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Abstract

We propose a theory for reasoning about actions based on
order-sorted predicate logic where one can consider an elab
orate taxonomy of objects. We are interested in the projec-
tion problem: whether a statement is true after executing a
sequence of actions. To solve it we design a regression op-
erator that takes advantage of well-sorted unification betw
terms. We show that answering projection queries in our log-
ical theories is sound and complete with respect to that of in
Reiter’s basic action theories. Moreover, we demonstise t
our regression operator based on order-sorted logic catdgro
significant computational advantages in comparison toeRgit
regression operator.

Introduction

In his influential paper (Hayes 1971) titled “A Logic of Ac-
tions”, Pat Hayes proposed an outline of a logical theory
for reasoning about actions based on many-sorted logic with
equality. His paper inspired subsequent work on many-dorte
logics in Al. In particular, A. Cohn (Cohn 1987; 1989) de-
veloped expressive many-sorted logic and reviewed alliprev

ous work in this area. Reasoning about actions based on the

situation calculus has been extensively developed in ¢Reit
2001). However, he considers a logical language with sorts
for actions, situations and just one catch-all sQ#tject for

the rest that remains unelaborated. Surprisingly, eveheif t

Walther 1987; Schmidt-Schgul989; Bierleet al.
Weidenbach 1996) restricts the domain of variables to $sbse
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order-sorted (predicate) logic to describe taxonomicrimiz-

tion about objects. We are interested in the projectionlgrab
(whether a statement is true after executing a sequence of ac
tions) and we would like to use regression to solve this prob-
lem (Reiter 2001). Note that even if both many-sorted logic
and order-sorted logic can be translated to unsorted, using
order-sorted logic can bring about significant computation
advantages, for example in deduction. This was a primary
driving force for (Walther 1987) and (Cohn 1987). We show
that regression in order-sorted SC can benefit from wetkesor
unification. One can gain computational efficiency by termi-
nating regression steps earlier when objects of incommensu
rable sorts are involved.

It is well-known thatPDDL supports typed (sorted) vari-
ables and many implemented planners can take advantage of
types (Ghallaket al. 1998). (Classewrt al. 2007) proposes
formal semantics for the typed ADL subset of PDDL using
ES, a dialect of SC. Our paper focus on the relations between
Reiter's BATs and our new order-sorted BATs and the compu-
tational advantages which regression in order-sorted BAaRs
provide (sometimes). We contribute towards a formal ldgica
foundation of PDDL.

Background

In general, order-sorted logic (OSL) (Oberschelp 19620199
1992;

idea proposed by Hayes seems straightforward, there lis stil of the universe (j.esorty. Notationz : Q means that variable

no formal study of logical and computational properties of a
version of the situation calculus with many related sorts fo

objects in the domain. Perhaps, this is because mathematica

proofs of these properties are not straightforward. We unde
take this study and demonstrate that reasoning about action
with elaborated sorts has significant computational achges

in comparison to reasoning without them. In contrast to an ap

proach to many-sorted reasoning (Schmidt 1938; Wang 1952;

Herbrand 1971) where variables of different sorts range ove
unrelated universes, we consider a case when sorts aredrelat

x is of sort@) andV, is the set of variables of sof}. For any

n, sort cross-produad); x - - - x @Q,, is abbreviated aéjl,,n;
term vectorty, . . ., ¢, is abbreviated a8, ,; variable vector
x1,...,T, IS abbreviated ag;. ,; and, variable declaration
sequence;:Q1, ..., r,:Q, is abbreviated aﬁlnn:(jl_n.

A theory in OSL always includes a set of declarations
(calledsort theory to describe the hierarchical relationships
among sorts and the restrictions on ranges of the arguments
of predicates and functions. In particular, a sort the®ry

to each other, so that one can construct an elaborated taxon-ncludes a set oferm declarationsof the formt : @ repre-

omy. This is often convenient for representation of common-
sense knowledge about a domain.

senting that ternt is of sort@Q, subsort declarationsf the
form Q1 < Q- representing that sof; is a (direct) subsort of

Generally speaking, we are usually interested in a compre- SOrtQ: (i.e., every object of soi®), is also of sort),), and

hensive taxonomic structure for sorts, where sorts may in-

herit from each other and may have non-empty intersections.

predicate declarationsf the formP: Q. ,, representing that
the i-th argument of thew-ary predicateP is of sort@; for

Hence, we consider formulating the situation calculus in an i=1..n. A function declaratioris a special term declaration



where ternt is a function with distinct variables as arguments:
for eachn-ary functionf, the abbreviation of its function dec-
laration is of the formf : Q1.., — @, whereQ); is the sort of
thei-th argument off and@ is the sort of the value of. ¢: Q

is a special function declaration, representing that corst

is of sort@). Arguments of equality =" can be of any sort.
Below, we consider finite simplesort theory only, in which
there are finitely many sorts and declarations, the term dec-
larations are all function declarations, and for each fiamct
there is one and only one declaration.

For any sort theory™, subsort relatior. ris a partial order-
ing defined by the reflexive and transitive closure of the sub-
sort declarations. Then, following the standard termigglo
of lattice theory, if each pair of sort symbols i has great-
est lower bound (g.l.b.), then we say tlihé sort hierarchy
of 7 is a meet semi-latticBNValther 1987). Moreover, well-
sorted term(wrt 7) is either a sorted variable, or a constant
declared in7, or a functional termf(¢;..,,), in which each
t; is well-sorted and the sort df is a subsort of);, given

that f : Q1.,, — Qisin 7. A well-sorted atom(wrt 7) is
an atomP(t; ,) (can bet; = t;), where each; is a well-

sorted term of sorQ);, andQ;, <7 Q;, given thatP : Q1.
isin 7. A well-sorted formulgwrt 7) is a formula in which

