This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsenseQ7

Variables in Action Descriptions: Merging C+ with ADL

Vladimir Lifschitz and Wanwan Ren
University of Texas, Austin, USA
{vl,rww6}0@cs.utexas.edu

Abstract

Action description language C+ is more expres-
sive than ADL in many ways; for instance, it
addresses the ramification problem. On the
other hand, ADL is based on first-order logic,
while C+ is only propositional; expressions with
variables, which are frequently used when ac-
tion domains are described in C+, are merely
schemas describing finite sets of causal laws
that are formed according to the same pattern.
In this paper we propose a new approach to
the semantics of action descriptions with vari-
ables that combines attractive features of ADL
and C+.

1 Introduction

Current research on the design of action description lan-
guages continues the line of work that started with the
invention of ADL [Pednault, 1994]. Semantically, an ac-
tion description represents a transition system (“state-
transition model,” in Pednault’s terminology), that is, a
directed graph, with vertices corresponding to states of
the world, and edges corresponding to transitions that
may be caused by the execution of actions.

Modern action description languages, such as C+
[Giunchiglia et al., 2004], are more expressive than ADL
in many ways. In particular, they solve the ramification
problem, that is, allow the user to characterize effects of
actions indirectly. But in one sense ADL is more expres-
sive than C+: the former is based on first-order logic,
and the latter is only propositional. In [Pednault, 1994],
state-transition models for a first-order language are de-
fined (Definition 2.3); their states are semantic struc-
tures, or interpretations, in the sense of first-order logic.
In C+, on the other hand, a state is an interpretation
of a (multi-valued) propositional signature [Giunchiglia
et al., 2004, Section 4.4]. There are no variables in C+,
strictly speaking. Expressions with variables, which are
frequently used when action domains are described in
C+, are merely schemas describing finite sets of causal
laws that are formed according to the same pattern.

For example, the description of the blocks-world action
Put(b,l) in [Pednault, 1994, Figure 2] has the formula

On(b,1) on its add list. In this formula, b and [are
object variables in the sense of first-order logic, and On
is a binary predicate constant. In C+ we can express the
same idea by writing

Put(b,l) causes On(b,l). (1)
But here b and [are metavariables, and we need to
specify their possible values when we say that (1) is
part of an action description. We can say, for instance,
that b stands for any of the symbols Block1, Block2,
Block3, and that [stands for Blockl, Block2, Block3 or
Table. Expression (1) will denote then a set of 12 causal
laws, obtained from (1) by grounding. The expression
On(Block?2, Table), occurring in one of them, is a fluent
constant, according to the syntax of C+, but the three
parts that this expression is built from — On, Block?2
and Table — have no syntactic status in the definition
of the language.

In this paper we show how to define a semantics of
action descriptions that is similar to the semantics of C+
and, at the same time, allows us to use genuine object
variables. Like the semantics of ADL, it is based on
state-transition models for first-order languages.

The tool that helps us achieve this is the first-order
causal logic proposed in [Lifschitz, 1997]. Recall that
the semantics of C+ is characterized in [Giunchiglia et
al., 2004, Section 4.2] by a translation that turns any
action description D into a sequence of propositional
causal theories Dy, Dq,.... Models of D,, correspond
to the possible behaviors of the state-transition system
described by D over successive time instants 0,1, ..., m.
In particular, models of Dy are the states of the system,
and models of D; are its transitions. In our modification
of this approach, D,, becomes a first-order causal the-
ory. As a result, the new semantics of causal laws with
variables avoids any references to grounding. We argue
that this feature will bring significant advantages when
applied to more complex action languages.

The central part of this paper is Section 5, which de-
scribes a new way to represent action descriptions by
causal theories. It is preceded by the discussion of the
syntax of action descriptions with variables adopted in
this paper and a review of first-order causal logic, and
followed by the investigation of mathematical properties
of the new semantics.

sorts
Room;
objects
Room1, Room2: Room;
constants
Location: fluent(Room);
GoTo(Room): action;
variables
r: Room;
axioms
caused Location = r if Location =r
after Location = r;
caused GoTo(r) if GoTo(r);
caused —GoTo(r) if ~GoTo(r);
caused Location = if T after GoTo(r);

Figure 1: Action description R

2 Example

We assume that the reader has some familiarity with
the syntactic constructs of C+ [Giunchiglia et al., 2004,
Section 4.2].

