
Order-Sorted Reasoning in the Situation Calculus

Yilan Gu
Department of Computer Science

University of Toronto
10 King’s College Road

Toronto, ON, M5S 3G4, Canada
Email: yilan@cs.toronto.edu

Mikhail Soutchanski
Department of Computer Science

Ryerson University
245 Church Street, ENG281

Toronto, ON, M5B 2K3, Canada
Email: mes@scs.ryerson.ca

Abstract

We propose a theory for reasoning about actions based on
order-sorted predicate logic where one can consider an elab-
orate taxonomy of objects. We are interested in the projec-
tion problem: whether a statement is true after executing a
sequence of actions. To solve it we design a regression op-
erator that takes advantage of well-sorted unification between
terms. We show that answering projection queries in our log-
ical theories is sound and complete with respect to that of in
Reiter’s basic action theories. Moreover, we demonstrate that
our regression operator based on order-sorted logic can provide
significant computational advantages in comparison to Reiter’s
regression operator.

Introduction
In his influential paper (Hayes 1971) titled “A Logic of Ac-
tions”, Pat Hayes proposed an outline of a logical theory
for reasoning about actions based on many-sorted logic with
equality. His paper inspired subsequent work on many-sorted
logics in AI. In particular, A. Cohn (Cohn 1987; 1989) de-
veloped expressive many-sorted logic and reviewed all previ-
ous work in this area. Reasoning about actions based on the
situation calculus has been extensively developed in (Reiter
2001). However, he considers a logical language with sorts
for actions, situations and just one catch-all sortObject for
the rest that remains unelaborated. Surprisingly, even if the
idea proposed by Hayes seems straightforward, there is still
no formal study of logical and computational properties of a
version of the situation calculus with many related sorts for
objects in the domain. Perhaps, this is because mathematical
proofs of these properties are not straightforward. We under-
take this study and demonstrate that reasoning about actions
with elaborated sorts has significant computational advantages
in comparison to reasoning without them. In contrast to an ap-
proach to many-sorted reasoning (Schmidt 1938; Wang 1952;
Herbrand 1971) where variables of different sorts range over
unrelated universes, we consider a case when sorts are related
to each other, so that one can construct an elaborated taxon-
omy. This is often convenient for representation of common-
sense knowledge about a domain.

Generally speaking, we are usually interested in a compre-
hensive taxonomic structure for sorts, where sorts may in-
herit from each other and may have non-empty intersections.
Hence, we consider formulating the situation calculus in an

order-sorted (predicate) logic to describe taxonomic informa-
tion about objects. We are interested in the projection problem
(whether a statement is true after executing a sequence of ac-
tions) and we would like to use regression to solve this prob-
lem (Reiter 2001). Note that even if both many-sorted logic
and order-sorted logic can be translated to unsorted, using
order-sorted logic can bring about significant computational
advantages, for example in deduction. This was a primary
driving force for (Walther 1987) and (Cohn 1987). We show
that regression in order-sorted SC can benefit from well-sorted
unification. One can gain computational efficiency by termi-
nating regression steps earlier when objects of incommensu-
rable sorts are involved.

It is well-known thatPDDL supports typed (sorted) vari-
ables and many implemented planners can take advantage of
types (Ghallabet al. 1998). (Classenet al. 2007) proposes
formal semantics for the typed ADL subset of PDDL using
ES, a dialect of SC. Our paper focus on the relations between
Reiter’s BATs and our new order-sorted BATs and the compu-
tational advantages which regression in order-sorted BATscan
provide (sometimes). We contribute towards a formal logical
foundation of PDDL.

Background
In general, order-sorted logic (OSL) (Oberschelp 1962; 1990;
Walther 1987; Schmidt-Schauβ 1989; Bierleet al. 1992;
Weidenbach 1996) restricts the domain of variables to subsets
of the universe (i.e.,sorts). Notationx :Q means that variable
x is of sortQ andVQ is the set of variables of sortQ. For any
n, sort cross-productQ1×· · ·×Qn is abbreviated as~Q1..n;
term vectort1, . . . , tn is abbreviated as~t1..n; variable vector
x1, . . . , xn is abbreviated as~x1..n; and, variable declaration
sequencex1 :Q1, . . . , xn :Qn is abbreviated as~x1..n : ~Q1..n.

A theory in OSL always includes a set of declarations
(calledsort theory) to describe the hierarchical relationships
among sorts and the restrictions on ranges of the arguments
of predicates and functions. In particular, a sort theoryT
includes a set ofterm declarationsof the form t : Q repre-
senting that termt is of sortQ, subsort declarationsof the
formQ1≤Q2 representing that sortQ1 is a (direct) subsort of
sortQ2 (i.e., every object of sortQ1 is also of sortQ2), and
predicate declarationsof the formP : ~Q1..n representing that
the i-th argument of then-ary predicateP is of sortQi for
i= 1..n. A function declarationis a special term declaration

where termt is a function with distinct variables as arguments:
for eachn-ary functionf , the abbreviation of its function dec-
laration is of the formf :Q1..n →Q, whereQi is the sort of
thei-th argument off andQ is the sort of the value off . c :Q
is a special function declaration, representing that constant c
is of sortQ. Arguments of equality “=” can be of any sort.
Below, we consider afinite simplesort theory only, in which
there are finitely many sorts and declarations, the term dec-
larations are all function declarations, and for each function
there is one and only one declaration.

For any sort theoryT , subsort relation≤T is a partial order-
ing defined by the reflexive and transitive closure of the sub-
sort declarations. Then, following the standard terminology
of lattice theory, if each pair of sort symbols inT has great-
est lower bound (g.l.b.), then we say thatthe sort hierarchy
of T is a meet semi-lattice(Walther 1987). Moreover, awell-
sorted term(wrt T) is either a sorted variable, or a constant
declared inT , or a functional termf(~t1..n), in which each
ti is well-sorted and the sort ofti is a subsort ofQi, given
that f : ~Q1..n → Q is in T . A well-sorted atom(wrt T) is
an atomP (~t1..n) (can bet1 = t2), where eachti is a well-
sorted term of sortQ′

i, andQ′
i ≤T Qi, given thatP : ~Q1..n

is in T . A well-sorted formula(wrt T) is a formula in which
all terms (including variables) and atoms are well-sorted.Any
term or formula that is not well-sorted is calledill-sorted. A
well-sorted substitution(wrt T) is a substitutionρ s.t. for
any variablex : Q, ρx (the result of applyingρ to x) is a
well-sorted term and its sort is a (non-empty) subsort ofQ.
Given any setE = {(t1,1, t1,2), . . . , (tn,1, tn,2)}, where each
ti,j (i=1..n, j=1..2) is a well-sorted term, awell-sorted most
general unifier(well-sorted mgu) ofE is a well-sorted substi-
tution that is an mgu ofE. It is important that in comparison to
mgu in unsorted logic (i.e., predicate logic without sorts), mgu
in OSL can include new weakened variables of sorts which
are subsorts of the sorts of unified terms. For example, as-
sume thatE = {(x, y)}, x∈VQ1

, y ∈VQ2
and the g.l.b. of

{Q1, Q2} is a non-empty sortQ3. Then,µ = [x/z, y/z] (x
is substituted byz, y is substituted byz) for some new vari-
ablez ∈ VQ3

is a well-sorted mgu ofE. Well-sorted mgu
neither always exists nor it is unique. However, it is proved
that the well-sorted mgu of unifiable sorted terms is unique up
to variable renaming when the sort hierarchy ofT is a meet
semi-lattice (Walther 1987).

