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Abstract

We add branching time to the linear discrete event calculus,
which yields a formalism for commonsense reasoning that
combines the benefits of the situation calculus and the event
calculus. We show how the branching discrete event calcu-
lus can be used to solve commonsense reasoning problems
involving hypothetical events, concurrent events with cumu-
lative and canceling effects, and triggered events.

Introduction
The classical logic event calculus (Miller & Shanahan 2002;
Shanahan 1997) can serve as a foundation for common-
sense reasoning. It can be used to reason about im-
portant areas of the commonsense world including action
and change (Shanahan 1999a), space (Morgenstern 2001;
Shanahan 1996; 2004), and mental states (Mueller 2006a).
An important aspect of commonsense reasoning is reason-
ing about hypothetical events. Unlike the situation calculus
(McCarthy & Hayes 1969), the classical logic event calcu-
lus typically uses a linear time structure (Miller & Shana-
han 2002, p. 453) and does not handle hypothetical events
(Shanahan 1997, p. 364).

In this paper, we show how a version of the classical logic
event calculus can be modified to yield a new formalism that
combines the benefits of the situation calculus and the event
calculus. Like the situation calculus, the new formalism sup-
ports reasoning about hypothetical events. Like the classical
logic event calculus, the new formalism supports reasoning
about the commonsense law of inertia, release from the com-
monsense law of inertia, concurrent events with cumulative
and canceling effects, context-sensitive effects, indirect ef-
fects, nondeterministic effects, preconditions, and triggered
events.

We start with the linear discrete event calculus (LDEC)
(Mueller 2004a; 2006a), a discrete version of the classi-
cal logic event calculus. LDEC has been proved logically
equivalent to the continuous event calculus for integer time
(Mueller 2004a), and to temporal action logics (Dohertyet
al. 1998) for inertial fluents and single-step actions (Mueller
2006b). We modify LDEC to obtain the branching discrete
event calculus (BDEC) by (1) removing the requirement that
every situation must have a unique successor, and (2) adding
an argument for successor situation toHappens, Initiates,
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Terminates, andReleases. We show how BDEC can be used
to solve commonsense reasoning problems involving hypo-
thetical events, concurrent events, and triggered events. We
extend BDEC to distinguish between hypothetical and ac-
tual situations and events. In an extended version of this
paper (Mueller in submission), we characterize the precise
relationship between LDEC and BDEC, and prove that a re-
stricted version of BDEC is equivalent to a version of the
situation calculus.

The discrete event calculus was developed to facilitate au-
tomated event calculus reasoning. It simplifies the classical
logic event calculus axioms, reducing the number of axioms
from 17 to 12 and eliminating triply quantified time from
most axioms. The discrete event calculus is the basis for the
Discrete Event Calculus Reasoner program for automated
commonsense reasoning (Mueller 2004b).1 We have imple-
mented BDEC within this program, extending it with the
ability to reason about hypothetical events.

Linear Discrete Event Calculus
We use many-sorted languages with equality. The linear dis-
crete event calculus has sorts for events, fluents, and situa-
tions. We use a version of the linear discrete event calcu-
lus without gradual change, and with an axiomatization of
the nonnegative integers. The language has the constantS0

denoting the initial situation, the functionSL(s), which de-
notes the unique successor of situations, and the following
predicates:
• HappensL(e, s): Evente occurs at situations.
• HoldsAt(f, s): Fluentf is true at situations.
• ReleasedAt(f, s): Fluentf is released from the commonsense
law of inertia at situations.
• InitiatesL(e, f, s): If evente occurs at situations, then fluentf
will be true and not released from the commonsense law of inertia
at the successor ofs.
• TerminatesL(e, f, s): If evente occurs at situations, then fluent
f will be false and not released from the commonsense law of in-
ertia at the successor ofs.
• ReleasesL(e, f, s): If evente occurs at situations, then fluentf
will be released from the commonsense law of inertia at the suc-
cessor ofs.
The commonsense law of inertia (Shanahan 1997) states that
a fluent’s truth value persists unless the fluent is affected by

1This program is available for download athttp://
decreasoner.sourceforge.net/ .



an event. When a fluent is released from this law, its truth
value can fluctuate. Fluents that are released from the com-
monsense law of inertia can be used to model nondetermin-
istic effects (Shanahan 1999a) and indirect effects (Shana-
han 1999b).

