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Abstract

We propose methods of employing autocognitive inference as
a realistic, feasible way for an agent to make many inferences
about its own mind and about the world that have often been
regarded in the past as depending on nonmonotonic reason-
ing. The keys to realism are (1) to use a computable notion
of knowing; and (2) to employ specific, realistic assumptions
about the sources of our knowledge, rather than simplified
negation-as-failure assumptions. We illustrate our methods
with a preliminary implementation of several reasoning ex-
amples in the EPILOG system.

Introduction

Consider questions such as the following, posed as tests
of someone’s commonsense knowledge. (Hypothetical an-
swers are indicated in brackets).

1. Do pigs have wings? [Of course not.]

2. Do thrips have wings? [Hmm, I don’t know.]

3. Can you find out from Wikipedia whether thrips have
wings? [I believe so.]

4. Did the phone ring within the last 10 minutes? [No.]

5. If the phone rings within the next 10 minutes, will you
hear it? [Yes.]

6. Is Bill Clinton sitting right now? [I don’t know.] (see
(McCarthy 1995))

The hypothetical answers seem reasonable for a human
respondent (under plausible assumptions about the respon-
dent’s state of knowledge). A common feature in the req-
uisite reasoning seems to be a reliance on knowledge about
one’s own cognitive faculties. By this we mean not only
knowledge of what one knows and doesn’t know, but more
broadly what one learns and perceives under various circum-
stances or through various actions (e.g., consider (3-5)). For
this reason we use the term autocognitive inference, rather
than the usually more narrowly construed term autoepis-
temic inference.

Our goal is to be able to answer questions like those above
easily with the aid of autocognitive inference. This goal
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strikes us as important not only for the purposes of the self-
awareness project we are engaged in (for earlier theoretical
and methodological remarks, see (Schubert 2005)), but more
generally for developing more realistic versions of certain
kinds of commonsense reasoning often treated within non-
monotonic reasoning (NMR) frameworks. A central claim
is that realism demands a definition of “knowing” accord-
ing to which any proposition that is known can be derived
swiftly, rather than in the limit of an unbounded computa-
tional process. Thus we are committed to a formal com-
putational model of belief along the lines of (Kaplan 2000;
Kaplan & Schubert 2000), which overcomes the intractabil-
ity and undecidability problems that beset classical NMR
methods. Further, realism requires that any knowledge com-
pleteness assumptions should be explicitly stated and practi-
cally defensible, instead of being left implicit in the rules of
inference or in axioms that minimize predicate extensions.

In the next section we elaborate on the perceived short-
comings in current methods for examples like (1), and on
our proposed approach. This is followed by a discussion of
further examples (3-6), and, in the “Examples and Results”
section, by some details about examples implemented in the
EPILOG system. We then state our conclusions and future
agenda.

Pigs, Wings, Knowledge and Realism

In answering (1), a reasoner based on default logic (Reiter
1980) might use a rule to the effect that a creature can be
assumed to lack wings whenever that assumption is con-
sistent with the KB. This method and other NMR and au-
toepistemic approaches depend on verifying nonentailment
of propositions by a KB – which even in the propositional
case is in general intractable and for FOL is in general im-
possible. This is strikingly at odds with the fact that human
introspection about what one knows (as opposed to what one
can figure out with protracted thought) is virtually instanta-
neous.

Our approach here, as already indicated, is to borrow
some essential features of the computational model of belief
developed in (Kaplan 2000; Kaplan & Schubert 2000). This
model makes a clear distinction between knowing and being
able to infer. Knowing is formalized in terms of an algo-
rithmic ASK-TELL mechanism (constrained by AGM-like
metaaxioms) that always reponds quickly; whereas reason-



ing may go on indefinitely, as in the case of people. For
example, most educated people know that Egypt is more
southerly than Finland, most can figure out, but don’t know,
that 28 is the sum of its proper divisors, and none know, nor
can figure out, whether the first player in chess can force a
win, even if they know the rules of chess. The computational
model in certain respects generalizes and in other respects
constrains Konolige’s deduction model of belief (Konolige
1986), and supports sound reasoning about the beliefs of
other agents using simulative inference.

Even though our implementation of the ASK mechanism
in EPILOG is still in progress (as is an overhaul of EPI-
LOG itself), it already has many intuitively desirable prop-
erties, including timely termination and various properties
that traditionally have made possible-worlds models nearly
irresistible, such as precluding knowing both φ and its nega-
tion, order-independence of conjuncts in knowledge of con-
junctions, indifference to double negation, knowledge of any
disjunction if either disjunct is known, etc.