The semantics of OSL is defined similar to unsorted logic.
Note that the definition of interpretations for well-sortedterms
and formulas is the same as in unsorted logic, but the seman-
tics is not defined for ill-sorted terms and formulas. For any
well-sorted formulaφ, aT -interpretationI = 〈M, I〉 is a tu-
ple for a structureM and an assignmentI from the set of free
variables to the universeU of M, s.t. it satisfies the following
conditions: (1) For each sortQ, QI is a subset of the whole
universeU. In particular,⊤I = U, ⊥I = ∅, andQI

1 ⊆ QI

2 for
anyQ1 ≤T Q2. (2) For any predicate declarationP : ~Q1..n,
P I ⊆ QI

1×· · ·×QI

n is a relation inM. (3) For any func-
tion declarationf : ~Q1..n → Q, f I : QI

1×· · ·×QI

n → QI

is a function inM. (4) xI = I(x) is in QI for any vari-
ablex ∈ VQ, cI ∈QI for any constant declarationc :Q, and

(f(~t1..n))I
def
= f I(tI1, . . . , t

I

n) for any well-sorted termf(~t1..n).

I is not defined for ill-sorted terms and formulas. (5) IfT in-
cludes a declaration for equality symbol “=”, then =I must
be defined as set{(d, d) | d ∈ U}, i.e., the equality symbol
is interpreted by the identity relation on the whole universe.
For any sort theoryT and a well-sorted formulaφ, a struc-
tureM is aT -modelof φ, written asM |=os

T φ iff for every
T -interpretationI= 〈M, I〉, I satisfiesφ. In particular, when
φ is a sentence, this does not depend on any variable assign-
ment andI = M. Moreover, we say that aT -interpretation
I = 〈M, I〉 satisfiesφ, written asI |=os

T φ, if the following
conditions (1-7) hold: (1)I |=os

T P (~t1..n) iff (tI1, . . . , t
I

n)∈P I.
(2) I |=os

T ¬φ iff I |=os
T φ does not hold. (3)I |=os

T φ1 ∧ φ2 iff
I |=os

T φ1 and I |=os
T φ2. (4) I |=os

T φ1 ∨ φ2 iff I |=os
T φ1

or I |=os
T φ2. (5) I |=os

T φ1 ⊃ φ2 iff I |=os
T ¬φ1 ∨ φ2.

(6) I |=os
T ∀x : Q.φ iff for every d ∈ QI, I |=os

T φ[x/d],
whereφ[x/o] represent the formula obtained by substituting
x with o. (7) I |=os

T ∃x : Q.φ iff there is somed ∈ QI s.t.
I |=os

T φ[x/d]. Given a sort theoryT as the background, a
theoryΦ including well-sorted sentences only satisfies a well-
sorted sentenceφ, written asΦ |=os

T φ, iff every model ofΦ is
a model ofφ.

Note that we follow traditional approaches to sorted reason-
ing, where sort symbols must not occur as predicates in the
formulas. Alternative approaches, called hybrid, allow tomix
sort symbols with application specific predicates (see (Wei-
denbach 1996; Cohn 1989; Bierleet al. 1992)).

Due to the space limitations, we skip the background of the
situation calculus. Details can be found in (Reiter 2001) and
we refer to this language as Reiter’s situation calculus below.
Note that in this paper, we use|=os

T to represent the logical
entailment wrt a sort theoryT in order-sorted logic,|=ms to
represent the logical entailment in Reiter’s situation calculus
(a many-sorted logic with one standard sortObject), and|=fo

to represent the logical entailment in unsorted predicate logic.

An Order-Sorted Situation Calculus
In this paper, we consider a modified situation calculus based
on order-sorted logic, calledorder-sorted situation calculus
and denoted asLOS below. LOS includes a set of sorts
Sort = Sortobj ∪ {⊤,⊥, Act, Sit}, where⊤ represents the
whole universe,⊥ is the empty sort,Act is the sort for all
actions,Sit is the sort for all situations, andSortobj is a set
of sub-sorts ofObject including sortObject itself. We as-
sume that for every sort (except⊥) there is at least one ground
term (constant) of this sort to avoid the problem with “empty
sorts” (Goguen & Meseguer 1987). Moreover, the number of
individual variable symbols of each sort inSort is infinitely
countable. For the sake of simplicity, we do not consider
functional fluents here.

In the following, we will defineorder-sorted basic action
theories(order-sorted BATs) and consider dynamical systems
that can be described using such order-sorted BATs. An order-
sorted BATD = (TD,D) includes the following two parts of
theories.
• TD is a sort theory based on a finite set of sortsQD s.t.
QD ⊆ Sort and{⊥,⊤, Object, Act, Sit} ⊆ QD. Moreover,
the sort theory includes the following declarations for finitely
many predicates and functions:

1. Subsort declarations of the formQ1 ≤ Q2 for Q1, Q2 ∈
QD − {⊤, Act, Sit}, and subsort declarations:Object≤⊤,
Act ≤ ⊤, Sit ≤ ⊤. ⊥ ≤ Act, ⊥ ≤ Sit. Here, we only con-
sider those sort theories whose sort hierarchies are meet semi-
lattices.
2.One and only one predicate declaration of the formF : ~Q1..n

for eachn-ary relational fluentF in the system, whereQi≤T

Object andQi 6=⊥ for i=1..(n−1), andQn is Sit.
3.One and only one predicate declaration for the special pred-
icatePoss, that is,Poss :Act×Sit.
4.One and only one predicate declaration of the formP : ~Q1..n

for eachn-ary situation independent predicateP in the sys-
tem, whereQi≤T Object andQi 6=⊥ for i=1..n.
5. A special declaration for equality symbol= : ⊤×⊤.
6. One and only one function declaration of the formA :
~Q1..n →Act for eachn-ary action functionA in the system,
whereQi≤T Object andQi 6=⊥ for i=1..n. Note that, when
n = 0, the declaration is of formA : Act for constant action
functionA.
7. One and only one function declaration of the formf :
~Q1..n → Qn+1 for eachn-ary (n ≥ 0) situation indepen-
dent functionf (other than action functions), where each
Qi ≤T Object andQi 6= ⊥ for eachi = 1..(n+1). Note
that, whenn = 0, it is a function declaration for a constant,
denoted asc :Q for constantc of sortQ.
8. One and only one function declarationdo :Act×Sit→Sit,
andS0 :Sit for the initial situationS0.
• D is a set of axioms represented using well-sorted sentences
wrt TD, which includes the following subsets of axioms.
1. Foundational axiomsΣ for situations, which are the same
as those in (Reiter 2001).
2. A setDuna of unique name axioms for actions: for any two
distinct action function symbolsA andB with declarations
A : ~Q1..n→Act andB : ~Q′

1..m→Act, we have
(∀~x1..n : ~Q1..n, ~y1..m : ~Q′

1..m). A(~x1..n) 6= B(~y1..m)

Moreover, for each action function symbolA, we have
(∀~x1..n : ~Q1..n, ~y1..n : ~Q1..n). A(~x1..n)=A(~y1..n)⊃

Vn

i=1
xi = yi

3. The initial theoryDS0
, which includes well-sorted (first-

order) sentences that are uniform inS0. In particular, it
includes the unique name axioms for object terms, object
constants and/or functional terms: (1) for any two distinct
situation-independent function symbols (including constants)
f1 andf2, we have∀~x1..n : ~Q1..n.∀~y1..m : ~Q′

1..mf1(~x1..n) 6=
f2(~y1..m), where the functional declarations forf1 andf2 are
f1 : ~Q1..n → Qn+1 (n ≥ 0) and f2 : ~Q′

1..m → Q′
m+1

(m ≥ 0); (2) for each situation-independent functionf , we
havef(~x) = f(~y) ⊃ ∧n

i=1xi = yi, where the functional
declaration forf is f : ~Q1..n → Qn+1 (n ≥ 1). DS0

can
also include additional constraints that relate to sorts. For in-
stance, there can be finitely manyaxioms of disjointness for
basic sortsof the form∀x : Qi.∀y : Qj .(x 6= y) for any two
disjoint basic sortsQi andQj, where a sortQ is considered
basic if there is no sortQ′ 6= ⊥, such thatQ′≤Q.
4. A setDap of precondition axioms for actions represented
using well-sorted formulas: for each action symbolA, whose
sort declaration isA : ~Q1..n→Act, its precondition axiom is of
the form

(∀~x1..n : ~Q1..n, s :Sit).P oss(A(~x1..n), s) ≡ φA(~x1..n, s), (1)

whereφA(~x1..n, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n ands.
5. A setDss of successor state axioms (SSAs) for fluents rep-
resented using well-sorted formulas: for each fluentF with
declarationF : ~Q1..n×Sit, its SSA is of the form

(∀~x1..n : ~Q1..n, a :Act, s :Sit).

F (~x1..n, do(a, s)) ≡ ψF (~x1..n, a, s), (2)

whereψF (~x1..n, a, s) is a well-sorted formula uniform ins,
whose free variables are at most among~x1..n anda, s.

Here is a simple example of an order-sorted BAT.

Example 1 (Transport Logistics) We present an order-sorted
BAT D of a simplified example of logistics.TD includes fol-
lowing subsort declarations:
MovObj≤Object, ⊥≤City, ⊥≤Box,⊥≤Truck,
Truck≤MovObj,City≤Object,Box≤MovObj,

whereMovObj is the sort of movable objects, and other sorts
are self-explanatory. The predicate declarations are
InCity :MovObj×City×Sit, On :Box×Truck×Sit

for the fluentsInCity(o, l, s) and On(o, t, s). The func-
tion declarations for actionsload(b, t), unload(b, t) and
drive(t, c1, c2) are obvious. For instance,
drive :Truck×City×City→Act

BesidesS0 :Sit, the constant declarations may include:
B1 :Box, B2 :Box, T1 :Truck,
T2 :Truck, Pasadena :City, Boston :City.

Axioms inDS0
can be:

∃x : Box. InCity(x,Boston, S0),
(∀x : Box, t : Truck).¬On(x, t, S0),
InCity(T1, Boston, S0)∨InCity(T2, Boston, S0).

As an example, the precondition axiom forload is:
(∀x :Box, t :Truck, s :Sit). P oss(load(x, t), s) ≡

¬On(x, t, s) ∧ ∃y :City.InCity(x, y, s) ∧ InCity(t, y, s),
and the preconditions forunload anddrive are obvious.
As an example, the SSA of fluentInCity is:

(∀d :MovObj, c :City, a :Act, s :Sit).
InCity(d, c, do(a, s)) ≡ (∃t :Truck, c1 :City).
a=drive(t, c1, c) ∧ (d= t∨ ∃b :Box.b=d∧On(b, t, s)))∨
InCity(d, c, s) ∧ ¬(∃t :Truck, c1 :City.a=drive(t, c, c1)
∧(d= t∨ ∃b :Box.b=d∧On(b, t, s))),

and the SSA of fluentOn is obvious.

Order-Sorted Regression and Reasoning
We now consider the central reasoning mechanism in the
order-sorted situation calculus. The definition of a regressable
formula ofLOS is the same as the definition of a regressable
formula ofLsc except that instead of being stated for a formula
in Lsc, it is formulated for a well-sorted formula inLOS .

A formulaW of LOS is regressable(wrt an order-sorted
BAT D) iff (1) W is a well-sorted first-order formula wrtTD;
(2) every term of sortSit inW starts fromS0 and has the syn-
tactic formdo([α1, · · · , αn], S0), where eachαi is of sortAct;
(3) for every atom of the formPoss(α, σ) in W , α has the
syntactic formA(~t1..n) for somen-ary action function sym-
bolA; and (4)W does not quantify over situations, and does
not mention the relation symbols “<” or “ =” between terms
of sortSit. A queryis a regressable sentence.

Example 2 Consider the BATD from Example 1. LetW be
∃d :Box. d=Boston∧On(d, T1, do(load(B1, T1), S0))

W is a (well-sorted) regressable sentence (wrtD); while
On(Boston, T1, do(load(B1, T1), S0))

is ill-sorted and therefore is not regressable.

