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Abstract

We examine the feasibility of learning causal domains by ob-
serving transitions between states as a result of taking certain
actions. We take the approach that the observed transitions
are only a macro-level manifestation of the underlying micro-
level dynamics of the environment, which an agent does not
directly observe. In this setting, we ask that domains learned
through macro-level state transitions are accompanied by for-
mal guarantees on their predictive power on future instances.
We show that even if the underlying dynamics of the envi-
ronment are significantly restricted, and even if the learnabil-
ity requirements are severely relaxed, it is still intractable for
an agent to learn a model of its environment. Our negative
results are universal in that they apply independently of the
syntax and semantics of the framework the agent utilizes as
its modelling tool. We close with a discussion of what a com-
plete theory for domain learning should take into account, and
how existing work can be utilized to this effect.

Introduction
Mathematical logic has established itself as a means of for-
malizing commonsense reasoning about actions and change.
Numerous frameworks (McCarthy & Hayes 1969; Harel
1984; Gelfond & Lifschitz 1992; Thielscher 1998; Doherty
et al. 1998; Miller & Shanahan 2002; Giunchiglia et al.
2004; Kakas, Michael, & Miller 2005) have been proposed
for modelling the various intricacies of our environment, ad-
dressing to various extents the fundamental problems inher-
ent in such an endeavor. For these frameworks to be widely
accepted as useful tools in the design of autonomous agents
that employ common sense when deliberating about their
actions, one needs to go beyond programming knowledge
into agents, and towards endowing agents with the capa-
bility of learning this knowledge through interactions with
their environment. The reasoning mechanisms developed by
the Commonsense Reasoning community over the years can
then be employed to put the acquired knowledge into good
use, allowing agents to draw sound conclusions about their
environment, and the effects of their actions.

In this work we take a first step in examining the feasibil-
ity of undertaking such a learning task. Two main premises
underlie our study. First, that the goal of learning should not
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be to identify domains that are simply consistent with learn-
ing examples the agent has observed, but rather domains that
can provably make highly accurate predictions in future sit-
uations that the agent will face. Second, that the time gran-
ularity at which the state of the environment evolves is finer
than that at which the agent takes actions and makes obser-
vations. What the agent perceives as consecutive states in its
environment is not necessarily so in the underlying dynam-
ics that cause the state transitions. Thus, while at the observ-
able time granularity the push of a button causes the light to
be on immediately afterwards, the environment in fact tran-
sitions through multiple unseen intermediate states, during
which the electric current comes on, the wire in the light
bulb heats up, and so on. The macro-level manifestation
of the micro-level dynamics of the agent’s environment re-
sembles a temporal analog of McCarthy’s “Appearance and
Reality” dichotomy (2006); what appears to be the case does
not necessarily fully match or explain the underlying reality.

We model the macro/micro granularity discrepancy via a
simple framework of causal change. We assume the envi-
ronment is described by a set of causal laws, which get trig-
gered (as a result of an agent’s actions) in the current state
of the environment, and subsequently get resolved, possi-
bly triggering new causal laws. The environment transitions
through a set of micro-states until it eventually stabilizes to
a final state, which the agent gets to observe. Our approach
is a stripped-down version of recent work (Kakas, Michael,
& Miller 2005) that has shown that such a treatment enables
one to naturally model a variety of domains in a modular
and elaboration tolerant manner, providing a clean solution
to the Ramification and Qualification Problems. Our em-
phasis here, however, is on the learnability of domains, and
not on their reasoning semantics; a minimal framework of
causal change suffices for our purposes.

The learning problem is formalized as that of inferring a
model of the environment by observing transitions between
macro-states. As per our premises, (i) the agent does not ob-
serve the micro-states that interject between the initial and
final macro-states, and (ii) the agent is expected to be confi-
dent that its inferred model is highly accurate in predicting
macro-state transitions in future and previously unseen sit-
uations. The learning setting that the agent is faced with is
made precise through an extension of the Probably Approxi-
mately Correct learning semantics (Valiant 1984). A number



of possible extensions are considered to account for varying
degrees of stringency on the learning requirements and the
amount of information that is available to the agent.