Let LDEC be the conjunction of the following axioms:
LDEC1. SL(s) 6= S0

LDEC2. SL(s1) = SL(s2)→ s1 = s2

LDEC3.∀P ((P(S0) ∧ ∀s (P(s)→ P(SL(s))))→ ∀sP(s))
LDEC4. HoldsAt(f, s) ∧ ¬ReleasedAt(f,SL(s)) ∧
¬∃e (HappensL(e, s) ∧ TerminatesL(e, f, s))→
HoldsAt(f,SL(s))
LDEC5.¬HoldsAt(f, s) ∧ ¬ReleasedAt(f,SL(s)) ∧
¬∃e (HappensL(e, s) ∧ InitiatesL(e, f, s))→
¬HoldsAt(f,SL(s))
LDEC6. ReleasedAt(f, s) ∧
¬∃e (HappensL(e, s) ∧ (InitiatesL(e, f, s) ∨
TerminatesL(e, f, s)))→ ReleasedAt(f,SL(s))
LDEC7.¬ReleasedAt(f, s) ∧
¬∃e (HappensL(e, s) ∧ ReleasesL(e, f, s))→
¬ReleasedAt(f,SL(s))
LDEC8. HappensL(e, s) ∧ InitiatesL(e, f, s)→
HoldsAt(f,SL(s))
LDEC9. HappensL(e, s) ∧ TerminatesL(e, f, s)→
¬HoldsAt(f,SL(s))
LDEC10.HappensL(e, s) ∧ ReleasesL(e, f, s)→
ReleasedAt(f,SL(s))

LDEC11.HappensL(e, s) ∧
(InitiatesL(e, f, s) ∨ TerminatesL(e, f, s))→
¬ReleasedAt(f,SL(s))

Axioms LDEC1 through LDEC3 are the Peano axioms
for the nonnegative integers. Axiom LDEC3 is a second-
order axiom of induction.

Branching Discrete Event Calculus
We extend LDEC to branching time as follows. We re-
place the functionSL with a relationS, and allow a situa-
tion to have zero or more successors. We add an argument
to Happens, Initiates, Terminates, andReleasesspecifying
the successor situation. It is important to add the succes-
sor situation toInitiates, Terminates, andReleasesto treat
concurrent events with cumulative and canceling effects (see
below).

The language has the constantS0 denoting the initial sit-
uation, and the following predicates:
• S(s1, s2): Situations2 is a successor of situations1.
• Happens(e, s1, s2): Evente occurs between situations1 and sit-
uations2.
• HoldsAt(f, s): Fluentf is true at situations.
• ReleasedAt(f, s): Fluentf is released from the commonsense
law of inertia at situations.
• Initiates(e, f, s1, s2): If evente occurs between situations1 and
situations2, then fluentf will be true and not released from the
commonsense law of inertia ats2.
• Terminates(e, f, s1, s2): If event e occurs between situations1

and situations2, then fluentf will be false and not released from
the commonsense law of inertia ats2.
• Releases(e, f, s1, s2): If evente occurs between situations1 and
situations2, then fluentf will be released from the commonsense
law of inertia ats2.

Let BDEC be the conjunction of the following axioms:
BDEC1.¬S(s, S0)
BDEC2.S(s1, s) ∧ S(s2, s)→ s1 = s2