The regression operatorRos in LOS is defined recursively
similar to the regression operator in (Reiter 2001). Moreover,
we would like to take advantages of the sort theory during
regression: when there is no well-sorted mgu for equalities
between terms that occur in a conjunctive sub-formula of a
query, this sub-formula is logically equivalent to false and it
should not be regressed any further. We will see that this key
idea helps eliminate useless sub-trees of a regression tree. In
what follows,~t and~τ are tuples of terms,α andα′ are terms of
sortAct, σ andσ′ are terms of sortSit, andW is a regressable
formula ofLOS .
1. If W is a non-atomic formula and is of the form¬W1,
W1 ∨W2, (∃v :Q).W1 or (∀v :Q).W1, for some regressable
formulasW1,W2 in LOS , then

Ros[◦W1]=◦Ros[W1] for constructor◦ ∈ {¬, (∃x :Q), (∀x :Q)}

Ros[W1 ∨W2]=Ros[W1] ∨Ros[W2].

2. Else, ifW is a non-atomic formula,W is not of the form
¬W1, W1 ∨ W2, (∃v : Q)W1 or (∀v :Q)W1, but of the form
W1∧W2∧· · ·∧Wn (n ≥ 2), where eachWi (i=1..n) is not
of the formWi,1 ∧Wi,2 for some sub-formulasWi,1,Wi,2

in Wi. After using commutative law for∧, without loss of
generality, there are two sub-cases:

2(a) Suppose that for somej, j = 1..n, eachWi (i= 1..j) is
of the formti,1 = ti,2 for some (well-sorted) termsti,1, ti,2,
and none ofWk, k = (j + 1)..n, is an equality between

terms. In particular, whenj = n,
∧n

k=j+1Wk
def
= true.

Then,

Ros[W] =

8

>

<

>

:

W1 ∧W2 ∧ · · · ∧Wj ∧Ros[W ′

0]
if there is a well-sorted mguµ

for {〈ti,1, ti,2〉 | i = 1..j};
false otherwise.

Here,W ′
0 is a new formula obtained by applying mguµ

to
∧n

k=j+1 Wk and it is existentially-quantified at front for
every newly introduced sort weakened variable inµ. More-
over, note that based on the assumption that we consider
meet semi-lattice sort hierarchies only, such mgu is unique
if it exists.

2(b) Otherwise,Ros[W] = Ros[W1] ∧ · · · ∧ Ros[Wn].

3. Otherwise,W is atomic. There are four sub-cases.

3(a) Suppose thatW is of the formPoss(A(~t), σ) for an
action termA(~t) and a situation termσ, and the action
precondition axiom forA is of the form (1). Without loss
of generality, assume that all variables in Axiom (1) have
had been renamed (with variables of the same sorts) to
be distinct from the free variables (if any) ofW . Then,

Ros[W] = Ros[φA(~t, σ)].

3(b) Suppose thatW is of the formF (~t, do(α, σ)) for some
relational fluentF . LetF ’s SSA be of the form (2). With-
out loss of generality, assume that all variables in Ax-
iom (2) have had been renamed (with variables of the same

sorts) to be distinct from the free variables (if any) ofW .
Then, Ros[W] = Ros[ψF (~t, α, σ)].

3(c) Suppose that atomW is of the formt1 = t2. for some
well-sorted termst1, t2. Then,

Ros[W] =

(

W if there is a well-sorted mguµ
for 〈t1, t2〉;

false otherwise.

3(d) Otherwise, if atomW hasS0 as its only situation term,
then Ros[W] = W .

Notice that although the definition seems to depend on syntac-
tic form of a formula, we prove below that for any regressable
formulasW1 andW2 in LOS that are logically equivalent,
their regressed results are still equivalent wrtD (See Corol-
lary 1). Here are some examples.

Example 3 Consider the order-sorted BATD from Exam-
ple 1 and the queryW from Example 2. Then, it is easy to
see thatRos[W]=false, since there is no well-sorted mgu for
(d,Boston), whered :Box. Now, letW1 be

¬∀d :Box. d 6=Boston∨ ¬On(d, T1, do(load(B1, T1), S0)).
W1 is a sentence that is equivalent toW . It is easy to check
thatRos[W1] is a formula equivalent tofalse (wrt D).

Given an order-sorted BATD = (TD,D) and the order-
sorted regression operator defined above, to show the correct-
ness of the newly defined regression operator, we prove the
following theorems similar to that of in (Reiter 2001).

Theorem 1 If W is a regressable formula wrtD, then
Ros[W] is a well-sortedLOS formula (includingfalse) that
is uniform inS0. Moreover,D |=os

TD
W ≡ Ros[W].

Theorem 2 If W is a regressable formula wrtD, then
D |=os

TD
W iff DS0

∪ Duna |=os

TD
Ros[W].

Hence, to reason whetherD |=os

TD
W is the same as to compute

Ros[W] first and then to reason whetherDS0
∪ Duna |=os

TD

Ros[W]. Besides, according to Theorem 1, it is easy to see
that the following consequence holds.

Corollary 1 If W1 andW2 are regressable formulas inLOS

s.t. |=os
TD

W1 ≡W2, thenD |=os

TD
Ros[W1] ≡ Ros[W2].

Intuitively, Corollary 1 states that the regressed resultsof
two logically equivalent regressable formulas (possibly having
different syntactic forms only) are still equivalent.

Order-Sorted Situation Calculus v.s. Reiter’s
Situation Calculus

Although BATs and regressable formulas inLOS are based on
OSL, they can be related to BATs and regressable formulas in
Reiter’s situation calculus as stated in Theorem 3.

Theorem 3 (Soundness)For any BATD and any queryW
in order-sorted situation calculusLOS , there exists a corre-
sponding BATD′ and a corresponding queryW ′ in Reiter’s
situation calculus s.t.

D |=os

TD
W iff D′ |=ms W ′.

Intuitively, we would like to show that the order-sorted sit-
uation calculusLOS is correct, orsound, in the sense that for
any query inLOS that can be answered in its background BAT
in LOS , we always can find a way to represent the BAT and the
query in Reiter’s situation calculusLsc s.t. the corresponding
query inLsc can be answered wrt the corresponding BAT in
Lsc.