The second issue we are concerned with here is lack of
realism in the knowledge closure assumptions underlying
the motivating axamples in much of the NMR/autoepistemic
reasoning literature. For example, a closure assumption of
the type, “If any creature has wings, this follows from my
knowledge”, as a means for answering (1), is thoroughly un-
realistic. We think that a practically usable approach to an-
swering questions like (1-5) requires close attention to the
plausibility of the underlying knowledge and metaknowl-
edge assumptions.

As an initial attempt to characterize the reasoning in-
volved in (1) more realistically, we might suppose that to
answer the question we just examine some internal repre-
sentation or prototype of a pig, and failing to find wings, an-
swer negatively. However, things cannot be quite so simple
– for instance, we might also fail to find, say, an appendix in
our representation of pig anatomy, yet might want to plead
ignorance in that case. So when does absence of a part from
the representation indicate its actual absence, as opposed to
mere incompleteness of the representation? It seems that
only “major parts” (such as plainly visible ones and major
internal ones) can be assumed to be known, if they exist in
reality. But as (2) illustrates, for less familiar creatures such
as thrips, we may not even know all the major parts, even if
we have some direct or indirect acquaintance with the crea-
tures. So a further assumption seems to be required that the
species in question should be a familiar one, if our knowl-
edge of its major parts is to be trusted as complete, enabling
the negative answer in (1). As a somewhat plausible basis
for answering (1), we thus propose the following sorts of
postulates (formalized later) for familiar kinds of entities,
where major parts include wings, and familiar kinds include
pigs:

7. If (K Q) is a familiar natural kind, and (K P) a major kind
of bodypart, and kind (K Q) has-as-part (K P), then I know
(that ((K Q) has-as-part (K P)).

8. (K pig) is a familiar natural kind, and (K wing) is a major
kind of bodypart.

Note that not only the explicit knowledge completeness

assumption, but also the assumption of familiarity with cer-
tain kinds, is an autocognitive assumption. We think that
familiarity-knowledge is quite important in introspection
about what we know. Unlike a tacit metabelief that we can
prove the presence of wings for all creatures that have them,
metaknowledge qualified by familiarity assumptions could
quite plausibly be acquired from experience. For instance,
we might have learned early on that certain kinds of external
physical parts (such as head, body, wings, or legs in the case
of animals) that are referred to in language are generally vis-
ible when present. So if we have observed some instances
of a kind of creature (which is one of the ways of increasing
our familiarity with it), we have surely noted what parts it
possesses, among these overt sorts of parts.

Premises (7-8) indicate that our knowledge representa-
tions will have some unusual features, such as predicate
reification (K P), forming the individual kind correspond-
ing to P, proposition reification (that ((K Q) has-as-part (K
P)), and application of a predicate (has-as-part-of) that is
intended to relate physical objects to a pair of abstract in-
dividual kinds. The reification operators are part of the
episodic logic (EL) knowledge representation (e.g., (Schu-
bert & Hwang 2000; Hwang 1992)); the “misapplication” of
the has-as-part predicate can be thought of as a macro (or as
“type-coercion”), to be expanded by meaning postulates (as
will be illustrated).

Further Aspects of Autocognitive Inference

(3-5) illustrate the important role of knowledge about how
we come to know things, and how our perceptual facul-
ties function. In (3), metaknowledge about the kinds of
knowledge to be found in Wikipedia is crucial (cf. the au-
toepistemic metaknowledge in 7). In addition, autocognitive
knowledge is required about the effects of looking up and
reading information contained in an encyclopedic source.1

In example (4), as in (1), it is again tempting to simply
assume that “if this proposition (that the phone rang) were
true I would know it”. But since we don’t hear every ringing
phone, we again need to ask what deeper knowledge would
lead us to accept such an assumption. In general, to hear
a ringing phone (or other prominent sounds) it seems suf-
ficient to be conscious, not hearing-obstructed, and within
earshot of the phone (or other source). In addition, we know
that if we hear certain meaningful sounds such as human
speech or ringing phones, we will remember hearing them
for a matter of hours or more (at least in summary form, if
densely spaced in time). So if the conditions for hearing the
phone held, then lack of recollection of the phone ringing
indicates that it did not ring. The knowledge used in deriv-
ing this negative conclusion is again clearly autocognitive,
much as in (1).