all terms (including variables) and atoms are well-sorfeay
term or formula that is not well-sorted is callédsorted. A
well-sorted substitutiorfwrt 7) is a substitutionp s.t. for
any variablex : Q, px (the result of applying to z) is a
well-sorted term and its sort is a (non-empty) subsor€of
Given any sety = {(t1,1,%1,2), ..., (tn.1,tn,2)}, Where each
t;; (i=1..n,j=1..2) is awell-sorted term, well-sorted most
general unifie(well-sorted mgu) oft is a well-sorted substi-
tution thatis an mgu of. Itis importantthat in comparisonto
mgu in unsorted logic (i.e., predicate logic without sqnsyu

in OSL can include new weakened variables of sorts which
are subsorts of the sorts of unified terms. For example, as-
sume thatt = {(z,y)}, € Vg,, y € Vg, and the g.L.b. of
{Q1,Q2} is a non-empty sor®s. Then,u = [z/z,y/z] (z

is substituted by, y is substituted by) for some new vari-
ablez € Vg, is a well-sorted mgu ofy. Well-sorted mgu
neither always exists nor it is unique. However, it is proved
that the well-sorted mgu of unifiable sorted terms is unique u
to variable renaming when the sort hierarchyZofs a meet
semi-lattice (Walther 1987).

The semantics of OSL is defined similar to unsorted logic.
Note that the definition of interpretations for well-sortedms

and formulas is the same as in unsorted logic, but the seman-

tics is not defined for ill-sorted terms and formulas. For any
well-sorted formulap, a7 -interpretatiorl = (M, I) is a tu-
ple for a structureM and an assignmetitfrom the set of free
variables to the universg of M, s.t. it satisfies the following
conditions: (1) For each so@, Q" is a subset of the whole
universeU. In particular, T! = U, 1! = (), and@} C Q5 for
any @, <7 Q2. (2) For any predicate declaratidn: an
Pl C Q) x---x@} is arelation inM. (3) For any func-
tion declarationf : @1, — @, fT : QL x---x QL — Q!
is a function inM. (4) 2! = I(x) is in Q' for any vari-
ablez € Vg, ¢! € Q' for any constant declaration: @, and

FE ) .

t£ ) for any well-sorted terrgi‘(ﬁ__n).

I is not defined for ill-sorted terms and formulas. (5¥1fin-
cludes a declaration for equality symbet*, then =! must

be defined as sef(d,d) | d € U}, i.e., the equality symbol
is interpreted by the identity relation on the whole unieers
For any sort theory7 and a well-sorted formula, a struc-
ture M is a7 -modelof ¢, written asM =5 ¢ iff for every
T-interpretatiorl = (M, I), I satisfiesp. In particular, when

¢ is a sentence, this does not depend on any variable assign-
ment andl = M. Moreover, we say that @-interpretation

I = (M, I) satisfiesp, written asl =5 ¢, if the following
conditions (1-7) hold: (1] =° P(fy..,,) iff (¢},... L)€ P
Q)1 =¥ —¢ iff I =5 ¢ does nothold. (3] =F ¢1 A ¢. iff
orl ':OTB ¢2. B)1 ):%5 P1 D g iff 1 ):%5 91 V .

6) I = Vo : Q.¢ iff for every d € Q' 1 S ¢[z/d],
whereg[z/o] represent the formula obtained by substituting
z with o. (7)1 ES 3z : Q.¢ iff there is somed € Q" s.t.

I =F ¢[z/d]. Given a sort theory” as the background, a
theory® including well-sorted sentences only satisfies a well-
sorted sentencg, written as® =5 ¢, iff every model of® is

a model ofy.

Note that we follow traditional approaches to sorted reason
ing, where sort symbols must not occur as predicates in the
formulas. Alternative approaches, called hybrid, allovmtis
sort symbols with application specific predicates (see {Wei
denbach 1996; Cohn 1989; Bied¢al. 1992)).

Due to the space limitations, we skip the background of the
situation calculus. Details can be found in (Reiter 2001 an
we refer to this language as Reiter’s situation calculuevel
Note that in this paper, we uge$ to represent the logical
entailment wrt a sort theory in order-sorted logic=™*° to
represent the logical entailment in Reiter’s situatiorcahls
(a many-sorted logic with one standard sBiijec), and =
to represent the logical entailment in unsorted predicagi!

An Order-Sorted Situation Calculus

In this paper, we consider a modified situation calculus thase
on order-sorted logic, calledrder-sorted situation calculus
and denoted a£®® below. £°9 includes a set of sorts
Sort = Sort,,; U {T, L, Act, Sit}, whereT represents the
whole universe,l is the empty sortAct is the sort for all
actions,Sit is the sort for all situations, anBlort,; is a set

of sub-sorts ofObject including sortObject itself. We as-
sume that for every sort (excep) there is at least one ground
term (constant) of this sort to avoid the problem with “empty
sorts” (Goguen & Meseguer 1987). Moreover, the number of
individual variable symbols of each sort 8ort is infinitely
countable.  For the sake of simplicity, we do not consider
functional fluents here.

In the following, we will defineorder-sorted basic action

theories(order-sorted BATS) and consider dynamical systems
that can be described using such order-sorted BATs. An-order
sorted BATD = (7p, D) includes the following two parts of
theories.
e 7Tp is a sort theory based on a finite set of sa@p s.t.
Qp C Sortand{.L, T, Object, Act, Sit} C Qp. Moreover,
the sort theory includes the following declarations fortétyi
many predicates and functions:



1. Subsort declarations of the for@; < Q- for Q1,Q- €
Qp — {T, Act, Sit}, and subsort declaration®bject < T,
Act < T,8it<T. L <Aet, L < Sit. Here, we only con-
sider those sort theories whose sort hierarchies are mnmaet se
lattices. .
2.0ne and only one predicate declaration of the fétnd); .,

for eachn-ary relational fluenf’ in the system, wher@; <+
Object and@; # 1 fori=1..(n—1), and@,, is Sit.

where ¢4 (Z1. ., s) is a well-sorted formula uniform i,
whose free variables are at most amahg, ands.