It is hard to prove Theorem 3 directly. Inspired by thestan-
dard relativizationof OSL to unsorted (first-order) logic, our
general idea of proving Theorem 3 is as follows. In Step 1,
we prove that there is an unsorted theoryD′′ (via strong rel-
ativization) and an unsorted first-order sentenceW ′′ (via rel-
ativization) s.t. D |=os

TD
W iff D′′ |=fo W ′′. In Step 2, we

construct a BATD′ (called thecorresponding Reiter’s BAT of
D below) and a regressable formulaW ′ (called thetranslation
of W below) in Reiter’s situation calculus, s.t.D′ |=ms W ′

iff D′′′ |=fo W ′′′, for some unsorted theoryD′′′ (via standard
relativization) and sentenceW ′′′ (via relativization). Finally,
in Step 3, we show thatD′′′ |=fo W ′′′ iff D′′ |=fo W ′′.

D |=os
TD

W
(Step 1)
⇐⇒ D′′ |=fo W ′′

m (Step 3)

D′ |=ms W ′
(Step 2)
⇐⇒ D′′′ |=fo W ′′′

Fig 1. Diagram of the Outline for Proving Theorem 3

To prove Theorem 3, we first define some concepts and
prove Lemma 1 for later convenience. First, for any sortQ
in the language ofLOS , we introduce a unary predicateQ(x),
which will be true iffx is of sortQ in LOS .

Definition 1 For any well-sorted formulaφ in LOS , rel(φ),
a relativizationof φ, is an unsorted formula defined as:

For every atomP (~t), rel(P (~t))
def
= P (~t); rel(¬φ)

def
= ¬rel(φ);

rel(φ ◦ ψ)
def
= rel(φ) ◦ rel(ψ) for ◦∈{∧,∨,⊃};

rel((∀x :Q)φ)
def
= (∀y)[Q(y) ⊃ rel(φ[x/y])];

rel((∃x :Q)φ)
def
= (∃y)[Q(y)∧ rel(φ[x/y])].

Moreover, for any setSet of well-sorted formulas,
rel(Set) = {rel(φ) |φ∈Set}.

Note that all formulas inLsc are well-sorted wrt the sort
theory ofLsc. Hence, the definition ofrel can also be ap-
plied to any formula or a set of formulas in Reiter’s situation
calculus.

Definition 2 For any sort theoryTD in LOS , the set of bridge
axiomsof TD,BA(TD), is a set of the following formulas:
(a) (∀x).Q2(x) ⊃ Q1(x) for eachQ2≤Q1 ∈TD;
(b) Q(c) for eachc :Q ∈TD;
(c) (∀~x1..n).

Vn

i=1
Qi(xi) ⊃ Q(f(~x1..n)) for eachf : ~Q1..n →

Q ∈TD.
Moreover, letSorted(x) be an auxiliary predicate that

does not appear inD: it is a purely technical device used
for proving Theorem 3. The set ofstrong bridge axiomsof
TD, SBA(TD), is also a set of unsorted axiomsBA(TD) ∪
sba(TD), wheresba(TD) includes the following axioms:
(d) (∀~x1..n).P (~x1..n) ⊃

Vn

i=1
Qi(xi) ∧ Sorted(xi) for each

P : ~Q1..n ∈TD;

(e) (∀~x1..n).Q(f(~x1..n))∧ Sorted(f(~x1..n)) ⊃
Vn

i=1
(Qi(xi) ∧

Sorted(xi)) for eachf : ~Q1..n→Q ∈TD.

Intuitively, Sorted(t) means that termt is well-sorted (wrt
D). (a functional term is well-sorted and of its own sort, re-
spectively), then all its arguments should be well-sorted and
of the corresponding sorts wrt the predicate declaration (the
function declaration, respectively). Note that althoughSorted
may satisfy other characterizing axioms than axioms in (d) and
(e) according to its intuitive meaning, but adding axioms in(d)
and (e) to the strong relativization theory ofD defined below
is enough for us to prove Theorem 3.

Definition 3 For any order-sorted BATD in LOS , the
strong relativization ofD, an unsorted theory, is defined as

RELS(D)
def
= rel(D) ∪ SBA(TD).

Consider any BATD1 in Reiter’s situation calculusLsc, which
has a finite setTD1

of function declarations and predicate dec-
larations for all predicates and functions appeared inD1. The
standard relativization ofD1, an unsorted theory, is defined as

REL(D1)
def
= rel(D1) ∪BA(TD1

).

The reasons for differences between the two cases in Def. 3
are that (1) we include the sort theory in each BAT of order-
sorted situation calculus, while Reiter’s situation calculus
mentions sort declarations generally in the signature ofLsc,
and (2) we need strong relativization for order-sorted BATs
and only need standard relativization for Reiter’s BATs to
prove Theorem 3. In comparison to the standard relativiza-
tion, the strong relativization adds additional axioms of the
form (d) and (e) in Def. 2. They are based on the sort theory
that includes one and only one declaration for each predicate
P or for each functionf , respectively. We can also prove a
relativization theorem as follows for the strong relativization
similar to the Sort Theorem proved in (Walther 1987) and/or
the relativization theorem proved in (Schmidt-Schauβ 1989).

Lemma 1 Consider any regressable formulaW with a back-
ground BATD in order-sorted situation calculusLOS . Then,

D |=os

TD
W iff RELS(D) |=fo rel(W).

We therefore can prove Step 1 in Fig. 1 using Lemma 1.
Because Reiter’s situation calculus is a many-sorted logical
language with special formats for precondition axioms and
SSAs, we cannot userel to relateD in LOS with a Reiter’s
BAT directly. It is also the reason why strong relativization is
introduced. To construct a Reiter’s BATD′ and a regressable
formulaW ′ that satisfy the theorem, we first define another
translation functiontr(W) as follows.

Definition 4 Consider any well-sorted formulaφ in LOS . A
translationof φ to a (well-sorted) sentence in Reiter’s situa-
tion calculus, denoted astr(φ), is defined recursively as fol-
lows:

For every atomP (~t), tr(P (~t))
def
= P (~t); tr(¬φ)

def
= ¬tr(φ);

tr((∃x :⊥)φ)
def
= false; tr((∀x :Q)φ)

def
= ¬tr((∃x :Q.¬φ));

tr((∃x :Q)φ)
def
= (∃x :Q)tr(φ), if Q∈{Object, Act, Sit}.

tr((∃x :⊤)φ)
def
= (∃x :Object)tr(φ)∨(∃x :Act)tr(φ)∨

(∃x :Sit)tr(φ);

tr((∃x :Q)φ)
def
= (∃y :Object)[Q(y) ∧ tr(φ(x/y))],

if Q 6∈{⊤,⊥, Object, Act, Sit};

tr(φ ◦ ψ)
def
= tr(φ) ◦ tr(ψ) for ◦∈{⊃,∧,∨,⊃,≡}.