We examine the feasibility of learning in the described
setting, and establish rather severe limitations on the learn-
ability of domains (under certain cryptographic assump-
tions). Our negative results hold even under a number of
simplifying assumptions on the complexity of the underly-
ing dynamic model of the environment, even when the learn-
ing requirements are significantly relaxed, and even if the
agent is allowed to experiment and actively choose its learn-
ing examples. More surprisingly, and perhaps more impor-
tantly, our results hold independently of the means the agent
employs to build its model, and do not hinge on the syntax
or semantics of any particular framework. The framework
of causal change we present is only utilized to describe the
environment from which learning examples are drawn, and
need not be employed by the agent when learning. In fact, in
view of our negative learnability results, our simple frame-
work of causal change only serves to further strengthen the
established intractability of learning causal domains.

We close with a discussion of the implications of our re-
sults. We review some related work and explain how exist-
ing positive results in domain learning should be interpreted,
in view of the severe limitations on learnability that we es-
tablish. We discuss the potential of deriving domain learning
algorithms that do not sacrifice predictive guarantees, and
what such a task would necessitate. We also consider relax-
ations of assumptions made in this work, and briefly mention
how existing work in Computational Learning Theory can
offer the tools necessary to develop a complete treatment of
domain learnability, along the lines presented in this work.

A Simple Framework of Causal Change
We live in an arguably complex environment, and one can
never hope to fully describe all the intricacies that surround
us. Even under the simplifying assumption that the environ-
ment can be described as a collection of discrete attributes,
which assume discrete values, and which change in dis-
crete time steps, a lot remains to be modelled: transitions
in attribute values might occur non-deterministically, values
might oscillate across time, triggered processes might get
resolved in an arbitrary order, and actions exogenous to any
subsystem of interest might affect it (see (Kakas, Michael,
& Miller 2005) for a treatment of such issues). These facts
notwithstanding, it is often useful to consider an environ-
ment that is well-behaved with respect to these issues, in an
effort to understand and appreciate the complexity of “sim-
pler environments”. In this section we develop a framework
for modelling such a simple environment, borrowing some
ideas from (Kakas, Michael, & Miller 2005).

Definition 1 (States and Satisfaction) Consider any non-
empty finite set F of fluent constants. A state over F is
a vector st ∈ {0,1}|F |. A set of fluent literals S is sat-
isfied in a state st if st[i] = 0 for every negative literal
Fi ∈ S, and st[i] = 1 for every positive literal Fi ∈ S. A
state transition over F is simply a pair 〈st1,st2〉 of states
over F; we call st1 the initial, and st2 the final state.

A state transition occurs when the initial state “evolves”
to the final state. We assume that this transition process is
explained by virtue of a set of causal laws.

Definition 2 (Domains of Causal Laws) A causal law (of
order k) is a statement of the form “S causes L”, where
S is a set (of cardinality at most k) of fluent literals, and L
is a fluent literal; the causal law is monotone if all fluent
literals in S ∪ {L} are positive. A domain c is a (finite)
collection of causal laws.

The intended meaning of a causal law “S causes L”
is that whenever the preconditions S are satisfied in a state,
the effect L holds in a subsequent state. Thus, the transition
from an initial to a final state results from causal laws that
get triggered and resolved in a series of intermediate states.

Definition 3 (Successor and Stable States) A state st2 is
the successor of a state st1 w.r.t. a domain c if E(st1; c) ,
{L | “S causes L”∈c;S is satisfied in st1} is such that:
(i) E(st1; c) is satisfied in st2, and (ii) st2[i] = st1[i] for
every fluent constant Fi ∈ F such that Fi, Fi 6∈ E(st1; c).
A state st2 is reachable (in m steps) from a state st1 w.r.t.
a domain c if st2 is the successor w.r.t. c of either st1 or
a state reachable (in m− 1 steps) from st1 w.r.t. c. A state
st is stable w.r.t. a domain c if st is the successor of itself
w.r.t. c. A domain c is consistent with 〈st1,st2〉 if st2 is
the (unique) stable successor of st1 w.r.t. c.

Our semantics captures the minimal, perhaps, set of prin-
ciples necessary for domains with causal laws, namely that
the effects of causal laws are instantiated (condition (i)), and
that default inertia applies to properties that are not affected
by causal laws (condition (ii)).