We recognize that we run into the qualification problem
at every turn here (McCarthy 1986), i.e., the success condi-
tions we have sketched for hearing and remembering a ring-
ing phone are not absolutely reliable. For example the phone

1A similar knowledge assumption was made early in the history
of AI by McCarthy & Hayes in their discussion of making a phone
call (McCarthy & Hayes 1969).



might have malfunctioned and rung too softly to be heard, or
a memory lapse might prevent recollection of its ringing. We
propose to deal with the qualification problem probabilisti-
cally, i.e., we treat conclusions such as that the phone will be
heard under certain conditions as uncertain (even if highly
probable), much as causal consequences in causal networks
are regarded as uncertain in general. We will include a sim-
plified version of (4) handled by EPILOG in the next section.

Example (5) is much like (4), but it illustrates that the
sort of autocognitive knowledge we have already discussed,
concerning conditions under which a ringing phone is heard,
also permits prediction, assuming that the respondent has
reason to believe that these conditions will be satisfied (per-
haps because of personal commitment to being at the rel-
evant location at the relevant time, and expectations about
remaining conscious and hearing-enabled).

(6) is in a way trivial, given our notion of knowing: the
positive and negative self-query both yield NO, so the an-
swer is UNKNOWN. But insofar as McCarthy’s conception
of knowing is akin to inferrability, there is a deeper puzzle
here: not only don’t we know whether Clinton is sitting right
now, we also know that we can’t infer a definite answer, no
matter how deeply we think about it. How is it possible to
know this in advance, without actually putting in the reason-
ing effort?

We think that two sorts of autocognitive evidence may
contribute to the expectation that further reasoning would
be futile. First, a natural approach to assessing the difficulty
of an intellectual (or other) task is to try to quickly sketch
a plan for completing it, and evaluate the likelihood of suc-
cess of any plan(s) found. In the present case, it seems likely
that such a planning attempt would quickly reach an impasse
(simply for “lack of ideas” – perhaps reflected in an empty
agenda).

The success probability may be lowered further by the
knowledge that certain properties vary capriciously, includ-
ing ones like other people’s body posture, motions, and
speech; and such capriciously variable properties, if not
immediately known (i.e., obtainable through the self-query
mechanism), can generally be ascertained only by per-
sonal observation or “live” reports from others, not by pure
thought. We think it likely that people possess large amounts
of this sort of metaknowledge, facilitating the productive al-
location of intellectual (and other) resources.2

Examples and Results

In this section we consider two of the above question-
answering (QA) problems, which resemble common exam-

2Note that we are not assuming that the possibility of inferring
an answer to (6) will be ruled out in all cases. We already allowed
that the answer may be known by personal observation or live re-
port, but even if it is not, the planning process we hypothesized may
yield a plan that is likely to succeed. For example, suppose that at
the time the question is posed, we know from a puzzle-loving friend
at the scene, keeping us informed by phone, that Clinton is sitting
at that moment if and only if the square root of 123,454,321 is an
integer containing a 1. Then we probably still won’t know the an-
swer to the question – but we’ll easily construct a plan for figuring
it out.

ples in the NMR literature. We show simplified solutions
to these problems implemented in the “legacy” version of
the EPILOG inference engine for EL (Schaeffer et al. 1993),
currently being overhauled. The overhaul of EPILOG and
the experimentation with various autocognitive reasoning
problems are intended as steps towards creation of a system
with explicit self-awareness in the sense of (Schubert 2005),
which we will call EPI2ME.3

Pigs, Wings, and EPILOG

The first example concerns the question “Do pigs have
wings”, and some variants. The point here is to show how
metaknowledge about the completeness of some limited as-
pect of an agent’s knowledge can lead to conclusions similar
to ones often obtained in NMR through negation-as-failure
or similar methods.

As noted earlier, we use a kind-forming operator K in for-
malizing this example. A point often neglected in the litera-
ture in discussions of examples such as that birds generally
fly, is that in ordinary discourse we really understand such
examples in terms of kinds of entities (e.g., kinds of ani-
mals, or species of birds). Kinds and generic sentences have
been much discussed in linguistic semantics (e.g., (Carlson
& Pelletier 1995)), and our “language-like” EL representa-
tion readily accommodates this intuition. (The operator is
intensional, but we set aside semantic details here.) We also
use an operator KindOf that maps a monadic predicate P to
a kind-level predicate that is true of the subkinds of the kind
(K P). Predicate modification is a very useful feature of EL.

We will ask EPILOG not only whether pigs have wings,
but also whether Gerda, a particular pig, has wings, thus
showing that the connection between kinds and their in-
stances can be made. We also pose the question whether
Gerda has a tail, again obtaining an answer based on generic
knowledge. The details of the knowledge supplied to EPI-
LOG are as follows:

;; Pigs are a natural kind.