The translation functiontr defined above is a mapping from
well-sorted formulas wrt the sort theory of some BATD (or,
wrt D for simplicity) in LOS to well-sorted formulas inLsc.
Moreover, it is easy to prove by structural induction the fol-
lowing lemma forrel andtr, which will be useful for proving
Theorem 3.

Lemma 2 Consider any well-sorted formulaφ in LOS . Then,
|=fo rel(tr(φ)) ≡ rel(φ).

Consider any order-sorted BATD. We construct thecor-
responding Reiter’s BAT ofD, denoted asTR(D), that will
be the Reiter’s BAT we are looking for in Theorem 3. Notice
that in (Reiter 2001), sorted quantifiers are omitted as a con-
vention, because their sorts are always obvious from context.
Hence, when we construct the BATTR(D) in Reiter’s situa-
tion calculus below, all free variables are implicitly universally
sorted-quantified according to their obvious sorts. The func-
tion and predicate declarations are always standard, henceare
not mentioned here.
• TR(D) includes the foundational axioms and the set of
unique name axioms for action functions in Reiter’s situation
calculus.
• The initial theory ofTR(D), sayD′

S0
, includes the fol-

lowing axioms. Note that for axioms in items (3)–(5) below,
predicateSorted is auxiliary wrtD and eachxi is universally
quantified with a default sortObject (Qi itself, respectively)
if Qi≤T Object (Qi 6≤T Object, respectively).
1. For any well-sorted sentenceφ∈DS0

, tr(φ) is inD′
S0

.
2. For each declarationQ2≤Q1 in TD, add an axiomtr((∀x :
⊤).(∃y2 :Q2.x = y2) ⊃ (∃y1 :Q1.x = y1)).

3. For each declarationf : ~Q1..n →Q in TD (n ≥ 1), add an
axiomtr((∀~x1..n : ~Q1..n).(∃y :Q).y = f(~x1..n)).
We also add an axiom
Q(f(~x1..n)) ∧ Sorted(f(~x1..n)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

if Q≤T Object andQ 6=Object, or add an axiom
((∃y :Q).y = f(~x1..n) ∧ Sorted(y)) ⊃

tr((∃~y1..n : ~Q1..n).
Vn

i=1
(xi = yi ∧ Sorted(xi)))

otherwise.
4. For each situation-independent predicate declaration
P : ~Q1..n, add an axiom
P (~x1..n) ⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi = yi ∧ Sorted(xi))).

5. For each fluent declarationF : ~Q1..n × Sit, add an axiom
F (~x1..n, S0)⊃ tr((∃~y1..n : ~Q1..n).

Vn

i=1
(xi =yi∧Sorted(xi))).

6. For any constant declarationc :Q whereQ≤T Object and
Q 6=Object, add an axiomQ(c). Note that other constant dec-
larations will still be kept in the sort theory ofLsc by default
(e.g.,S0 :Sit).
• For actionA(~x1..n) whose precondition axiom inDap has
the form Eq. (1), we replace it with a precondition axiom in
the format of Reiter’s situation calculus:

Poss(A(~x1..n), s) ≡ φ′

A(~x1..n, s) (3)

whereφ′A(~x1..n, s) is aLsc formula uniform ins, resulting
from tr((∃~y1..n : ~Q1..n).(

Vn

i=1
xi = yi) ∧ φA(~y1..n, s)). Here,

all yi’s are distinct auxiliary variables never appearing in
φA(~x1..n, s).
• For each relational fluentF (~x1..n, s), whose SSA inDss is
of the form Eq. (2), we replace it with SSA in the format of
Reiter’s situation calculus:

F (~x1..n, do(a, s)) ≡ ψ′

F (~x1..n, a, s) (4)

whereψ′
F (~x1..n, a, s) is aLsc formula uniform ins, result-

ing from tr((∃~y1..n : ~Q1..n).
Vn

i=1
xi = yi ∧ ψF (~y1..n, a, s)).

Here, allyi’s are distinct auxiliary variables never appearing
in ψF (~x1..n, s).

LetD′ =TR(D),W ′= tr(W), we then can prove Theorem 3
by following the ideas presented in Fig. 1. Details are omitted
due to the space limitations.

Example 4 Consider the BATD from Example 1. The ax-
ioms inTR(D) are mostly obvious. Due to the space limita-
tions, we just provide examples of a precondition axiom and
an SSA inTR(D):
Poss(load(x, t), s) ≡ Box(x) ∧ Truck(t) ∧ ¬On(x, t, s)∧

(∃y.City(y) ∧ InCity(x, y, s) ∧ InCity(t, y, s)),
InCity(d, c, do(a, s)) ≡MovObj(d) ∧ City(c)∧

[(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c1, c)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))
∨InCity(d, c, s)∧
¬(∃t, c1.T ruck(t) ∧ City(c1) ∧ a=drive(t, c, c1)
∧(d= t ∨ ∃b.Box(b) ∧ b=d ∧On(b, t, s)))].

It is important to notice that all queriesLOS have to be well-
sorted wrt the given background order-sorted BATD; while,
in general, the queries that can be answered in the correspond-
ing Reiter’s BAT ofD are not necessarily well-sorted wrtD.
Below, Theorem 4 shows that for any query that can be an-
swered inTR(D), it can be answered inD in a “well-sorted
way” too.

Theorem 4 (Completeness)LetD be an order-sorted BAT in
LOS , andTR(D) be its corresponding Reiter’s BAT. Then, for
any queryW in Reiter’s situation calculus,W can be trans-
lated to a (well-sorted) query wrtD, denoted asos(W) below,
s.t. TR(D) |=ms tr(os(W)) ≡ W . Furthermore, we have
TR(D) |=ms W iff D |=os

TD
os(W).

To prove Theorem 4, we first define some new concepts and
prove a lemma.

Definition 5 LetD be a BAT in the order-sorted situation cal-
culusLOS , andTR(D) be its corresponding Reiter’s BAT.
Any termt in Reiter’s situation calculus is apossibly sortable
term wrtD, if one of the following conditions holds:
(1) t is a variable of sortAct,Object or Sit in Lsc;
(2) t is a constantc, andc :Q in TD (we say that the sort ofc
isQ wrt D); or,
(3) t is of form f(~x1..n), function declarationf : ~Q1..n →Q
in TD, for everyi (i=1..n), ti either is a variable or is a non-
variable term of sortQ′

i wrt D andQ′
i ≤T Qi in TD (we say

that the sort off(~t1..n) isQ wrt D).
Similarly, any atomP (~t1..n) in Reiter’s situation calculus

(can bet1 = t2), which is well-sorted wrtTR(D), is apossibly

sortable atom wrtD, if for every i, ti either is a variable or is
a non-variable term s.t.:
(a) it is possibly sortable wrtD; and
(b)P : ~Q1..n is in TD (=: ⊤×⊤, respectively), the sort ofti is
Q′

i wrt D andQ′
i≤T Qi wrt D.