5. A setD;; of successor state axioms (SSASs) for fluents rep-
resented using well-sorted formulas: for each fluEnwith

declaration': G;. ., x Sit, its SSA is of the form

(VZ1..n: Ql__7L7 a:Act,s:Sit).

F(#1.n,do(a,s)) = ¢Yr(Z1.n,a,s), 2)

3.0ne and only one predicate declaration for the special pred- whereyr(Z. ., a,s) is a well-sorted formula uniform im,

icate Poss, that is,Poss: Act x Sit.

4.0ne and only one predicate declaration of the fa}?n@l,,n
for eachn-ary situation independent predicafein the sys-
tem, where)); <7 Object andQ; # 1 fori=1..n.

5. A special declaration for equality symbel: T x T.

6. One and only one function declaration of the forn:

Q... — Act for eachn-ary action functiond in the system,
whereQ; <7 Object andQ; # L for i=1..n. Note that, when
n = 0, the declaration is of formd : Act for constant action
function A.

7. One and only one function declaration of the forfn:
Q1.n — Qni for eachn-ary (n > 0) situation indepen-
dent function f (other than action functions), where each
Q; <7 Object andQ; # L for eachi = 1..(n+1). Note
that, whenn = 0, it is a function declaration for a constant,
denoted as: @ for constant of sortQ.

8. 0One and only one function declaratido: Act x Sit — S't,
andS : Sit for the initial situationSj.

whose free variables are at most amahg, anda, s.
Here is a simple example of an order-sorted BAT.

Example 1 (Transport Logistics) We present an order-sorted
BAT D of a simplified example of logisticsIp includes fol-
lowing subsort declarations:

MovObj < Object, 1. <City, L < Box, | <Truck,

Truck < MovObj, City <Object, Box < MovObj,
whereM ovObj is the sort of movable objects, and other sorts
are self-explanatory. The predicate declarations are

InCity: MovObj x City x Sit, On: Box x T'ruck x Sit
for the fluentsInCity(o,l,s) and On(o,t,s). The func-
tion declarations for actiongoad(b,t), unload(b,t) and
drive(t, c1, co) are obvious. For instance,

drive: Truck x City x City — Act
BesidesSy : Sit, the constant declarations may include:

B;1:Box, B> : Box, Ty : Truck,

To:Truck, Pasadena:City, Boston:City.

» Dis a set of axioms represented using well-sorted sentences axioms in Dg, can be:

wrt 7p, which includes the following subsets of axioms.

1. Foundational axiom& for situations, which are the same
as those in (Reiter 2001).

2.A setD,,, of unique name axioms for actions: for any two
distinct action function symbolgl and B with declarations
A:Qy.n—ActandB : G, ,,—Act, we have

Moreover, for each action function symhé) we have

(VZ1..n: CjLn, Yi..m an) A(Z1.0)=AW1..n) D /\:L:l Ti = Yi

3. The initial theoryDg,, which includes well-sorted (first-
order) sentences that are uniform #. In particular, it
includes the unique name axioms for object terms, object
constants and/or functional terms: (1) for any two distinct
situation-independent function symbols (including canss)

fl andf?a we havevlfl..n : anVglm : Qllmfl(fln) 7é
f2(¥1..m), where the functional declarations ffy and f> are
fi1:Qun — Qupa (n >0 andfo : Q) ,, — Q4

(m > 0); (2) for each situation-independent functignwe
have f(Z) = f(¥) D Al,z; = y;, where the functional
declaration forf is f : 651..71 — @Qn+1 (n > 1). Dg, can
also include additional constraints that relate to sorts.if-
stance, there can be finitely maaxioms of disjointness for
basic sortsof the formVz : Q;.Vy : Q;.(x # y) for any two
disjoint basic sorts); and@;, where a sort) is considered
basic if there is no so®’ # L, such that)’ <Q.

4. A setD,,, of precondition axioms for actions represented
using well-sorted formulas: for each action symHowhose
sort declaration ist: G, ., — Act, its precondition axiom is of
the form

(VZ1..m: Q1. n,5:Sit).Poss(A(Z1.n),8) = da(Fr.m,s), (1)

3z : Box. InCity(z, Boston, So),
(Vx : Box,t : Truck). -On(z,t,So),
InCity(Ty, Boston, So)VInCity(T2, Boston, So).
As an example, the precondition axiom foud is:
(Vx: Boz,t:Truck,s: Sit). Poss(load(x,t),s) =
-On(z,t,s) A Jy: City.InCity(z,y,s) A InCity(t,y,s),
and the preconditions farnload anddrive are obvious.
As an example, the SSA of fluefuCity is:
(Vd: MovObj, c: City,a: Act, s: Sit).
InCity(d, c,do(a, s)) = (3t:Truck, c1: City).
a=drive(t,c1,c) A (d=tV 3b: Box.b=d A On(b,t,s)))V
InCity(d, c,s) A =(3t:Truck, c1 : City.a=drive(t,c, c1)
A(d=tV 3b: Box.b=d A On(b,t,s))),
and the SSA of fluendn is obvious.

Order-Sorted Regression and Reasoning

We now consider the central reasoning mechanism in the
order-sorted situation calculus. The definition of a regabte
formula of £9F is the same as the definition of a regressable
formula of . exceptthat instead of being stated for a formula
in L., it is formulated for a well-sorted formula i6°°.