(kn ’((K pig) NaturalKind))

;; The kind ’wing’ is a major kind of bodypart:

(kn ’((K wing) (Major (KindOf BodyPart))))

;; Epilog is familiar with the kind of animal, ’pig’

(kn ’(EpilogSystem FamiliarWith (K pig)))

;; The following is the limited knowledge-completeness

;; assumption supplied to Epilog.

;;

;; If Epilog is familiar with a natural kind (y) and this

;; kind has a major kind of bodypart (x) then Epilog knows it.

;; ’KnownByMe’ is the predicate triggering introspection.

;; It simply starts an embedded question/answering

;; process and returns:

;; -YES if the embedded q/a returns YES;

;; -NO if the embedded q/a returns NO or UNKNOWN.

(kn ’(A y ((y NaturalKind) and (EpilogSystem FamiliarWith y))

(A x (x (Major (KindOf BodyPart)))

((y HaveAsPart x) =>

((that (y HaveAsPart x)) KnownByMe)))))

;; Now we ask whether pigs have-as-part wings:

(dq ’((K Pig) HaveAsPart (K Wing)))

3pronounced e·pit′ŏ·mē



The answer returned is “NO with probability 1”, and the
justifications given are that EPILOG has no knowledge that
pigs have-as-part wings; for every major kind of bodypart
that pigs have, EPILOG knows that they do; and wings are a
major kind of bodypart.

An important point here is that the knowledge-
completeness assumption cannot be used freely in proofs
by Assumption of the Antecedent (AA), in the presence of
an introspection mechanism. In particular, we could not
soundly prove an instance of the conditional

((y HaveAsPart x) ⇒ ((that (y HaveAsPart x)) KnownByMe))

(having established the natural-kind, familiarity, and ma-
jor bodypart portions of the antecedent) using AA, i.e., as-
suming the instance of (y HaveAsPart x) and then apply-
ing introspection to confirm the consequent. Introspection
would trivially confirm the consequent once the antecedent
has been added to the knowledge base – but this is clearly
unsound.4 Instead, modus tollens can be used soundly here:
if the knowledge claim in the consequent of the conditional
is found to be false by introspection, then we can conclude
that the antecedent, (y HaveAsPart x), is false as well. This
is handled uniformly by the general goal chaining (GC) rule
of EPILOG.

Now, for simplicity we will take the semantics of “kind of
creature y has kind of bodypart x” to be that all instances of
the kind y have as part an instance of the kind of bodypart
x. (See below, in the axioms for the question whether Gerda
has a tail.) In a more careful treatment, we would at least
weaken the quantifier to something like “virtually all”, and
derive conclusions with some non-unit probability. But in-
terestingly, neither the strong version with all nor a weaker
one with virtually all will let us conclude from the negation
of “Pigs have wings” that Gerda lacks wings, because even if
it is false that (virtually) all pigs have wings, it remains pos-
sible that some pigs do. One remedy would be to construe
“Pigs don’t have wings as something like ((K Pig) (InNo-
Case (HaveAsPart (K Wing)))).5 The converse strategy is to
strengthen the knowledge-completeness premise to “When-
ever a familiar natural kind in some cases has a certain major
kind of bodypart, I know it”. We use the latter to answer the
question whether Gerda has wings:

(kn ’(A y ((y NaturalKind) and

(EpilogSystem FamiliarWith y))

(A x (x (Major (KindOf BodyPart)))

((y (InSomeCases (HaveAsPart x))) =>

((that (y (InSomeCases (HaveAsPart x))))

KnownByMe)))))

;; If it is false that a kind (K y) in some cases

;; has a kind of part (K x), then no instances of

;; (K y) have that kind of part:

(mp ’(A x_pred (A y_pred

(((qq (not ((K y)

(InSomeCases

(HaveAsPart (K x)))))) true)

=>

4This is related to the fact that the rule of necessitation in modal
logic, ⊢φ

⊢2φ
, cannot be cast as an axiom φ ⇒ 2φ.

5This again makes use of the predicate-modification syntax of
EL.

((qq (A z (z InstanceOf (K y))

(not (z HaveAsPart (K x))))) true)))))

;; Connect predicates with the kinds formed from them:

(mp ’(A x_pred

(A y_term (((qq (y x)) true) =>

((qq (y InstanceOf (K x))) true)))))

;; Gerda is a pig

(kn ’(Gerda Pig))

;; Now we ask, "Does Gerda have wings?"

(dq ’(Gerda HaveAsPart (K Wing)))

The answer is again “NO”, with the justification that EPI-
LOG has no knowledge that pigs in some cases have wings;
for every major kind of bodypart that pigs have in some
cases, EPILOG knows it; wings are a major kind of body-
part; if it is false that pigs in some cases have wings then
no instances of pigs have wings; and Gerda is an instance of
pigs.