Learning from Observing State Transitions
An agent wishing to learn the dynamic properties of its envi-
ronment presumably does so by observing the current state,
taking certain actions, and then observing the resulting fi-
nal state. For ease of exposition we only consider the case
of learning from state transitions with complete information,
and assume that each initial state is associated with exactly
one final state, as per the semantics of the previous section.

We formalize the learning setting as follows. An agent
observes state transitions 〈st1,st2〉 over some fixed set of
fluent constants. The initial state st1 is thought of as being
drawn from an underlying fixed probability distribution D.
The probability distribution is arbitrary and unknown to the
agent, and aims to capture the complex interdependencies
of fluents in the agent’s environment, as well as the lack of
control over the current state of affairs in which the agent
is executing its actions. The final state st2 results when a
set of causal laws (triggered by the agent’s actions) apply
on the initial state st1. In order to facilitate the learning
process, one needs to make a minimal assumption on the
set of causal laws that apply on the initial state, namely that
they are fixed across observations. In the same spirit, we also
assume that whatever actions the agent is taking to trigger a
state transition also remain fixed across observations.

More precisely, we assume that there exists a domain
c ∈ C that is consistent with all observed state transitions.



The actual domain c is not made known to the agent; still,
the agent has access to the class C of possible domains and
the set of fluent constants F over which the domains in C
are defined. The domain class C should be thought of as a
prior bias that the agent has on the structure of its environ-
ment. Depending on the circumstances, one might restrict C
to certain subsets of all syntactically valid domains, increas-
ing thus the prior bias and making the learning task easier.

Given the domain class C, and access to randomly drawn
state transitions consistent with some domain c ∈ C, an
agent enters a training phase, during which it uses the avail-
able state transitions to construct a hypothesis h ∈ H about
its environment. Note that allowing the agent exponential
time in the relevant problem parameters essentially trivial-
izes learning, since the agent can practically observe all pos-
sible state transitions. To avoid this situation, we require
that training be carried out efficiently, in time that is only
polynomial in the relevant problem parameters. Following
the training phase, an agent enters a testing phase, where the
agent is faced with possibly previously unseen state transi-
tions, drawn however from the same underlying probability
distribution and consistent with the same domain c. Learn-
ing is said to be successful if with high probability h is suffi-
ciently often consistent with these new state transitions. The
testing phase aims to exemplify two key points. First, that
the agent is tested under the same conditions that it faced
during the training phase; this corresponds to the fact that
the agent was trained and tested in the same environment.
Second, that the returned hypotheses are expected to be ac-
companied by predictive guarantees; the agent needs to be
able to make predictions in new situations and be confident
in the accuracy of these predictions. To see why this re-
quirement is not overly optimistic, observe that an accurate
hypothesis need only be returned with high probability. This
acknowledges the fact that the agent might be unlucky dur-
ing the training phase, and not be able to obtain a good sam-
ple of state transitions. Furthermore, even if a good sample
was obtained, we only require that the returned hypothesis
be approximately correct, acknowledging the fact that dur-
ing testing an agent may be faced with rare state transitions
that need not be accurately predicted.

It is important to note at this point that the syntax and se-
mantics of the returned hypotheses are not a priori restricted
in any manner. In particular, we do not expect an agent to
return a domain in the syntax and under the semantics of the
framework presented in the preceding section. Our frame-
work of causal change only serves as a model of the envi-
ronment from which state transitions are drawn. The agent
attempting to learn the structure of its environment is free
to model it in any manner it sees fit. Thus, for example,
an agent might choose to return a domain description in the
syntax and under the semantics of either Situation Calcu-
lus (McCarthy & Hayes 1969) or Language ME (Kakas,
Michael, & Miller 2005), presumably even employing ad-
ditional constructs these frameworks might offer to model
other aspects of the environment beyond causal laws. Even
more generally, a hypothesis might be any efficiently evalu-
atable function that given an input produces a corresponding
output. If one wishes to explicitly restrict the class of possi-

ble hypotheses, one can do so by definingH.
The learning setting we employ is an extension of the

Probably Approximately Correct learning model (Valiant
1984), and a number of possible variations appropriate for
domain learning are formalized in the rest of this section.

Passive Learning through Observations
We start with a rather strong definition of learnability.