A formula W of £9F is regressablgwrt an order-sorted
BAT D) iff (1) W is a well-sorted first-order formula wifpy;
(2) every term of sorfit in W starts fromS, and has the syn-
tactic formdo([av1, - - - , aw), So), Where eacly; is of sortAct;
(3) for every atom of the fornPoss(«, o) in W, « has the
syntactic formA(Fl,,n) for somen-ary action function sym-
bol A; and (4)IW does not quantify over situations, and does
not mention the relation symbols—™ or “=" between terms
of sortSit. A queryis a regressable sentence.



Example 2 Consider the BATD from Example 1. LeW be

3d: Box.d= Boston A On(d, T1, do(load(B1,T1), So))

W is a (well-sorted) regressable sentence @jtwhile
On(Boston, T1, do(load(B1,T1), So))

is ill-sorted and therefore is not regressable.

The regression operat®°* in L9 is defined recursively
similar to the regression operator in (Reiter 2001). Moegpv
we would like to take advantages of the sort theory during
regression: when there is no well-sorted mgu for equalities
between terms that occur in a conjunctive sub-formula of a
query, this sub-formula is logically equivalent to falsedan
should not be regressed any further. We will see that this key
idea helps eliminate useless sub-trees of a regressianltree
what follows,t and7 are tuples of termsy ando’ are terms of
sortAct, o ando’ are terms of sor§it, andW is a regressable
formula of £OF,

1. If W is a non-atomic formula and is of the formiv,
WiV Wa, (Fv:Q).Wi or (Vo : Q). Wi, for some regressable
formulasiVy, Ws in £9F, then

R?*[oW1]=0oR*[W1] for constructor € {—, (3z:Q), (Vz:Q)}

R (W1 vV Wa]| =R [W1] V R*[Wa].

2. Else, if W is a non-atomic formulayy is not of the form
Wi, WiV Wa, (Fv: Q)W or (Vv : Q)Wi, but of the form
WiAWoA--- AW, (n > 2), where eachV; (i=1..n)is not
of the formW,; ; A W, o for some sub-formulal’; ;, W; o
in W;. After using commutative law fos, without loss of
generality, there are two sub-cases:

2(a) Suppose that for somg j =1..n, eachWW; (i =1..5) is
of the form¢; ; =¢; » for some (well-sorted) term's 1, ¢; 2,
and none oWy, k = (j + 1)..n, is an equality between

. . def
terms. In particular, wheg = n, \p_,,, Wi = true.
Then,

WiAWa Ao AW; AR [W(]
if there is a well-sorted mgu
for {(ti717ti72> |7, = 1..j};
otherwise

ROS [W] —
false

Here, W/ is a new formula obtained by applying mgu

to Ar—; 11 Wi and it is existentially-quantified at front for
every newly introduced sort weakened variablgiMore-

over, note that based on the assumption that we consider
meet semi-lattice sort hierarchies only, such mgu is unique
if it exists.

2(b) Otherwise R>*[W] = R°[Wi] A -+ A R [Wa].
3. Otherwise W is atomic. There are four sub-cases.

3(a) Suppose thaiV’ is of the form Poss(A(t), o) for an
action termA(#) and a situation ternw, and the action
precondition axiom forA is of the form (1). Without loss
of generality, assume that all variables in Axiom (1) have
had been renamed (with variables of the same sorts) to
be distinct from the free variables (if any) . Then,

RO [W] = R**[pa(t,0)].

3(b) Suppose thalV’ is of the formF'(t, do(«, o)) for some
relational fluentr'. Let F's SSA be of the form (2). With-
out loss of generality, assume that all variables in Ax-
iom (2) have had been renamed (with variables of the same

sorts) to be distinct from the free variables (if any)lof.
Then, R [W]=R*[¢r(f,a,0)].

3(c) Suppose that atori’ is of the form¢, = ¢,. for some
well-sorted termsg,, t5. Then,

w if there is a well-sorted mgu
R”[W] = { for (t1,1a);
false otherwise

3(d) Otherwise, if atomi¥ hassSy as its only situation term,
then R[W]=W.

Notice that although the definition seems to depend on syntac
tic form of a formula, we prove below that for any regressable
formulasW,; and W, in £99 that are logically equivalent,
their regressed results are still equivalent ®r{See Corol-
lary 1). Here are some examples.

Example 3 Consider the order-sorted BAD from Exam-
ple 1 and the queryV from Example 2. Then, it is easy to
see thaR°*[W|]= false, since there is no well-sorted mgu for
(d, Boston), whered: Box. Now, letWW; be

—Vd: Box.d# BostonV —=On(d, Ty, do(load(B1,T1), So)).
W is a sentence that is equivalentid. It is easy to check
thatR°¢[W] is a formula equivalent tgalse (wrt D).

Given an order-sorted BAD = (7p,D) and the order-
sorted regression operator defined above, to show the torrec
ness of the newly defined regression operator, we prove the
following theorems similar to that of in (Reiter 2001).

Theorem 1 If W is a regressable formula wrD, then
Re$[W] is a well-sortedC®® formula (includingfalse) that
is uniform inSy. MoreoverD =32 W = R*°[W].

Theorem 2 If W is a regressable formula wrD, then
D =% W iff Dsy, UDuna E%, R[W].

Hence, to reason whethbr =5, W is the same as to compute
Res[W] first and then to reason wheth®xs, U Duna %,
R°°[W]. Besides, according to Theorem 1, it is easy to see
that the following consequence holds.

Corollary 1 If W, and W, are regressable formulas i6®*
st. =5, W1 = Wy, thenD %, R [W1] = R [Wa].
Intuitively, Corollary 1 states that the regressed resofits

two logically equivalentregressable formulas (possilatyihg
different syntactic forms only) are still equivalent.

Order-Sorted Situation Calculus v.s. Reiter’s
Situation Calculus

Although BATs and regressable formulasdf® are based on
OSL, they can be related to BATs and regressable formulas in
Reiter’s situation calculus as stated in Theorem 3.