BDEC3.∀P ((P (S0)∧∀s1, s2 (S(s1, s2)∧P (s1)→ P (s2)))→
∀s P (s))
BDEC4.S(s1, s2) ∧ HoldsAt(f, s1) ∧ ¬ReleasedAt(f, s2) ∧
¬∃e (Happens(e, s1, s2) ∧ Terminates(e, f, s1, s2))→
HoldsAt(f, s2)
BDEC5.S(s1, s2) ∧ ¬HoldsAt(f, s1) ∧ ¬ReleasedAt(f, s2) ∧
¬∃e (Happens(e, s1, s2) ∧ Initiates(e, f, s1, s2))→
¬HoldsAt(f, s2)
BDEC6.S(s1, s2) ∧ ReleasedAt(f, s1) ∧
¬∃e (Happens(e, s1, s2) ∧
(Initiates(e, f, s1, s2) ∨ Terminates(e, f, s1, s2)))→
ReleasedAt(f, s2)
BDEC7.S(s1, s2) ∧ ¬ReleasedAt(f, s1) ∧
¬∃e (Happens(e, s1, s2) ∧ Releases(e, f, s1, s2))→
¬ReleasedAt(f, s2)
BDEC8.Happens(e, s1, s2) ∧ Initiates(e, f, s1, s2)→
HoldsAt(f, s2)
BDEC9.Happens(e, s1, s2) ∧ Terminates(e, f, s1, s2)→
¬HoldsAt(f, s2)
BDEC10.Happens(e, s1, s2) ∧ Releases(e, f, s1, s2)→
ReleasedAt(f, s2)
BDEC11.Happens(e, s1, s2) ∧
(Initiates(e, f, s1, s2) ∨ Terminates(e, f, s1, s2))→
¬ReleasedAt(f, s2)

BDEC12.Happens(e, s1, s2)→ S(s1, s2)

Axioms BDEC1 through BDEC3 are generalized Peano
axioms along the lines of Schmidt (1960), which do not re-
quire each situation to have exactly one successor. BDEC3
is a second-order induction axiom similar to the one used
by Reiter (1993) for the situation calculus. In any model of
these axioms, situations form a tree whose root isS0.2

Commonsense Reasoning Problems
BDEC can be used to reason about (1) hypothetical events
as in the situation calculus, and (2) phenomena of action
and change as in the event calculus. In this section, we
show how BDEC can be used to perform commonsense
reasoning about three scenarios: the hypothetical Yale
shooting scenario, the soup bowl scenario, and the reactive
cat scenario.

Hypothetical Yale Shooting ScenarioVan Belleghem, De-
necker, and De Schreye (1997) describe the following prob-
lem of hypothetical reasoning, which is based on the Yale
shooting scenario (Hanks & McDermott 1987). A turkey,
which was initially alive, was shot by a person. It is not
known whether the gun was loaded. But it is known that,
if the person had waited instead of shooting, then the gun
would have been loaded afterward. The problem is to infer
that the gun was initially loaded, and that the turkey died.
Van Belleghem et al. argue that this problem can be solved
using the situation calculus, but not by the event calculus.
We show how BDEC can be used to solve this problem.

We use a domain theory similar to that of Shanahan (1997,
pp. 322–323). We have three events,Load, Shoot, andWait,

2See the proof of Proposition 2.1 of Pinto (1994, pp. 103–105).



and two fluents,AliveandLoaded. If a gun is loaded, then it
will be loaded:

Initiates(Load,Loaded, s1, s2) (1)

If a gun is loaded and the gun is shot, then the victim will no
longer be alive:

HoldsAt(Loaded, s1)→ (2)

Terminates(Shoot,Alive, s1, s2)
If a gun is shot, then it will no longer be loaded:

Terminates(Shoot,Loaded, s1, s2) (3)

We consider the following narrative. The victim is ini-
tially alive:

HoldsAt(Alive, S0) (4)

The gun is shot between situationS0 and situationS1:

Happens(Shoot, S0, S1) (5)

We add the following hypothetical information. If the per-
son had waited between situationS0 and situationS2, then
the gun would have been loaded atS2:

Happens(Wait, S0, S2) (6)

HoldsAt(Loaded, S2) (7)

The events and fluents are distinct:

Load 6= Shoot (8)

Shoot6= Wait (9)

Load 6= Wait (10)

Alive 6= Loaded (11)

Fluents are never released from the commonsense law of in-
ertia:

¬ReleasedAt(f, s) (12)

We can then show that the gun was loaded atS0 and that
the victim was dead atS1.