Definition 4 (State Transition Exact Oracle) Given a
probability distribution D over states, and a domain c, the
exact oracle E(D; c) is a procedure that runs in unit time,
and on each call 〈st1,st2〉 ← E(D; c) returns a state
transition 〈st1,st2〉, where st1 is drawn randomly and
independently from D, and c is consistent with 〈st1,st2〉.

Definition 5 (Learnability by Generation) Given a set of
fluent constants F , a class C of domains is learnable from
transitions by a class H of generative hypotheses if there
exists an algorithm L such that for every probability distri-
butionD over states, every domain c ∈ C, every real number
δ : 0 < δ ≤ 1, and every real number ε : 0 < ε ≤ 1, algo-
rithm L has the following property: given access to E(D; c),
δ, and ε, algorithm L runs in time polynomial in 1/δ, 1/ε,
|F |, and the size of c, and with probability 1 − δ returns a
hypothesis h ∈ H such that

Pr (h(st1) = st2 | 〈st1,st2〉←E(D; c)) ≥ 1− ε.

Note that Definition 5 asks that returned hypotheses are
generative in the sense that given an initial state they are
expected to generate a final state that is accurate with respect
to an agent’s observations. Weaker notions of learnability
are of course possible.

Definition 6 (State Transition Noisy Oracle) Given a
probability distribution D over states, and a domain c, the
noisy oracle N (D; c) is a procedure that runs in unit time,
and on each call 〈st1,st2〉 ← N (D; c) returns a state
transition 〈st1,st2〉, where st1 is drawn randomly and
independently from D, and c is consistent with 〈st1,st2〉
with probability 1/2.

Definition 7 (Learnability by Recognition) Given a set of
fluent constants F , a class C of domains is learnable from
transitions by a class H of recognitive hypotheses if the
same provisions hold as in Definition 5, except that h ∈ H
is such that

Pr (h(〈st1,st2〉) = c(〈st1,st2〉) |
〈st1,st2〉←N (D; c)) ≥ 1− ε.

Intuitively, we have shifted the requirement for hypothe-
ses from that of accurately generating (or predicting) the fi-
nal state given only an initial state, to that of recognizing
whether a given state transition is consistent with the hid-
den target domain c. This latter requirement is presumably
weaker, since an algorithm is only expected to decide on
the validity of a state transition, rather than to predict a final
state among the exponentially many possible candidates. In-
deed, whereas a recognitive hypothesis can trivially achieve
accuracy 1/2 (by simply classifying all state transitions as
valid), this is not possible for generative hypotheses.



Note that an agent still receives only valid state transi-
tions during the training phase, since invalid transitions do
not naturally occur in an agent’s environment. Besides, in-
valid state transitions can be trivially simulated by replacing
the final state in a valid state transition by an arbitrary state
(in the same way that the noisy oracle does so). The use of
the exact oracle is in fact strictly more beneficial in that the
valid state transitions can be identified by the agent.

Learning to Weakly Recognize Consistency
Both of our domain learnability definitions so far require that
a target domain can be approximated to arbitrarily high ac-
curacy 1 − ε and with arbitrarily high confidence 1 − δ (al-
beit with an appropriate increase in the allowed resources)
in order for a class of domains to be characterized as learn-
able. The PAC learning literature has considered a notion of
learnability that relaxes these requirements to the maximum
extent possible (Kearns & Valiant 1994). The corresponding
definition of domain learnability is as follows.
Definition 8 (Weak Learnability by Recognition) Given
a set of fluent constants F , a class C of domains is weakly
learnable from transitions by a class H of recognitive
hypotheses if there exists an algorithm L and polynomials
p(·, ·) and q(·, ·) such that for every probability distribution
D over states, and every domain c ∈ C, algorithm L has the
following property: given access to E(D; c), algorithm L
runs in time polynomial in |F |, and the size of c, and with
probability 1/p(|F |, size(c)) returns a hypothesis h ∈ H
such that

Pr (h(〈st1,st2〉) = c(〈st1,st2〉) |
〈st1,st2〉←N (D; c)) ≥ 1/2 + q(|F |, size(c)).

Thus, not only have we relaxed the requirement for arbi-
trarily high confidence and accuracy, but we have also al-
lowed them to diminish as the size of the problem increases.
In particular, we now only require that accuracy is slightly
better than the trivially obtainable accuracy of 1/2.