Theorem 3 (Soundness)or any BATD and any queryiV

in order-sorted situation calculug®?®, there exists a corre-
sponding BATD’ and a corresponding query/’ in Reiter’s
situation calculus s.t.

DS W iff DM W



Intuitively, we would like to show that the order-sorted sit
uation calculusC®® is correct, orsound in the sense that for
any query in£9% that can be answered in its background BAT
in £9°, we always can find a way to represent the BAT and the
query in Reiter’s situation calculus,. s.t. the corresponding
query inL,. can be answered wrt the corresponding BAT in
Lse.
Itis hard to prove Theorem 3 directly. Inspired by 8ian-
dard relativizationof OSL to unsorted (first-order) logic, our
general idea of proving Theorem 3 is as follows. In Step 1,
we prove that there is an unsorted the®ry (via strong rel-
ativizatior) and an unsorted first-order senteit® (viarel-
ativization) s.t. D =33 W iff D" =" W”. In Step 2, we
construct a BATD' (called thecorresponding Reiter's BAT of
D below) and a regressable formi& (called theranslation
of W below) in Reiter’s situation calculus, s’ =" W’
iff D =t W, for some unsorted theo®"” (via standard
relativization) and sentend®””’ (via relativization). Finally,
in Step 3, we show tha®”’ =fo W iff D" = W,

DEg w (Y prp
{ (Step 3)
D’ ':ms w’ (523 D ':fo w

Fig 1. Diagram of the Outline for Proving Theorem 3

To prove Theorem 3, we first define some concepts and
prove Lemma 1 for later convenience. First, for any €ort
in the language of£“*, we introduce a unary predicatf ),

which will be true iff z is of sortQ in £F.

Definition 1 For any well-sorted formula in £9, rel(¢),
arelativizationof ¢, is an unsorted formula defined as:

For every aton®(i), rel(P()) < P(#); rel(—¢)
rel(¢p o 1) = rel(¢) orel(y) foroe{A,V,D};
rel((Vz:Q)¢) def(Vy)[Q( ) D rel(¢lz/y))];

rel((30:Q)0) = (3)[Qw) A rel(dlx/y)).
Moreover, for any setSet of well-sorted formulas,
rel(Set) = {rel(¢)| ¢ € Set}.

fﬁrel(d));

Note that all formulas inZ,. are well-sorted wrt the sort
theory of £L,.. Hence, the definition ofel can also be ap-
plied to any formula or a set of formulas in Reiter’s situatio
calculus.

Definition 2 For any sort theor¢p in £99, the set of bridge
axiomsof Tp, BA(7p), is a set of the following formulas:
(@) (Vz).Q2(z) D Qi(z) for each@: < Q1 € Tp;

(b) Q(c) for eachc:Q € Tp;

(©) (VZ1n). N2, Qiwi) O QUf(F
Q cTp.

Moreover, letSorted(xz) be an auxiliary predicate that
does not appear i®: it is a purely technical device used
for proving Theorem 3. The set atrong bridge axiomsf
Tp, SBA(Tp), is also a set of unsorted axionisA(7p) U
sba(7p), wheresba(TD) includes the following axioms:

(d) (VZ1.n).P(Z1.n) D A, Qi(zs) A Sorted(z;) for each
P:Q1.n €Tp;

1)) foreachf: Q. ., —

(e) le n (f(f1__n))/\SOTt@d(f(fl_n)) D) A?:l(QL(mL) A

Sorted(z;)) fOI‘ eachf: Q. ., —Q €Tp.

Intuitively, Sorted(t) means that tern is well-sorted (wrt
D). (a functional term is well-sorted and of its own sort, re-
spectively), then all its arguments should be well-sorted a
of the corresponding sorts wrt the predicate declaratiba (t
function declaration, respectively). Note that althowghted
may satisfy other characterizing axioms than axioms inifd) a
(e) according to its intuitive meaning, but adding axiomg&in
and (e) to the strong relativization theory®fdefined below

is enough for us to prove Theorem 3.

Definition 3 For any order-sorted BATD in £9°, the

strong relativization ofD an unsorted theory, is defined as
RELs(D) ™ rel(D) U SBA(Tp).

Consider any BATD; in Reiter’s situation calculus., which

has a finite sefp, of function declarations and predicate dec-

larations for all predicates and functions appearefinThe

standard relativization oD;, an unsorted theory, is defined as

REL(D1) " rel(D1) U BA(Tp,).

The reasons for differences between the two cases in Def. 3
are that (1) we include the sort theory in each BAT of order-
sorted situation calculus, while Reiter's situation clsu
mentions sort declarations generally in the signaturg€ of
and (2) we need strong relativization for order-sorted BATs
and only need standard relativization for Reiter's BATs to
prove Theorem 3. In comparison to the standard relativiza-
tion, the strong relativization adds additional axioms tod t
form (d) and (e) in Def. 2. They are based on the sort theory
that includes one and only one declaration for each preslicat
P or for each functionf, respectively. We can also prove a
relativization theorem as follows for the strong relatation
similar to the Sort Theorem proved in (Walther 1987) and/or
the relativization theorem proved in (Schmidt-Schd989).

Lemma 1 Consider any regressable formul& with a back-
ground BATD in order-sorted situation calculu§®. Then,

D %, W iff RELs(D) E™ rel(W).

We therefore can prove Step 1 in Fig. 1 using Lemma 1.
Because Reiter’s situation calculus is a many-sorted &bgic
language with special formats for precondition axioms and
SSAs, we cannot use! to relateD in £2° with a Reiter’s
BAT directly. It is also the reason why strong relativizatis
introduced. To construct a Reiter’s BAV' and a regressable
formula W’ that satisfy the theorem, we first define another
translation functiortr(1V) as follows.