Just as in the classical logic event calculus, we use the
nonmonotonic method of circumscription (Lifschitz 1994;
McCarthy 1980) for default reasoning about time. We cir-
cumscribeInitiates, Terminates, andReleasesto minimize
unexpected effects of events, and we circumscribeHappens
to minimize unexpected events.
Proposition 1. Let Σ = (1) ∧ (2) ∧ (3), ∆ = (5) ∧ (6),
Ω = (8)∧ (9)∧ (10)∧ (11), andΓ = (4)∧ (7)∧ (12). Then
we have

CIRC[Σ; Initiates,Terminates,Releases] ∧
CIRC[∆; Happens] ∧ Ω ∧ Γ ∧ BDEC

` HoldsAt(Loaded, S0) ∧ ¬HoldsAt(Alive, S1).
Proof. From CIRC[Σ; Initiates,Terminates,Releases] and
Propositions 2 and 14 of Lifschitz (1994) reducing circum-
scription to predicate completion and reducing parallel cir-
cumscription to basic circumscription, we have

Initiates(e, f, s1, s2)↔ (e = Load∧ f = Loaded) (13)

Terminates(e, f, s1, s2)↔ (14)

(e = Shoot∧ f = Alive∧ HoldsAt(Loaded, s1)) ∨
(e = Shoot∧ f = Loaded)
¬Releases(e, f, s1, s2) (15)

FromCIRC[∆; Happens] and Proposition 2 of Lifschitz, we
have

Happens(e, s1, s2)↔ (16)

(e = Shoot∧ s1 = S0 ∧ s2 = S1) ∨
(e = Wait∧ s1 = S0 ∧ s2 = S2)

Seeking a contradiction, suppose that

¬HoldsAt(Loaded, S0) (17)

From (13), (16), (8), and (10), we have
¬∃e (Happens(e, S0, S2) ∧ Initiates(e,Loaded, S0, S2)).
From this, S(S0, S2) (which follows from (16)
and BDEC12), (17), (12), and BDEC5, we have
¬HoldsAt(Loaded, S2), which contradicts (7). There-
fore,HoldsAt(Loaded, S0).

From this and (14), we have
Terminates(Shoot,Alive, S0, S1). From this,
Happens(Shoot, S0, S1) (which follows from (16)),
and BDEC9, we have¬HoldsAt(Alive, S1).

Soup Bowl Scenario Gelfond, Lifschitz, and Rabinov
(1991) describe the following soup bowl scenario. A per-
son is trying to lift a bowl of soup. The problem is to infer
that, if the person lifts the bowl with one hand, then the soup
spills, whereas, if the person lifts the bowl with both hands,
then the soup does not spill. Miller and Shanahan (2002,
pp. 460–461) have formalized this problem in the classical
logic event calculus. We show that their formalization works
in BDEC as well. By using BDEC, we are able to consider
two hypothetical alternatives.

If the bowl is lifted with both hands, then it will be raised:

Happens(LiftLeft, s1, s2)→ (18)

Initiates(LiftRight,Raised, s1, s2)

If the bowl is only lifted with one hand, then it will be
spilled:

¬Happens(LiftRight, s1, s2)→ (19)

Initiates(LiftLeft,Spilled, s1, s2)
¬Happens(LiftLeft, s1, s2)→ (20)

Initiates(LiftRight,Spilled, s1, s2)

Initially, the bowl is not raised and not spilled:

¬HoldsAt(Raised, S0) (21)

¬HoldsAt(Spilled, S0) (22)

We consider two alternatives. The first alternative is that the
bowl is lifted with both hands:

Happens(LiftLeft, S0, S1) (23)

Happens(LiftRight, S0, S1) (24)

We can show that the bowl will be raised and not spilled.
The second alternative is that the bowl is lifted with the right
hand:

Happens(LiftRight, S0, S2) (25)

We can show that the bowl will be spilled and not raised.