Active Learning through Experimentation
The final relaxation of the learning requirements we con-
sider is on the information that is made available to an agent
during the training phase. We have, thus far, assumed that
an agent obtains learning examples by simply taking actions
in the current state of the environment, and then observing
the resulting final state. Conceivably, an agent might first
take other actions (whose effects might already be known
or previously learned by the agent) to bring the environment
to a chosen state, and then attempt to learn from state tran-
sitions with this particular state as their initial state. This
setting allows the agent to have some control over the types
of learning examples it utilizes during the training phase. In
the learning literature this type of learning is called learning
with queries (see, e.g., (Angluin 1988)), since the agent can
be thought of as asking questions and receiving answers.
Definition 9 (State Transition Query Oracle) Given a
domain c, the query oracle Q(·; c) is a procedure that runs
in unit time, and on each call 〈st1,st2〉 ← Q(st1; c)
returns a state transition 〈st1,st2〉, where st1 is given as
input to the oracle, and c is consistent with 〈st1,st2〉.

It is natural to assume that although the agent might wish
to bring the environment to a chosen state, its lack of knowl-
edge or physical abilities do not allow the agent to choose
the entire state of the environment. Indeed, an agent that can
bring its environment to a chosen state presumably already
knows the causal model of its environment, leaving nothing
to be learned. We consider, therefore, the situation where
the agent is able to set a significant known portion of the
state to certain chosen values, albeit in doing so it loses any
guarantees it might have on the status of the rest of the state.
This situation can be modelled through restricted queries.

Definition 10 (State Transition Restricted Query Oracle)
Given a domain c, the restricted query oracle R(·; c) is
a procedure that runs in unit time, and on each call
〈st1,st2〉 ← R(st0; c) returns a state transition
〈st1,st2〉, where st0 is given as input to the oracle, st1

is some state that agrees with st0 on an inverse polynomial
size fixed subset of F , and c is consistent with 〈st1,st2〉.

Definition 11 (Learnability with (Restricted) Queries)
Given a set of fluent constants F , a class C of domains
is weakly learnable from transitions with queries (resp.,
restricted queries) by a class H of recognitive hypotheses
if the same provisions hold as in Definition 8, except that
algorithm L is also given access to Q(·; c) (resp.,R(·; c)).

With the use of query oracles an agent is no longer pas-
sively observing state transitions, but can actively experi-
ment with its environment to obtain information on specific
situations that could be too rare to observe passively. This
setting brings up the possibility of requiring that domains
are learned exactly (Angluin 1988), rather than simply ap-
proximately. We will not, however, examine this alternative
and more stringent learning model in this work.

Analogously to the extension of Definition 8, one can ex-
tend Definitions 5 and 7 to employ (restricted) query oracles.

Negative Results in Domain Learning
The learnability of various classes of problems has been ex-
tensively studied under the PAC semantics, and many posi-
tive and negative results have been established, often under
certain complexity or cryptographic assumptions. Perhaps
the best-studied classes are those of boolean functions over
boolean inputs, usually viewed as digital circuits over the
standard logic gates.

Circuit learning is very close to domain learning as stated
in Definition 5, requiring the same type of learnability guar-
antees. Roughly speaking, an algorithm observes randomly
chosen inputs to a hidden target circuit, and for each input
the corresponding boolean output. The algorithm is then ex-
pected to produce a hypothesis that on randomly chosen in-
puts predicts with high accuracy the corresponding output of
the hidden circuit. Weak learning is defined in circuit learn-
ing in a similar fashion as domain learning. Queries can also
be employed to obtain the value of the hidden circuit on an
input chosen by the algorithm; such queries are called mem-
bership queries, since they essentially ask if a given input
is a member of the inputs on which the circuit evaluates to
true. We call the resulting setting weak PAC learning with



membership queries. We reduce the problem of circuit weak
PAC learning with membership queries to that of domain
weak learning from state transitions with restricted queries.

Theorem 1 (Reduction of Circuit to Domain Learning)
Consider the class C0 of polynomial size circuits with n
inputs, fan-in at most k, and depth at most m. Consider the
class C1 of all domains over some set F of fluent constants
with polynomial cardinality in n, such that all domains in
C1: (i) are of size polynomial in |F |, (ii) only contain causal
laws of order k out of which only one is not monotone, and
(iii) only explain transitions between states reachable in
m + 1 steps. If C1 is weakly learnable from transitions with
restricted queries by any class of (polynomially evaluatable)
recognitive hypotheses, then C0 is weakly PAC learnable
with membership queries.