Definition 4 Consider any well-sorted formulain £°°. A
translationof ¢ to a (well-sorted) sentence in Reiter’s situa-
tion calculus, denoted ds(¢), is defined recursively as fol-
lows:

For every atorrP (@), tr(P

tr((ﬂ:c:l.)@
tr((Bz:Q)¢) =
tr((3z:T)p) =

(@) “p f) tr(— d;fﬁtr(d))
 false; tr((vVz:Q)p) < —tr((3:Q.~9));
(Fz:Q)tr(¢), If Q€ {Object, Act, Sit}.
(3x:Object)tr(op)V (Iz: Act)tr(p)V
(Fz: Sit)tr(o);

(3y: Object)[Q(y) A tr(¢(z/y))],

def

def

tr((32:Q)¢) <



if Q{T, L, Object, Act, Sit};
tr(¢ o) déftr(<b) otr(y) foree{o,A,v,D,=}

The translation functiomr defined above is a mapping from
well-sorted formulas wrt the sort theory of some BAT(or,
wrt D for simplicity) in £9° to well-sorted formulas inC,..
Moreover, it is easy to prove by structural induction the fol
lowing lemma forrel andtr, which will be useful for proving
Theorem 3.

Lemma 2 Consider any well-sorted formutain £°9. Then,

El rel(tr(¢)) = rel().

Consider any order-sorted BAD. We construct theor-
responding Reiter's BAT dP, denoted ag'R(D), that will
be the Reiter's BAT we are looking for in Theorem 3. Notice
that in (Reiter 2001), sorted quantifiers are omitted as a con
vention, because their sorts are always obvious from cointex
Hence, when we construct the BATR(D) in Reiter’s situa-
tion calculus below, all free variables are implicitly uaergally
sorted-quantified according to their obvious sorts. Thefun
tion and predicate declarations are always standard, legace
not mentioned here.
e TR(D) includes the foundational axioms and the set of
unique name axioms for action functions in Reiter’s sitmti
calculus.
e The initial theory of TR(D), say Dy, , includes the fol-
lowing axioms. Note that for axioms in item8){(5) below,
predicateSorted is auxiliary wrtD and each; is universally
quantified with a default sobject (Q; itself, respectively)
if Qi <7 Object (Q; L1 Object, respectively).
1. For any well-sorted sentengec D, , tr(¢) is in Dy, .
2. For each declaratiofy; < @, in 7p, add an axiomr((Vz:
T).(Fy2:Q2.x =y2) O (Fyr:Qr.x = y1)).
3. For each declqratio;ﬁ : Ql__n —Qin7p (n > 1), add an
axiomer (Va1 n:Q1.n)-(Fy:Q)y = f(F1.n)).
We also add an axiom

QUI(@1.n)) A Sorted(f(Z1..))

tr((3ir.m:Q1.m)- Ai_y (mi = yi A Sorted(z:)))

if Q<7 Object andQ # Object, or add an axiom

((Fy:Q).y = f(fi'_:ln) A Sorted(y)) D

tr((3gr..n: Qu.n)- Niy (wi = yi A Sorted(x:)))

otherwise.
4. For each situation-independent predicate declaration
P: len add an axiom

P(Z1..0) D tr((Bf1.n : Q1) NIy (i = yi A Sorted(x:))).

5. For each fluent declaratiaf: Ql,,n x Sit, add an axiom
F(&1..n,50) Dtr((3th..n: Q1..n). Afy (i =yi ASorted(x:))).

6. For any constant declaratienQ whereQ < Object and

Q@ #Object, add an axiond)(c). Note that other constant dec-
larations will still be kept in the sort theory df,. by default
(e.g.,Sp: Sit).

e For actionA(Z;..,) whose precondition axiom i®,, has
the form Eq. (1), we replace it with a precondition axiom in
the format of Reiter’s situation calculus:

Poss(A(Z1..n), 8) Aa(F1..m, 5) 3)

where¢/, (Z1..n, s) is a L. formula uniform ins, resulting
from tr((3g1..n : Q1.0).-(Ajey @i = ¥i) A ¢a(Y1.n,5)). Here,

all y;'s are distinct auxiliary variables never appearing in
¢A(fl..n7 S)

e For each relational fluerf(¥; ,, s), whose SSA iD,; is

of the form Eq. (2), we replace it with SSA in the format of
Reiter’s situation calculus:

F(leny dO(CL, S))

Yr(Z1.nsa, 5) 4
whereyn (Z1. ., a, s) is aLs. formula uniform ins, result-
ing from ¢r((37.n : Qr.n)- AN1_y i = yi A Vr(Fin,a,s)).
Here, ally;’s are distinct auxiliary variables never appearing
in ’L/Jp(flnn, S).

LetD' =TR(D), W' =tr(W), we then can prove Theorem 3

by following the ideas presented in Fig. 1. Details are caditt
due to the space limitations.

Example 4 Consider the BATD from Example 1. The ax-
ioms inTR(D) are mostly obvious. Due to the space limita-
tions, we just provide examples of a precondition axiom and
an SSA InTR(D):
Poss(load(z,t),s) = Box(x) A Truck(t) A =On(z,t,s)A
(Fy.City(y) A InCity(z,y,s) A InCity(t,y, s)),
InCity(d, c,do(a, s)) = MovObj(d) A City(c)A
[(3t, 1. Truck(t) A City(c1) A a=drive(t,ci, c)
A(d=tV Jb.Box(b) Nb=d A On(b,t,s)))
VInCity(d, ¢, s)A
—(3t, e1.Truck(t) A City(c1) A a=drive(t,c,c1)
A(d=tV 3b.Box(b) ANb=d A On(b,t, s)))].

Itis important to notice that all querie&’* have to be well-
sorted wrt the given background order-sorted BATwhile,
in general, the queries that can be answered in the corrdspon
ing Reiter’'s BAT of D are not necessarily well-sorted wpt
Below, Theorem 4 shows that for any query that can be an-
swered inTR(D), it can be answered i® in a “well-sorted
way” too.

