausible) learning problems. Early experimental
results are extremely encouraging: the system learns rapidly
and with very few observations.

As a long term goal, we plan to have Comirit autono-
mously acquire from observation, even the fundamental
laws of a simulation and the mechanisms for model build-
ing. In particular, we hope that interaction in a complex
environment (such as the 3D world) may be interpreted as
a problem of determining a hierarchical non-linear flow of
‘entities’ within an environment. To whatever degree such
automation is possible, our framework can accommodate
any learning that can be expressed as an optimization prob-
lem, and yet allow for ongoing integration with symbolic
and logical formalizations.

References
Gardin, G. and Meltzer, B. (1989) ‘Analogical representations of

naïve physics’, Artificial Intelligence, vol. 38, no. 2, pp. 139–
159.

Hähnle, R. (2001) ‘Tableaux and Related Methods’, Handbook of
Automated Reasoning, vol. I, pp. 100–178, Elsevier Science.

Johnston, B. and Williams, M-A. (2007) ‘A generic framework for
approximate simulation in commonsense reasoning systems’,
Proceedings of COMMONSENSE 2007, pp. 71–76.

Johnston, B. and Williams, M-A. (2008) ‘Comirit: Commonsense
reasoning by integrating simulation and logic’, Proceedings of
AGI-2008, pp. 200–211.

Panton, K., Matuszek, C., Lenat, D., Schneider, D., Witbrock, M.,
Siegel, N. and Shepard, B. (2006) ‘Common Sense Reason-
ing – From Cyc to Intelligent Assistant’, In Yang Cai and Julio
Abascal (eds.), Ambient Intelligence in Everyday Life, pp. 1-31,
LNAI 3864, Springer, 2006.