Proof: We first establish certain correspondences between
the two learning problems. Let W = {w1, w2, . . . , wt} de-
note the set of wires over which the circuits in C0 are defined,
and let wt correspond to the output wire. Construct the set
of fluent constants F = {F−

i
, F+

i
| wi ∈W} ∪ {F0}.

• For each circuit ckt ∈ C0 construct a domain
dom(ckt) ∈ C1 over F such that: (i) for each output wi0

of an AND-gate over {wi1 , . . . , wik
} in ckt, dom(ckt) in-

cludes the causal laws “{F+

i1
, . . . , F+

ik
} causes F+

i0
”, and

“{F−
ij
} causes F−

i0
” for each j ∈ {1, . . . , k}; (ii) similarly

for every OR-gate and NOT-gate in ckt; (iii) dom(ckt) in-
cludes the causal law “{F−t , F+

t } causes F0”; and (iv)
dom(ckt) includes the causal laws “{F+

t } causesF ” and
“{F−t } causes F ”, for each fluent constant F ∈ F \{F0}.
• For each circuit input in ∈ {0,1}n construct a

state st(in) ∈ {0,1}|F | such that: (i) st(in) satis-
fies {F−

i
, F+

i
} for each circuit input wire wi set to 0 un-

der in; (ii) st(in) satisfies {F−
i

, F+

i
} for each circuit

input wire wi set to 1 under in; and (iii) st(in) satis-
fies {F} for each fluent constant F ∈ F \ {F−

i
, F+

i
|

wi is a circuit input wire}.
• For each circuit output out ∈ {0,1} construct a state

st(out) ∈ {0,1}|F | such that: (i) st(out) satisfies {F0}
if and only if the circuit output wire wt is set to 1 under out;
and (ii) st(out) satisfies F \ {F0}.
• For each query state st0 ∈ {0,1}|F | construct a state

alt(st0) ∈ {0,1}|F | such that: (i) alt(st0) satisfies
{F−

i
, F+

i
} for each circuit input wire wi such that {F+

i
} is

satisfied by st0; (ii) alt(st0) satisfies {F−
i

, F+

i
} for each

circuit input wire wi such that {F+

i
} is satisfied by st0;

and (iii) alt(st0) satisfies {F} for every fluent constant
F ∈ F \ {F−

i
, F+

i
| wi is a circuit input wire}. Clearly,

alt(st0) agrees with st0 on a fixed polynomial size sub-
set of F , and equals st(in) for a unique circuit input in.

All constructions are polynomial-time computable in n,
and ckt on input in computes output out if and only if
domain dom(ckt) is consistent with 〈st(in),st(out)〉.

Algorithm L0 for learning C0 executes algorithm L1 for
learning C1: Whenever algorithm L1 requests an example
from the exact oracle, algorithm L0 draws a random cir-

cuit input in with the corresponding output out, and re-
turns 〈st(in),st(out)〉 to algorithm L1. Whenever al-
gorithm L1 requests an example from the restricted query
oracle with input state st0, algorithm L0 asks a member-
ship query on the unique circuit input in that corresponds
to alt(st0) to obtain the corresponding output out, and
returns 〈st(in),st(out)〉 to algorithm L1. When algo-
rithm L1 returns a hypothesis h satisfying the conditions of
Definition 11, algorithmL0 employs this hypothesis to make
accurate predictions on input in of the hidden target circuit
by selecting uniformly at random an output out ∈ {0,1},
and replying with out if and only if h is consistent with
〈st(in),st(out)〉. This concludes the proof. ¤

Theorem 1 establishes a precise connection between prop-
erties of the circuit class one considers and properties of the
domain class to which one reduces. Since the known neg-
ative results of PAC learning circuit classes hold not only
on the general class of all polynomial size circuits, but also
on certain special subclasses, Theorem 1 allows us to carry
these negative results to special subclasses of domains.