The events and fluents are distinct:

LiftLeft 6= LiftRight (26)

Raised6= Spilled (27)

SituationsS1 andS2 are distinct:

S1 6= S2 (28)

Fluents are never released from the commonsense law of in-
ertia:

¬ReleasedAt(f, s) (29)

Proposition 2. Let Σ = (18) ∧ (19) ∧ (20), ∆ = (23) ∧
(24)∧ (25), Ω = (26)∧ (27)∧ (28), andΓ = (21)∧ (22)∧
(29). Then we have

CIRC[Σ; Initiates,Terminates,Releases] ∧
CIRC[∆; Happens] ∧ Ω ∧ Γ ∧ BDEC

` HoldsAt(Raised, S1) ∧ ¬HoldsAt(Spilled, S1) ∧
HoldsAt(Spilled, S2) ∧ ¬HoldsAt(Raised, S2).

Proof. From CIRC[Σ; Initiates,Terminates,Releases] and
Propositions 2 and 14 of Lifschitz (1994), we have

Initiates(e, f, s1, s2)↔ (30)

(e = LiftRight∧ f = Raised∧
Happens(LiftLeft, s1, s2)) ∨
(e = LiftLeft∧ f = Spilled∧
¬Happens(LiftRight, s1, s2)) ∨
(e = LiftRight∧ f = Spilled∧
¬Happens(LiftLeft, s1, s2))
¬Terminates(e, f, s1, s2) (31)

¬Releases(e, f, s1, s2) (32)

FromCIRC[∆; Happens] and Proposition 2 of Lifschitz, we
have

Happens(e, s1, s2)↔ (33)

(e = LiftLeft∧ s1 = S0 ∧ s2 = S1) ∨
(e = LiftRight∧ s1 = S0 ∧ s2 = S1) ∨

(e = LiftRight∧ s1 = S0 ∧ s2 = S2)
From Happens(LiftLeft, S0, S1) (which follows from

(33)) and (30), we haveInitiates(LiftRight,Raised, S0, S1).
From this,Happens(LiftRight, S0, S1) (which follows from
(33)), and BDEC8, we haveHoldsAt(Raised, S1).

From (30), (33), (26), (27), and (28), we have
¬∃e (Happens(e, S0, S1) ∧ Initiates(e,Spilled, S0, S1)).
From this, S(S0, S1) (which follows from (33)
and BDEC12), (22), (29), and BDEC5, we have
¬HoldsAt(Spilled, S1)

From ¬Happens(LiftLeft, S0, S2) (which fol-
lows from (33), (26), and (28)), and (30), we
have Initiates(LiftRight,Spilled, S0, S2). From this,
Happens(LiftRight, S0, S2) (which follows from (33)), and
BDEC8, we haveHoldsAt(Spilled, S2)

From (30), (33), (26), (27), and (28), we have
¬∃e (Happens(e, S0, S2) ∧ Initiates(e,Raised, S0, S2)).
From this, S(S0, S2) (which follows from (33)
and BDEC12), (21), (29), and BDEC5, we have
¬HoldsAt(Raised, S2).

Reactive Cat ScenarioConsider a cat that eats food when-
ever food is present. If food is present at situations1, then
the food is eaten betweens1 and every successor situation
s2 of s1:

S(s1, s2) ∧ HoldsAt(FoodPresent, s1)→ (34)

Happens(EatFood, s1, s2)

If the food is eaten, then it will no longer be present:

Terminates(EatFood,FoodPresent, s1, s2) (35)

Food is initially present:

HoldsAt(FoodPresent, S0) (36)

The initial situation has one successor situation:

S(S0, S1) (37)

We can then show that the cat will eat the food and that the
food will no longer be present afterward.

Proposition 3. Let Σ = (35), ∆ = (34), Υ = (37), and
Γ = (36). Then we have

CIRC[Σ; Initiates,Terminates,Releases] ∧
CIRC[∆; Happens] ∧Υ ∧ Γ ∧ BDEC

` Happens(EatFood, S0, S1) ∧
¬HoldsAt(FoodPresent, S1).