Finally, to answer the question whether Gerda has a tail
we add

;; Pigs (in all cases) have tails

(kn ’((K Pig) HaveAsPart (K Tail)))

;; If a kind has a kind of part, then all its instances

;; have that kind of part

(mp ’(A x_pred

(A y_pred

(((qq ((K y) HaveAsPart (K x))) true)

=>

((qq (A z (z InstanceOf (K y))

(z HaveAsPart (K x)))) true)))))

;; Does Gerda have a tail?

(pq ’(Gerda HaveAsPart (K Tail)))

A “YES” answer is immediate because of forward infer-
ence performed by EPILOG. We could also get an immedi-
ate affirmative answer to (pq ’(E x (x Tail) (Gerda

HaveAsPart x))) By adding a further axiom that if an
object-level entity (not a kind) has a kind of part, it has an
instance of that kind of part.

Did the phone ring?

The second example shows how an agent’s knowledge about
how it acquires knowledge through perception can be used
to answer the following question negatively: “Did the phone
ring (during some particular episode E1)?”. Note that as
discussed in the previous section, it would be unjustified to
answer “no” simply on the grounds that the agent doesn’t
know that it rang. The knowledge used by EPILOG is as
follows:

(kn ’(P1 Phone))

(kn ’(A e2 (e2 During E1)

((Me Within-Earshot-of P1) @ e2)))

(kn ’(A e2 (e2 During E1) ((Me Conscious) @ e2)))

(kn ’(A e2 (e2 During E1)

(((Hearing-Ability-Of Me) Normal) @ e2)))

;; Autocognitive assumption about conditions for hearing

;; a phone (approximate -- the conditional should be

;; probabilistic not universal):

(kn ’(A x (x Phone)

(A ev ((x Ring) ** ev)

((((Me Within-Earshot-Of x) @ ev) and



((Me Conscious) @ ev)

(((Hearing-Ability-Of Me) Normal) @ ev))

=> ((Me Hear ev) @ ev)))))

;; I know what I’ve heard (approximate -- Know should

;; really be time-dependent):

(kn ’(A ev ((Me Hear ev) @ ev)

(Me Know (That ((Me Hear ev) @ ev)))))

;; Ask whether P1 rang during E1:

(dq ’(E ev (ev During E1) ((P1 Ring) ** ev)))

The answer is “NO with probability 1”, with the justi-
fication that P1 is a telephone, and EPILOG was always
within earshot of P1, conscious, and of normal hearing dur-
ing E1, and whenever such conditions hold and the phone
rings, EPILOG will know about it, and EPILOG doesn’t know
whether P1 rang during E1.

The “consciousness” and “normal hearing” assumptions
could themselves be conclusions from autocognitive reason-
ing along the lines, “If I had been unconscious or my hearing
had been obstructed during E1, I would know it, but I don’t
know it, so I wasn’t”. The specific knowledge completeness
assumptions involved here are quite plausible, if for instance
the agent registers and remembers points of transition be-
tween waking and sleeping states, and episodes of auditory
(and other sensory) disruptions during waking states, such
as loud masking noises, covered or injured ears, etc.

Conclusions and Further Work

We have advocated greater realism in formalizing the kinds
of commonsense reasoning that rely on assumptions about
how complete an agent’s knowledge is in certain respects,
and how it acquires knowledge through perception and other
means. In particular, we have suggested that knowledge in-
trospection should be based on a fast self-query algorithm
(as in the computational model of belief (Kaplan 2000; Ka-
plan & Schubert 2000)), and should use explicit knowledge-
completeness premises, familiarity premises, and premises
about how the agent acquires knowledge. We have referred
to this style of reasoning as autocognitive reasoning.

As preliminary evidence of the feasibility of autocogni-
tive reasoning we mentioned some desirable properties that
our initial implementation of the self-query algorithm pos-
sesses; we outlined approaches to a number of specific QA
problems; and we presented some simplified working exam-
ples implemented in EPILOG. This also provided a glimpse
of our ongoing effort to build an explicitly self-aware sys-
tem, EPI2ME.

Our self-query algorithm (associated with KnownByMe)
cannot yet call itself arbitrarily, and allowing it to do so is
one of our immediate goals (in tandem with the EPILOG

overhaul). Syntactic quantification and the use of quasi-
quotes (for metaknowledge and meaning postulates) also
needs further study and revision. Beyond such technical is-
sues, it will also be a major goal to build up a sizable knowl-
edge base (by hand, borrowing from various sources, and
text-mining) so that commonsense and autocognitive rea-
soning over a reasonably broad range of topics can be at-
tempted.
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