Corollary 2 (Transitions from Simple Causal Laws)
Consider the class C of all domains that: (i) are of size
polynomial in the number of available fluent constants
F , (ii) only contain causal laws of order 2 out of which
only one is not monotone, and (iii) only explain transitions
between states reachable in O(lg |F |) steps. Then, C is not
weakly learnable from transitions with restricted queries by
any recognitive hypothesis class, given that the Factoring
Assumption is true.

Proof: Kharitonov (Kharitonov 1993, Theorem 6) shows
that the class NC1 of polynomial size circuits with n inputs,
fan-in at most 2, and depth at most O(lg n), is not weakly
PAC learnable with membership queries if the Factoring As-
sumption holds. The claim now follows from Theorem 1, by
observing that the theorem guarantees that |F | is polynomial
in n and therefore that O(lg n) + 1 = O(lg |F |). ¤

The Factoring Assumption states that factoring Blum in-
tegers is hard; that is, given a natural number N of the form
p · q, where both p and q are primes congruent to 3 modulo
4, it is intractable to recover the factors of N . The Fac-
toring Assumption is one of the most widely accepted and
used cryptographic assumptions. In fact, a proof that the as-
sumption is false would completely undermine the presumed
theoretical security of the well-known RSA cryptosystem
(Rivest, Shamir, & Adleman 1978). It is believed, therefore,
that for all practical purposes the assumption is true.

Corollary 3 (Transitions with Few Intermediate States)
Consider the class C of all domains that: (i) are of size poly-
nomial in the number of available fluent constants F , (ii)
contain causal laws out of which only one is not monotone,
and (iii) only explain transitions between states reachable in
O(1) steps. Then, C is not weakly learnable from transitions
with restricted queries by any recognitive hypothesis class,
given that the “Strong Factoring Assumption” is true.

Proof: Kharitonov (Kharitonov 1993, Theorem 9) shows
that the class AC0 of polynomial size circuits with n inputs,



and depth at most O(1), is not weakly PAC learnable with
membership queries if factoring Blum integers of length `
is (2−`

ε

)-secure for some ε > 0; we call this condition
the “Strong Factoring Assumption”. The claim now follows
from Theorem 1, by observing that O(1) + 1 = O(1). ¤

Corollary 3 relies on what we call the “Strong Factoring
Assumption”. Roughly speaking, this stronger version of
the Factoring Assumption states that there exists ε > 0 such
that factoring an `-bit integer remains intractable even if we
allow an adversary running time 2`

ε

(Kharitonov 1993), as
opposed to some polynomial in `. Although less likely to be
true, this stronger assumption on the intractability of factor-
ing is still a plausible one.

We have thus established that irrespective of how an agent
represents its hypotheses, it is impossible (under the stated
assumptions) to learn certain classes of domains. The neg-
ative results hold even for classes of domains with practi-
cally only monotone causal laws that either have at most two
preconditions, or do not form “long chains” in state transi-
tions; that is, the result holds even if the number of inter-
mediate micro-states in observed state transitions is small.
These results leave little room for considering simpler do-
mains where learning might not be impaired, without sacri-
ficing the expressivity of domains, and without making un-
realistic assumptions on the learning model (e.g., the use of
unrestricted query oracles).

Discussion and Conclusions
The induction of domains from observations has recently re-
ceived an increased interest, especially within the Inductive
Logic Programming community. To the extent such frame-
works relate to ours, the following remarks can be made as
regards to the two premises of this work.

First, causal knowledge is often represented through ram-
ification statements whose preconditions and effects apply
on the same state (see, e.g., (Otero 2005)), essentially col-
lapsing all micro-states that follow an action occurrence into
the single final macro-state that the agent observes. This
arguably less realistic model of causal change provides an
agent with much more information than our framework, by
explicitly encoding all changes in fluent truth-values in the
observed state transitions. Although the use of “flat” ram-
ification statements excludes the possibility of providing
natural representations for many real-world domains, one
might wish to ask whether learnability is enhanced if one re-
stricts one’s attention to the subset of domains that are repre-
sentable in this manner. In general, the answer to this ques-
tion might depend on the exact semantics associated with
the ramification statements, and it is outside the scope of
this work to provide a comprehensive study of this problem.