Theorem 4 (Completenesd)etD be an order-sorted BAT in
£9%, andTR(D) be its corresponding Reiter’s BAT. Then, for
any queryW in Reiter’s situation calculusiy can be trans-
lated to a (well-sorted) query wid, denoted ass(WW') below,
s.t. TR(D) E™* tr(os(W)) = W. Furthermore, we have
TR(D) =™ Wiff D =52 os(W).

To prove Theorem 4, we first define some new concepts and
prove a lemma.

Definition 5 LetD be a BAT in the order-sorted situation cal-
culus £9°, and TR(D) be its corresponding Reiter's BAT.
Any termt in Reiter’s situation calculus is@ossibly sortable
term wrtD, if one of the following conditions holds:

(1) ¢ is a variable of sortdct, Object or Sit in L;

(2) t is a constant, andc: @ in 7p (we say that the sort of
is @ wrt D); or,

(3) t is of form f(&; . ,,), function declaratiory : le..n —Q

in 7p, for everyi (i=1..n), t; either is a variable or is a non-
variable term of sor); wrt D andQ}, <7 Q; in Tp (we say
that the sort off (1..,,) is Q wrt D).

Similarly, any atomP(Fl__n) in Reiter’s situation calculus
(can bet; =t2), which is well-sorted wrf'R(D), is apossibly



sortable atom wrD, if for everyi, t; either is a variable or is
a non-variable term s.t.:

(a) itis possibly sortable wb; and

(b) P:Q1.nisinTp (=: T x T, respectively), the sort df is
Q,wrt D andQ), <7 Q; wrt D.

Given anyD in order-sorted situation calculus, it is easy to see
that every atom (term, respectively)IiR(D) that can be con-
sidered as well-sorted wR is always a possibly sortable atom
(term, respectively); while a possibly sortable atom (teren
spectively) is not necessarily well-sorted vt

Lemma 3 LetD be a BAT in the order-sorted situation calcu-
lus £9%, andTR(D) be its corresponding Reiter's BAT. Then,
for any atomP(Fl__n) (can bet; = t5) that is well-sorted in
L. but not possibly sortable wrD, we haveTR(D) =™s

P(ﬂn) = false.

Now we define a function which transforms a formula in
L. wrt TR(D) to a well-sorted formula i wrt D.

Definition 6 LetD be a BAT in the order-sorted situation cal-
culus £9%, TR(D) be its corresponding Reiter's BAT and
W be a regressable sentencelin. wrt the background BAT
TR(D). Then, functioros(W) is defined recursively as fol-
lows.

1. If W is either of the form(Vz) W1, (3x) W1, where the de-
fault sort ofz is @ (eitherObject, Act or Sit) in TR(D),
thenos((Vz)W1) < (Va: Q)os(Wh), andos(3x.W1) < (3z:
Q)os(Wh).

2. If W is one of the form-W,, Wi A Wa, W1 V Wa, then

os(—Wh1) def —0s(W1), os(W1 A Wa) = 0s(W1) A os(Wa),
0s(W1 V Wa) " 0s(W1) V 0s(Wa).

3. If W is atomic and not possibly sortable, thieti</ false.

4. If W is atomic and possibly sortable, assume that
var(W) = (x1,--- ,x,) is the vector of free variables ap-
peared from left to right id? (including repeated ones).
For each =1..n, suppose that; appears as an argument of
a functionf; in some term or as an argument of a predicate
P; in W. LetQ; be the sort appeared in tihe-th position
of the declaration off; (P;, respectively), ifz; appears in
the k;-th position of f; (P;, respectively) iniW. Then, let
Iy ={i|z; cvar(W),Q; <7 Object, Q; # Object}, and
70 = {y::Q;| i€ Iw}, wherey;’s are auxiliary variables
never appeared il and eachy; is distinct from others.

And, 0s(W) ™ (37 : G)(Wo A Ay, @i = vi), wherelV
is obtained from substituting eaaty with y; for i € Iy

Proof sketch for Theorem 4 First, for any query¥ in Re-
iter's situation calculus, IefV"’ = os(WW). By using structural
induction and Lemma 3, it is easy to prove tht is a well-
sorted query wrtD in OSL andTR(D) =™ W = tr(W').
Then, by Theorem 3 artk(D) ™ W = tr(W’), itis easy to
see thaD =% W' iff TR(D) =™ tr(W') iff TR(D) =™ W.
Proof details are omitted due to the space limitations. ®at,
provide some examples below to illustrate the statement.

Example 5 Here are simple examples of computing(1V)
from W in Ls.. Consider theTR(D) in Example 4. Let

On(Boston, Ty, S1) (denoted asiVs) be a query inL,.,
where S; is some situation instance. According to the way
TR(D) is constructed, we haveR(D) ™ On(o,t,s) D
Boz(o) and TR(D) E™ —Boz(Boston). So0,TR(D) E™®

W3 = false. Henceps(Wg)déffalse.

Let Wy be Vs.30. =InCity(o, Pasadena, s), Which is also a
query in L., whereo : Object ands : Sit hold by default.
Then, 0s(Wy) is Vs : Sit.30 : Object.—(Ib : MovObj.b = oA
InCity(b, Pasadena, s)), SINCETR(D) ™ InCity(o,c, s) D
MovObj(o) ACity(c). And it is easy to prove thatkR(D) =™°
Wa=tr(os(Wa)).

Computational Advantages of£9°

In this section, we discuss the advantages of using OSL and
the order-sorted regression operator based on it.