An example illustrating the syntax of action descrip-
tions used in this paper is shown in Figure 1. The abbre-
viations for causal laws of special kinds that are intro-
duced in [Giunchiglia et al., 2004, Appendix B] would
allow us to write the last four lines of Figure 1 more
concisely:

inertial Location;
exogenous GoTo(r);
GoTo(r) causes Location = r;

but in the list of axioms all causal laws are written in
full, because, for simplicity, we do not introduce these
abbreviations in our grammar (see Section 3).

A definition in Section 5 below shows how to turn this
action description R into a sequence Ry, R, ... of causal
theories. It turns out that for any m, a model I of the
causal theory R,, can be specified by selecting

e its universe |I| — a non-empty set;
e a subset I[Room] of |I| — the set of rooms in the
model,;

e distinct elements I[Room1], I[Room2] of |I| — the
rooms represented by the object names — such that

ITRoom| = {I[Room1], I[Room?2]};

e for each i € {0,...,m}, an element I[i : Location)]
of I[Room] — the location of the agent at time ¢;

e for each i € {0,...,m — 1}, a subset I[i : GoTo] of
I[Room] — the set of rooms to which the agent goes
between times 7 and ¢ + 1 — such that

— I[i : GoTo] is either empty or a singleton, be-
cause actions in this domain cannot be exe-
cuted concurrently,

— if it is empty then I[i + 1 : Location] =
Ifi : Location], because the fluent Location is
inertial,

— if it is a singleton then its element equals
Ifi + 1 : Location], because after going to a
room, the agent is in that room.

3 Syntax of Action Descriptions

An action description consists of five parts, as in the
example above. The first of them is a list of sort names:

<sort declarations> ::= sorts {<sort name>‘;’}

The object declaration part is a list of object specifi-
cations. An object specification is a list of object names
followed by a sort name:

<object declarations> ::= objects {<object spec>*;"}
<object spec> = {<object name>*,’}
<object name> ‘> <sort name>

The constant declaration part is a list of constant spec-
ifications. Each constant represents either a simple flu-
ent or an action; for simplicity, we do not allow stati-
cally determined fluent constants (see [Giunchiglia et al.,
2004, Section 4.2]). A fluent constant can be Boolean
or non-Boolean. For simplicity, we do not allow non-
Boolean action constants; also, non-Boolean fluent con-
stants are not allowed to take arguments:

<constant declarations>
::= constants {<constant spec>*;’}
<constant spec> ::= <Boolean fluent spec> |
<non-Boolean fluent spec> |
<action spec>
<Boolean fluent spec>
= {<Boolean fluent schema>‘,}
<Boolean fluent schema> ‘:’ fluent
<non-Boolean fluent spec>
= {<non-Boolean fluent name>*,’}
<non-Boolean fluent name>
.’ fluent ‘(’<sort name>‘)’
<action spec> ::= {<action schema>‘,"}
<action schema> ‘" action
<Boolean fluent schema>
::= <Boolean fluent name>
[‘(’{<sort name>‘,"} <sort name>‘)’]
<action schema>
= <action name>
[‘(’{<sort name>‘,"} <sort name>‘)’]

The form of the variable declaration part is similar to
the form of the object declaration part.
The axiom part is a list of causal laws:

<axioms> ::= axioms {<causal law>‘;’}
<causal law> 1= <static law> |
<action dynamic law> |
<fluent dynamic law>
<static law> ::= caused <fluent formula>
if <fluent formula>
<action dynamic law> ::= caused <action formula>
if <formula>
<fluent dynamic law> ::= caused <fluent formula>
if <fluent formula>
after <formula>

<fluent formula> ::= <formula>
<action formula> ::= <formula>

Formulas are formed using propositional connectives;
for simplicity, quantifiers are not allowed:

<formula> ::= <atom> | ‘(’<term>‘="<term>‘)’ |
1| T | ‘~"<formula> |
‘(" <formula> <binary connective>
<formula> ‘)’
<atom>
= (<Boolean fluent name> | <action name>)
[(({<argument>,} <argument>‘)’]
<argument> ::= <object name> | <variable name>
<term> ::= <non-Boolean fluent name> |
<object name> | <variable name>

Any name occurring in an action description should
be declared exactly once. In declarations, atoms and
terms, a name can only be used in accordance with its
declaration.

A fluent formula cannot contain action names. An
action formula should contain an action name, but it
cannot contain fluent names.

4 Review of Causal Logic

The review of the syntax and semantics of causal theories
in this section follows [Lifschitz, 1997, Section 2].
A causal rule is an expression of the form

F <@, (2)

where F' and G are first-order formulas, called the head
and the body of the rule. Expression (2) reads: there is
a cause for F' if G holds. A causal theory is defined by

e a finite subset of the signature! of the underlying
language, called the explainable symbols of the the-
ory, and

e a finite set of causal rules.