Given anyD in order-sorted situation calculus, it is easy to see
that every atom (term, respectively) inTR(D) that can be con-
sidered as well-sorted wrtD is always a possibly sortable atom
(term, respectively); while a possibly sortable atom (term, re-
spectively) is not necessarily well-sorted wrtD.

Lemma 3 LetD be a BAT in the order-sorted situation calcu-
lusLOS , andTR(D) be its corresponding Reiter’s BAT. Then,
for any atomP (~t1..n) (can bet1 = t2) that is well-sorted in
Lsc but not possibly sortable wrtD, we haveTR(D) |=ms

P (~t1..n) ≡ false.

Now we define a function which transforms a formula in
Lsc wrt TR(D) to a well-sorted formula inLOS wrt D.

Definition 6 LetD be a BAT in the order-sorted situation cal-
culus LOS , TR(D) be its corresponding Reiter’s BAT and
W be a regressable sentence inLsc wrt the background BAT
TR(D). Then, functionos(W) is defined recursively as fol-
lows.

1. If W is either of the form(∀x)W1, (∃x)W1, where the de-
fault sort ofx is Q (eitherObject, Act or Sit) in TR(D),

thenos((∀x)W1)
def
= (∀x :Q)os(W1), andos(∃x.W1)

def
= (∃x :

Q)os(W1).

2. If W is one of the form¬W1,W1 ∧W2,W1 ∨W2, then
os(¬W1)

def
= ¬os(W1), os(W1 ∧W2)

def
= os(W1) ∧ os(W2),

os(W1 ∨W2)
def
= os(W1) ∨ os(W2).

3. If W is atomic and not possibly sortable, thenW def
= false.

4. If W is atomic and possibly sortable, assume that
var(W) = 〈x1, · · · , xn〉 is the vector of free variables ap-
peared from left to right inW (including repeated ones).
For eachi=1..n, suppose thatxi appears as an argument of
a functionfi in some term or as an argument of a predicate
Pi in W . LetQi be the sort appeared in theki-th position
of the declaration offi (Pi, respectively), ifxi appears in
theki-th position offi (Pi, respectively) inW . Then, let
IW ={i |xi∈var(W), Qi ≤T Object,Qi 6= Object}, and
~y : ~Q = {yi :Qi | i∈IW }, whereyi’s are auxiliary variables
never appeared inW and eachyi is distinct from others.

And, os(W)
def
= (∃~y : ~Q)(W0 ∧

∧
i∈IW

xi = yi), whereW0

is obtained from substituting eachxi with yi for i∈IW .

Proof sketch for Theorem 4. First, for any queryW in Re-
iter’s situation calculus, letW ′ = os(W). By using structural
induction and Lemma 3, it is easy to prove thatW ′ is a well-
sorted query wrtD in OSL andTR(D) |=ms W ≡ tr(W ′).
Then, by Theorem 3 andTR(D) |=ms W ≡ tr(W ′), it is easy to
see thatD |=os

TD
W ′ iff TR(D) |=ms tr(W ′) iff TR(D) |=ms W .

Proof details are omitted due to the space limitations. But,we
provide some examples below to illustrate the statement.

Example 5 Here are simple examples of computingos(W)
from W in Lsc. Consider theTR(D) in Example 4. Let

On(Boston, T1, S1) (denoted asW3) be a query inLsc,
whereS1 is some situation instance. According to the way
TR(D) is constructed, we haveTR(D) |=ms On(o, t, s) ⊃
Box(o) and TR(D) |=ms ¬Box(Boston). So, TR(D) |=ms

W3 ≡ false. Hence,os(W3)
def
= false.

Let W4 be ∀s.∃o.¬InCity(o,Pasadena, s), which is also a
query inLsc, whereo : Object ands : Sit hold by default.
Then,os(W4) is ∀s : Sit.∃o : Object.¬(∃b : MovObj.b = o∧
InCity(b, Pasadena, s)), sinceTR(D) |=ms InCity(o, c, s)⊃
MovObj(o)∧City(c). And it is easy to prove thatTR(D) |=ms

W4≡ tr(os(W4)).

Computational Advantages ofLOS

In this section, we discuss the advantages of using OSL and
the order-sorted regression operator based on it.

Given any BATD in LOS , it is easy to see that Reiter’s
regression operatorR (Reiter 2001) still can be applied to
(well-sorted) regressable formulas (wrtD). Moreover, one
can prove thatR[W] is a formula inLOS uniform inS0 and
D |=os

TD
W ≡ R[W]. However, using the order-sorted regres-

sion operatorRos sometimes can give us computational ad-
vantages in comparison to using Reiter’s regression operator
R. But first of all, we show that the computational complexity
of usingRos is no worse than that ofR.

For the regression operatorR that can be used either in
LOS or in Lsc (Ros used inLOS , respectively), we can con-
struct aregression treerooted atW for any regressable query
W in either language. Each node in a regression tree of
R[W] (Ros[W], respectively) corresponds to a sub-formula
computed by regression, and each edge corresponds to one
step of regression according to the definition of the regres-
sion operator. In the worst case scenario, for any queryW
in LOS , the regression tree ofRos[W] will have the same
number of nodes as the regression tree ofR[W] (and linear
to the number of nodes in the regression tree ofR[tr(W)] wrt
TR(D)). Moreover, based on the assumption that our sort the-
ory ofD is simple with empty equational theory, whose corre-
sponding sort hierarchy is a meet semi-lattice, finding a unique
(well-sorted) MGU takes the same time as in the unsorted
case (Schmidt-Schauβ 1989; Jouannaud & Kirchner 1991;
Weidenbach 1996). Hence, the overall computational com-
plexity of building the regression tree ofRos[W] is at most
linear to the size of Reiter’s regression tree.

Theorem 5 Consider any regressable sentenceW with a
background BATD in order-sorted situation calculusLOS .
Then, in the worst case scenario, the complexity of comput-
ing Ros[W] is the same as that of computingR[W], which is
also the same as the complexity of computingR[tr(W)] in the
corresponding Reiter’s BATTR(D).

On the other hand, under some circumstances, the regres-
sion of a query inLOS usingRos instead ofR will give us
computational advantages. Consider any query (i.e., a regress-
able sentence)W with a background BATD in LOS . Then,
the computation ofRos[W] wrt D can sometimes terminate
earlier than that ofR[W] wrt D, and also earlier than the com-
putation ofR[tr(W)] wrt TR(D). In particular, we have the
following property.