Given any BATD in £99, it is easy to see that Reiter’s
regression operatoR (Reiter 2001) still can be applied to
(well-sorted) regressable formulas (viP). Moreover, one
can prove thaR[W] is a formula in£®% uniform in Sy and
D = W = R[W]. However, using the order-sorted regres-
sion operatofR°* sometimes can give us computational ad-
vantages in comparison to using Reiter’s regression operat
R. Butfirst of all, we show that the computational complexity
of using’R°® is no worse than that &®.

For the regression operat® that can be used either in
£ orin L, (R°® used in£?%, respectively), we can con-
struct aregression tre@ooted atlV’ for any regressable query
W in either language. Each node in a regression tree of
R[W] (R°¢[W], respectively) corresponds to a sub-formula
computed by regression, and each edge corresponds to one
step of regression according to the definition of the regres-
sion operator. In the worst case scenario, for any qu&ry
in £LO% the regression tree dR°*[W] will have the same
number of nodes as the regression tre&¢#’] (and linear
to the number of nodes in the regression tre®ff-(1W)] wrt
TR(D)). Moreover, based on the assumption that our sort the-
ory of D is simple with empty equational theory, whose corre-
sponding sort hierarchy is a meet semi-lattice, finding guai
(well-sorted) MGU takes the same time as in the unsorted
case (Schmidt-Schau1989; Jouannaud & Kirchner 1991;
Weidenbach 1996). Hence, the overall computational com-
plexity of building the regression tree &°*[1V] is at most
linear to the size of Reiter’s regression tree.

Theorem 5 Consider any regressable sentendé with a
background BATD in order-sorted situation calculug®?.
Then, in the worst case scenario, the complexity of comput-
ing R°°[W] is the same as that of computi®{17], which is
also the same as the complexity of compufdjg-(W)] in the
corresponding Reiter's BATR(D).

On the other hand, under some circumstances, the regres-
sion of a query inC?° usingR°® instead ofR will give us
computational advantages. Consider any query (i.e., assgr
able sentence)l’ with a background BATD in £95. Then,
the computation ofR°*[W] wrt D can sometimes terminate
earlier than that oR[IW] wrt D, and also earlier than the com-
putation of R[tr(W)] wrt TR(D). In particular, we have the
following property.



Theorem 6 Let a regressable formul&l” have the syntactic
formti 1 = t12A. . Abm,1 = tm,2 AW, With any background
order-sorted BATD in £9°. Let the size ofV (including the
length of the terms ifV’) ben. If there is no well-sorted mgu
for equalities between terms, then ComputRg’[W] runs
in time O(n), while computingR[W] wrt D (R[tr(W)] wrt
TR(D)) runsintimeO(2™). Moreover, the size of the resulting
formula of R°*[W1], which is false, is always constant, while
the size of the resulting formula usifigis in O(2™).

According to the definition of Reiter's regression operator
the equalities will be kept and regression will be further-pe
formed onW; (or ontr(W) in TR(D), respectively), which

in general takes exponential time wrt the lengthigf and
causes exponential blow-up in the size of the formula. Once
Reiter’s regression has terminated, a theorem prover wdl fi
that the resulting formula is false either because thereis n
mgu for terms when reasoning is performeddfi® (or, due

to the clash between sort related predicates when reasimning
L., respectively). Hence, using the order-sorted regression
operator can sometimes prune brunches of the regressen tre
built by R exponentially (wrt the size of the regressed for-
mula), and therefore save computation time significantly.

Example 6 Consider the BATD from Example 1. LeiV; be
aL%% query (i.e., a (well-sorted) regressable sentence)
InCity(Th, Pasadena, do(drive(T1, Boston, Pasadena), S1)),
whereS; is a well-sorted ground situation term that involves
a long sequence of actions. According to the SSA&afity,

at the branch of computin@°*[3b: Box.b=Ti A On(b, t, S1)]

in the regression tree, since there is no well-sorted mgu for
(b,T1), the application of order-sorted regression equals to
falseimmediately. However, using Reiter’s regression opera-
tor (no matter irD or in TR(D)), his operator will keep doing
useless regression @n (b, ¢, S1) until getting (a potentially
huge) sub-formula uniform ify. Once his regression has ter-
minated, such sub-formula will also be proved equivalent to
false wrt the initial theory Og, or TR(D)s,, respectively)
using a theorem prover, for the same reason as above.

In addition, since our sort theory of a BAD in £ is
finite and it has one and only one declaration for each func-
tion and predicate symbol, for any quéiy (wrt TR(D)) in
L, it takes linear time (wrt the length of the query) to find a
well-sorted formulaos(W) in L9 that satisfies Theorem 4.
But, reasoning whethdd =55 os(W) (starting from finding
os(WW)) sometimes can terminate earlier than finding whether
TR(D) =™ W. In particular, we have

Theorem 7 Assume thalV’ = F(t,do([a, - , o], So)) is

an atomic fluent instance id,. that includes an ill-sorted
ground term wrtD (e.g., W3 in Example 5). Then, it takes
at most linear time to terminate reasoning by computing the
correspondings(W) (which is false).

Observe that reasoning abdliR(D) =™° W directly, for

the formula’ mentioned in Theorem 7, using regression
‘R could result in a exponentially large regression tree when
computingR[W]. Also, the size of the resulting formula
can be exponentially larger than thatldéf. Moreover, it still
needs further computational steps to find whethe(D)s, U
TR(D)una =™ R[W].

Conclusions

We propose a logical theory for reasoning about actions
wrt a taxonomy of objects based on OSL. We also define
a regression-based reasoning mechanism that takes advan-
tages of sort theories, and discuss the computational advan
tages of our theory. One possible future work can be ex-
tending our logic to hybrid order-sorted logic (Cohn 1989;
Bierle et al. 1992; Weidenbach 1996). Another possibility
is to consider efficient reasoning in our framework by iden-
tifying specialized classes of queries or decidable fragme
(Abadi, Rabinovich, & Sagiv 2007). Finally, we are planning
to work on an efficient implementation of our theory.
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