In the definition of the semantics of causal theories be-
low, we use the substitution of variables for the explain-
able symbols in a formula. In connection with this, it is
convenient to denote formulas by expressions like F'(E),
where E is the list of all explainable symbols. Then, for
any tuple e of variables that is similar® to E, the result
of replacing all occurrences of the constants E in F(E)
by the variables e can be denoted by F'(e).

Consider a causal theory 7" with the explainable sym-
bols E and the causal rules

Fi(E,z') < G;(E,z") (i=1,...),

!The signature of a (nonsorted) first-order language is the
set of its function constants and predicate constants (other
than equality). This includes, in particular, object constants
(function constants of arity 0) and propositional constants
(predicate constants of arity 0).

>The similarity condition means that (i) e has the same
length as E, (ii) if the k-th member of F is a function constant
then the k-th member of e is a function variable of the same
arity, and (iii) if the k-th member of E is a predicate constant
then the k-th member of e is a predicate variable of the same
arity.

where z* is the list of all free variables of the i-th rule.
Take a tuple e of new variables similar to E. By T™(e)
we denote the formula

/\v:ci(Gi(E, ') = F(e,x')).

Note that the occurrences of explainable symbols in the
heads are replaced here by variables, and the occurrences
in the bodies are not. We will view T" as shorthand for
the sentence

Ve(T*(e) <> e = E). (3)
(The expression e = E stands for the conjunction of the
equalities between the members of e and the correspond-
ing members of E.) For instance, by a model of T we
mean a model of (3); a formula is entailed by T if it is
entailed by (3). Note that the tuple e may contain func-
tion and predicate variables, so that (3) is, generally, a
second-order formula.

Intuitively, the condition 7*(e) expresses that the pos-
sible values e of the explainable symbols E are “causally
explained” by the rules of T'. Sentence (3) says that the
actual values of these symbols are the only ones that are
explained by the rules of T'.

For instance, let T' be the causal theory with the rules

Room(Rooml1) < T,
Room(Room2) < T, (4)
—Room(z) < —~Room(z),

where the predicate constant Room is explainable, and
the object constants Room1, Room?2 are not explainable.
Intuitively, the last line of (4) expresses the closed-world
assumption for Room in the language of causal logic:
if is not a room then there is a cause for this. In this
case, I/ is Room, e is a unary predicate variable room,
and T™*(room) is

room(Room1) A room(Room2)
AVz(=Room(z) — —room(z)).

The second-order sentence
Vroom (T (room) < room = Room)
can be equivalently rewritten as the first-order sentence

Vz(Room(z) <+ x = Room1 V © = Room2). (5)

5 Semantics of Action Descriptions

Given an action description D and a nonnegative inte-
ger m, the corresponding causal theory D,, is formed as
follows.

Its signature o

m consists of

e an explainable unary predicate constant S for each
sort name S declared in D;

e a non-explainable object constant V for each object
name V declared in D;

e an explainable predicate constant ¢ : P for each
Boolean fluent name P declared in D, and every
i € {0,...,m}; the arity of 7 : P is the same as the
arity of P;

e an explainable object constant i : C' for each non-
Boolean fluent name C' declared in D, and every
i1€{0,...,m}

e an explainable predicate constant ¢ : P for each
action name P declared in D, and every ¢ €
{0,...,m — 1}; the arity of i : P is the same as
the arity of P.

For instance, the signature ¢~ corresponding to the

action description R shown in Figure 1 consists of the
object constants

R

Room1, Room2, i : Location
and the unary predicate constants
Room, i : GoTo.

Among these, Room! and Room?2 are non-explainable.

For any object name V declared in D, SORTy stands
for the sort name assigned to V' in the object declara-
tion part, and similarly for variable names and for non-
Boolean fluent names. By ¢ : F' we denote the result of
prepending ¢ : to all fluent names and action names in F'.

The causal theory D,, consists of the following rules:

(i) =S(z) < —S(z) for each sort name S, where z

is an object variable;

(ii) SORTy (V) « T

(iii) i # Vo <« T
names Vi, Va;

for each object name V;
for each pair of distinct object

(iv) the rules

0:P(z1,...,2p) < 0:P(z1,...,2q)
/\Sl(ml) /\---/\Sn(wn),

=0: P(z1,...,2) < 20:P(z1,...,2Zy)

A Sl(ml) VANRERIVAN Sn(wn)
for each Boolean fluent schema P(Si,...,S,)
from D, where zy,...,z, are distinct object vari-
ables;