Theorem 6 Let a regressable formulaW have the syntactic
formt1,1 = t1,2∧. . .∧tm,1 = tm,2 ∧W1, with any background
order-sorted BATD in LOS . Let the size ofW (including the
length of the terms inW) ben. If there is no well-sorted mgu
for equalities between terms, then ComputingRos[W] runs
in timeO(n), while computingR[W] wrt D (R[tr(W)] wrt
TR(D)) runs in timeO(2n). Moreover, the size of the resulting
formula ofRos[W], which isfalse, is always constant, while
the size of the resulting formula usingR is inO(2n).

According to the definition of Reiter’s regression operator,
the equalities will be kept and regression will be further per-
formed onW1 (or ontr(W1) in TR(D), respectively), which
in general takes exponential time wrt the length ofW1 and
causes exponential blow-up in the size of the formula. Once
Reiter’s regression has terminated, a theorem prover will find
that the resulting formula is false either because there is no
mgu for terms when reasoning is performed inLOS (or, due
to the clash between sort related predicates when reasoningin
Lsc, respectively). Hence, using the order-sorted regression
operator can sometimes prune brunches of the regression tree
built by R exponentially (wrt the size of the regressed for-
mula), and therefore save computation time significantly.

Example 6 Consider the BATD from Example 1. LetW5 be
aLOS query (i.e., a (well-sorted) regressable sentence)
InCity(T1, Pasadena,do(drive(T1, Boston, Pasadena), S1)),
whereS1 is a well-sorted ground situation term that involves
a long sequence of actions. According to the SSA ofInCity,
at the branch of computingRos[∃b :Box.b=T1 ∧ On(b, t, S1)]
in the regression tree, since there is no well-sorted mgu for
(b, T1), the application of order-sorted regression equals to
false immediately. However, using Reiter’s regression opera-
tor (no matter inD or in TR(D)), his operator will keep doing
useless regression onOn(b, t, S1) until getting (a potentially
huge) sub-formula uniform inS0. Once his regression has ter-
minated, such sub-formula will also be proved equivalent to
false wrt the initial theory (DS0

or TR(D)S0
, respectively)

using a theorem prover, for the same reason as above.

In addition, since our sort theory of a BATD in LOS is
finite and it has one and only one declaration for each func-
tion and predicate symbol, for any queryW (wrt TR(D)) in
Lsc, it takes linear time (wrt the length of the query) to find a
well-sorted formulaos(W) in LOS that satisfies Theorem 4.
But, reasoning whetherD |=os

TD
os(W) (starting from finding

os(W)) sometimes can terminate earlier than finding whether
TR(D) |=ms W . In particular, we have

Theorem 7 Assume thatW = F (~t, do([α1, · · · , αn], S0)) is
an atomic fluent instance inLsc that includes an ill-sorted
ground term wrtD (e.g.,W3 in Example 5). Then, it takes
at most linear time to terminate reasoning by computing the
correspondingos(W) (which isfalse).

Observe that reasoning aboutTR(D) |=ms W directly, for
the formulaW mentioned in Theorem 7, using regression
R could result in a exponentially large regression tree when
computingR[W]. Also, the size of the resulting formula
can be exponentially larger than that ofW . Moreover, it still
needs further computational steps to find whetherTR(D)S0

∪
TR(D)una |=ms R[W].

Conclusions
We propose a logical theory for reasoning about actions
wrt a taxonomy of objects based on OSL. We also define
a regression-based reasoning mechanism that takes advan-
tages of sort theories, and discuss the computational advan-
tages of our theory. One possible future work can be ex-
tending our logic to hybrid order-sorted logic (Cohn 1989;
Bierle et al. 1992; Weidenbach 1996). Another possibility
is to consider efficient reasoning in our framework by iden-
tifying specialized classes of queries or decidable fragments
(Abadi, Rabinovich, & Sagiv 2007). Finally, we are planning
to work on an efficient implementation of our theory.

References
Abadi, A.; Rabinovich, A. M.; and Sagiv, M. 2007. Decidable
fragments of many-sorted logic. InLPAR, volume 4790 ofLecture
Notes in Computer Science, 17–31. Springer.
Bierle, C.; Hedtstück, U.; Pletat, U.; Schmitt, P. H.; and Siekmann,
J. 1992. An order-sorted logic for knowledge representation sys-
tems.Artificial Intelligence55(2-3):149–191.
Classen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.To-
wards an integration of golog and planning. In20th International
Joint Conference on Artificial Intelligence (IJCAI-07). AAAI Press.
Cohn, A. G. 1987. A more expressive formulation of many sorted
logic. J. Autom. Reason.3(2):113–200.
Cohn, A. G. 1989. Taxonomic reasoning with many sorted logics.
Artificial Intelligence Review3(2-3):89–128.
Ghallab, M.; a. Howe; Knoblock, C.; McDermott, D.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL the plan-
ning domain definition language. Technical report, Yale Center for
Computational Vision and Control, Technical Report CVC TR-98-
003/DCS TR-1165.
Goguen, J. A., and Meseguer, J. 1987. Remarks on remarks on
many-sorted equational logic.SIGPLAN Notices22(4):41–48.
Hayes, P. J. 1971. A logic of actions.Machine Intelligence6:495–
520.
Herbrand, J. 1971.Logical Writings. Cambridge: Harvard Univer-
sity Press. Warren D. Goldfarb (ed.).
Jouannaud, J.-P., and Kirchner, C. 1991. Solving equationsin ab-
stract algebras: A rule-based survey of unification. InComputa-
tional Logic - Essays in Honor of Alan Robinson, 257–321. MIT
Press.
Oberschelp, A. 1962. Untersuchungen zur mehrsortigen quantoren-
logik (in German).Mathematische Annalen(145):297–333.
Oberschelp, A. 1990. Order sorted predicate logic. InSorts and
Types in Artificial Intelligence, volume 418 ofLecture Notes in
Computer Science, 8–17. Springer.
Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.
Schmidt-Schauβ, M. 1989. Computational aspects of an order-
sorted logic with term declarations. New York: Springer-Verlag.

Schmidt, A. 1938.Über deduktive theorien mit mehreren soften
von grunddingen.Mathematische Annalen(115):485–506.
Walther, C. 1987.A many-sorted calculus based on resolution and
paramodulation. San Francisco: Morgan Kaufmann.
Wang, H. 1952. Logic of many sorted theories.Symbolic Logic
17(2):105–116.
Weidenbach, C. 1996. Unification in sort theories and its applica-
tions. Annals of Math. and AI18(2/4):261–293.