Second, learnability is taken to correspond to the efficient
identification of a domain consistent with training examples,
with no guarantees accompanying the predictive power of
learned domains on future situations. One can, in fact, iden-
tify this as an explanation of the apparent discrepancy be-
tween our strongly negative results, and the positive results
presented in other frameworks. Especially representative is
the case of learning Language A through a reduction to the

problem of learning Deterministic Finite Automata (Inoue,
Bando, & Nabeshima 2005); the latter problem is known not
to be PAC learnable (Kearns & Vazirani 1994). Despite the
fact that the intractability of learning Language A does not
follow from this reduction (although it can be easily shown
to follow from our results), it nonetheless illustrates the lack
of concern for the predictive power of learned domains.

How should one interpret the current status of our knowl-
edge on domain learnability? Are we trapped in a situation
where we either dismiss learnability as infeasible, or give up
any formal guarantees on its usefulness? In order to answer
these questions one needs to understand that our results only
establish intractability in a worst-case scenario. In practice,
an agent’s environment might not be adversarial, although
the extent to which this happens can be determined only
through experimentation. Nonetheless, we believe, it is im-
portant that theoretical models of such more benign environ-
ments be developed, and guarantees of the effectiveness of
learning be provided under these environments. The Com-
putational Learning Theory community has examined learn-
ability under various prisms, including restricted probability
distributions, the use of teachers during the training phase
(see, e.g., (Goldman & Mathias 1996)), and the use of more
powerful oracles (see, e.g., (Angluin 1988)). Clearly such
assumptions weaken our hope to design fully autonomous
agents that develop their own dynamic models of their envi-
ronment, but perhaps this is not such a big drawback given
that some basic knowledge can be feasibly programmed.

In this more optimistic frame of mind, one might wish
to question some of the simplifying assumptions we made
in this work, albeit doing so will only result in even harder
learning problems. In a realistic scenario, not only the inter-
mediate micro-states are not observed, but even the macro-
states themselves are only partially observable. McCarthy’s
“Appearance and Reality” dichotomy arises once more, this
time in the static setting of a single state. Can learning be
meaningfully defined and carried out in such situations? Can
an agent provably learn to make accurate predictions on at-
tributes of its environment that are not always visible even
during the training phase? Such questions were studied in
recent work (Michael 2007), where a framework that for-
malizes learning in situations with arbitrary missing infor-
mation was proposed, modelling thus the fact that what is
observable is often beyond an agent’s control. In that frame-
work various natural classes of concepts were shown to be
learnable. An extension to the case of learning domains can
be carried out in a manner similar to the extension of the
PAC framework in the present work. Orthogonally, one can
employ the techniques developed in (Michael 2007) to pre-
dict missing information in the observed macro-states before
attempting to employ the (now more complete) macro-states
for learning the dynamic behavior of the environment.

The related assumption of accurate sensing can also be re-
laxed, to account for an agent’s noisy sensors, or for exoge-
nous factors that affect state transitions. Again, a wealth of
results in the Computational Learning Theory literature can
be employed to study this problem. As one might expect,
noise makes learning harder, and in the case of adversarial
noise learning is practically impaired (Kearns & Li 1993).



However, in certain situations of random noise, as the ones
we expect an agent to be faced with, learning is still possible,
and without a large additional overhead (Kearns 1998).

Finally, we may reconsider our assumption that state tran-
sitions are drawn independently from each other. Given the
dynamic nature of an agent’s environment, observed states
might more appropriately be thought of as being drawn ac-
cording to a Markovian process (Aldous & Vazirani 1995),
that itself transitions from state to state as observations
are drawn. Another possibility is to employ the Mistake
Bounded Model (Littlestone 1988), where learning guaran-
tees are stated in terms of the maximum number of mistakes
an agent will make in all its predictions. This model offers a
worst-case scenario learning guarantee, since it assumes that
the order of observations is adversarially selected. Interest-
ingly enough, learning in this model implies learning in the
PAC model that we employ in this work (Littlestone 1989).

Our goal in this work was not to present a comprehensive
collection of results on the learnability (or lack thereof) of
domains from state transitions, but rather to emphasize the
need for formal guarantees in the study of learnability, to
illustrate that the problem is far from being tractable even
under a number of simplifying assumptions, and to high-
light certain key aspects of and possible approaches to this
problem that warrant further investigation. We hope that this
work will help attract more interest in this exciting endeavor.
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