Proof. From CIRC[Σ; Initiates,Terminates,Releases] and
Propositions 2 and 14 of Lifschitz (1994), we have

¬Initiates(e, f, s1, s2) (38)

Terminates(e, f, s1, s2)↔ (39)

(e = EatFood∧ f = FoodPresent)
¬Releases(e, f, s1, s2) (40)

FromCIRC[∆; Happens] and Proposition 2 of Lifschitz, we
have

Happens(e, s1, s2)↔ (41)

(e = EatFood∧ S(s1, s2) ∧ HoldsAt(FoodPresent, s1))

From (36), (37), and (41), we have
Happens(EatFood, S0, S1). From this,
Terminates(EatFood,FoodPresent, S0, S1) (which
follows from (39)), and BDEC9, we have
¬HoldsAt(FoodPresent, S1).

Actual Situations and Events
In this section, we extend BDEC to distinguish between hy-
pothetical and actual situations, and to distinguish between
hypothetical and actual event occurrences, along the lines of
Pinto and Reiter (1995).3 We add the predicateActual(s),
which represents thats is an actual situation, and the pred-
icateActuallyHappens(e, s), which represents that evente
actually occurs in situations. We add several axioms. If

3See also the proposal of Baral, Gelfond, and Provetti (1997) in
which action languageA is modified to make an explicit distinction
between hypothetical and actual actions.



a situation is actual, then a predecessor of that situation is
actual:

Actual(s2) ∧ S(s1, s2)→ Actual(s1) (42)

A situation has at most one actual successor:

S(s, s1) ∧ S(s, s2) ∧ Actual(s1) ∧ Actual(s2)→ (43)

s1 = s2

An event actually occurs in a situation if and only if the event
occurs between the situation and some actual situation:

ActuallyHappens(e, s1)↔ (44)

∃s2 (Happens(e, s1, s2) ∧ Actual(s2))

Consider again the hypothetical Yale shooting scenario.
We need only specify thatS1 is an actual situation:

Actual(S1) (45)

From this, S(S0, S1) (which follows from (16) and
BDEC12), and (42), we haveActual(S0). FromS(S0, S1),
S(S0, S2) (which follows from (16) and BDEC12), (45),
and (43), we have¬Actual(S2). From this, (16),
and (44), we have¬ActuallyHappens(Wait, S0). From
Happens(Shoot, S0, S1) (which follows from (16)), (45),
and (44), we haveActuallyHappens(Shoot, S0).

Related Work
The main difference between BDEC and other proposals for
combining the event calculus and situation calculus is that
BDEC considers situations and timepoints to be one and
the same. Other proposals define situations differently from
timepoints.

Provetti (1996) proposes a hybrid of the event calculus
and the situation calculus. Every timepoint is associated
with a situation, but not every situation is associated with
a timepoint. Every timepoint in the linear timeline of the
event calculus corresponds to the root of a tree of hypo-
thetical situations in the situation calculus. Unlike BDEC,
the formalism does not handle hypothetical reasoning about
concurrent actions.

Kowalski and Sadri (1997) propose a version of the event
calculus with branching time and situations. Unlike BDEC,
this variant disallows concurrent events, and it identifies
timepoints with both situations and transitions between situ-
ations.

Van Belleghem, Denecker, and De Schreye (1997) pro-
pose a formalism that extends both the event calculus and the
situation calculus. They start with a version of the event cal-
culus with the linear time axiomT1 < T2 ∨ T1 = T2 ∨ T2 <
T1. They then replace this axiom with the branching time ax-
iom (T1 < T3 ∧ T2 < T3)→ (T1 < T2 ∨ T1 = T2 ∨ T2 <
T1). They then define a situation started by an event at time-
pointT1 as the set of timepointsT2 afterT1 such that there
are no events betweenT1 andT2. Unlike BDEC, this for-
malism disallows concurrent events, and defines situations
as sets of timepoints.

Lévy and Quantz (1998) propose an extension of the event
calculus in which a situation argument is added to every

event calculus predicate, and the event calculus axioms are
modified accordingly. This formalism does not have a suc-
cessor relation between situations. Situations are instead re-
lated to one another by a predicateEqual until(s1, s2, t),
which represents that situationss1 and s2 are equal until
time t.

The primary difference between BDEC and the situation
calculus is that BDEC separates thedo function into the
two predicatesS and Happens. BDEC is different from
the formulation of the situation calculus of Reiter and col-
leagues (Lin & Reiter 1994; Pinto 1994; Pirri & Reiter 1999;
Reiter 1993; 2001). Pirri and Reiter (1999) provide the fol-
lowing foundational axioms for the situation calculus:

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2 (46)

(∀P ).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s) (47)

¬(s @ S0) (48)

s @ do(a, s′) ≡ s = s′ ∨ s @ s′ (49)

In any model of these axioms, every situation has a succes-
sor for every element of the action domain. In any model of
BDEC, if an event occurs between situations1 ands2, then
s1 hass2 as a successor (see axiom BDEC12).

Whereas BDEC allows more than one event between
two situations, the situation calculus of Reiter et al. does
not. In BDEC, we can writeHappens(E1, S0, S1) ∧
Happens(E2, S0, S1) ∧ E1 6= E2. The analogous situation
calculus formulaS1 = do(E1, S0) ∧ S1 = do(E2, S0) ∧
E1 6= E2 is inconsistent with axiom (46). Multiple events
between situations are also ruled out by Davis’s (1994) ax-
iom result(S1,EA,S2) ∧ result(S1,EB,S2)→ EA = EB.

Based on previous proposals, Reiter (1996) adds concur-
rent actions to the situation calculus by defining a concur-
rent action as a set of simple actions, and redefiningdo
to work on concurrent actions. This enables representa-
tion of multiple events between situations. One can write
S1 = do({A1, A2}, S0). Whereas BDEC allows zero events
between two situations, Reiter requires a concurrent action
to contain at least one simple action. (Zero actions between
situations can be simulated in the situation calculus using an
action that has no effects.)

BDEC is different from McCarthy’s (1997; 2002) formu-
lation of the situation calculus with concurrent events and
narratives. In this formulation, the predicateOccurs(e, s)
represents that evente occurs in situations, the function
Next(s) represents the next situation afters, and the func-
tion Result(e, s) represents the situation that results frome
occurring in situations. These are related via the axiom

Occurs(e, s)→ Next(s) = Result(e, s) (50)

We can represent that two events occur inS0:
Occurs(E1, S0)∧Occurs(E2, S0)∧E1 6= E2. From this and
(50), we haveNext(S0) = Result(E1, S0) andNext(S0) =
Result(E2, S0). Thus as in BDEC, we can have distinct
eventsE1 andE2 between two situations:

S1 = Result(E1, S0) = Result(E2, S0) (51)

But we cannot then represent hypothetical eventsE1 and
E3 that occur betweenS0 and some other situationS2:

S2 = Result(E1, S0) (52)

S2 = Result(E3, S0) (53)

S1 6= S2 (54)



The formulas (52) and (54) are inconsistent with (51).
To allow hypothetical reasoning, McCarthy (1997) adds
a narrative argument toOccurs, and uses contexts (Guha
1992; McCarthy 1993) to reason withOccurs(e, s) in-
side a narrative. We rewrite (50) asOccurs(e, s, n) →
Next(s, n) = Result(e, s, n) and use lifting formulas such
as SpecializeNarrative(n, c′, c) ∧ Ist(c′,Occurs(e, s)) →
Ist(c,Occurs(e, s, n)). Nossum and Thielscher (1999) pro-
pose to use contexts in the event calculus.

Conclusions
We introduced BDEC, a branching time discrete version of
the classical logic event calculus. BDEC is useful for com-
monsense reasoning about hypothetical events as well as
other phenomena of action and change. A catalog of com-
monsense phenomena treated by the classical logic event
calculus is provided by Mueller (2006a).

Some areas for further work are the following:
• BDEC allows two identical sets of event occurrences to lead to
two different situations. For example,E1 andE2 could lead from
S0 to S1, andE1 andE2 could also lead fromS0 to a situation
S2 distinct fromS1. The following axiom to rule this out could
be added:(∀e (Happens(e, s, s1)↔ Happens(e, s, s2)))→ s1 =
s2.
• To allow reasoning about gradual change, theTrajectory and
AntiTrajectory predicates (Miller & Shanahan 2002) could be
added to BDEC. This requires definition of the distance between
two situations along a path.
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