(v) the rules
—i: P(xy,...,2,) <= —S5(x5) (1<j<n)
for each Boolean fluent schema P(Si,...,S,)
from D and 0 < i < m, and for each action

schema P(Si,...,S,) from D and 0 < i < m, where
x1,...,Ty, are distinct object variables;

(vi) the rules
0:C=2 < 0:C=2ASORT¢(z)
and
-(i:C=2) & ~SORI¢(z) (0<i<m)

for each non-Boolean fluent name C, where z is an
object variable;

(vii) the rules

i:F < i:GA[\SORT,(z) (0<i<m)

for each static causal law

if G

in D, where the conjunction is over all variables z
occurring in F' or Gj

caused F

—Room(z) < —Room(zx),
Room(Room1) < T,
Room(Room?2) < T,
Room1 # Room2 < T,
—i: GoTo(z) <= —Room(z) (0<i<m),
0 : Location = & < 0 : Location = A Room(z),
= (i : Location = z) < —Room(z) (0 <i<m),
t+1: Location =1 < i+ 1: Location =r
At : Location = r A\ Room(r),
i: GoTo(r) < i: GoTo(r) A Room(r),
—i: GoTo(r) < —i: GoTo(r) A Room(r),
i+ 1: Location =r < i: GoTo(r) A Room(r)

(0<i<m).
Figure 2: Rules of causal theory R,,

(viii) the rules

i:F < i:GA[\SORT,(z) (0<i<m)

for each action dynamic causal law
caused F if G

in D, where the conjunction is over all variables z
occurring in F or Gj

(ix) the rules
i+1:F < i+1:G ANi:HAN N\, SORT,(z)
(0<i<m)
for each fluent dynamic causal law
if G after H

in D, where the conjunction is over all variables z
occurring in ', G or H.

caused F'

Clauses (vii)—(ix) in this definition generalize the pro-
cess of translating causal laws of C+ into propositional
causal logic described in [Giunchiglia et al., 2004, Sec-
tion 4.2].

Intuitively, the models of D,, in the sense of Section 4
represent the possible behaviors, or “histories,” of the
state-transition system described by D over successive
time instants 0,1,...,m.

For instance, the causal theory R,, corresponding to
the action description R from Figure 1 is shown in Fig-
ure 2. The models of this theory are described in Sec-
tion 2 above.

For any sort name S, by |S| we denote the set of all
object names of sort S.

Proposition 1 For any sort name S, D,, entails

vz | S(z) \/ z=V
Ve|S|

In other words, the extent of any sort in a model of D,
is the set of elements of the universe representing the
objects of that sort. For instance, any model of R,,
satisfies (5).

6 States and Transitions

The models of Dy will be called states; the models of D,
are transitions.

In the theory of C+, the view that histories of length m
can be thought of as paths in a transition system is jus-
tified by two theorems, Propositions 7 and 8 from [Giun-
chiglia et al., 2004]. The first of them shows that any
transition “starts” in a state and “ends” in a state. Ac-
cording to the second theorem, an interpretation of the
signature of D,, is a model of D,, if and only if it “con-
sists of m transitions.” Propositions 2 and 3 below are
similar to these theorems.

Let D be an action description. For any interpreta-
tion I of 0P, by I° and I* we denote the interpretations
of o0 defined as follows:

'] = [1],

I'[S] = I[S] for every sort name .S,

I'[V] = I[V] for every object name V,

I'[0 : C] = I[i : C] for every fluent name C'

(1=0,1).

Proposition 2 For any transition I, the interpretations
IY and I' are states.

For any interpretation I of o2, by I) (0 < i < m)
we denote the interpretations of ot defined as follows:

10 = 1),

I®[S] = I[S] for every sort name S,

I9[V] = I[V] for every object name V,

I¥[0:C] = I[i: C| for every fluent or action name C,
I9[1:C] = I[i + 1:C] for every fluent name C.

Proposition 3 For any positive integer m and any in-
terpretation I of oPm, I is a model of D,, iff every IV
(0 <i < m) is a transition.

7 Reduction to C+

As discussed in the introduction, our semantics treats
variables in essentially the same way as the semantics
of classical logic. On the other hand, when actions are
described in C+, variables can be only used in schematic
expressions that represent groups of causal laws obtained
from these expressions by grounding. To relate these two
views to each other, we show in this section that ground-
ing allows us to characterize the new semantics in terms
of the semantics of C+, at least under the assumption
that the “extent” |S| of every sort S is non-empty. This
assumption corresponds to the requirement, in the se-
mantics of C+, that the domain of every constant be a
non-empty set.

Given an action description D in the sense of Section 3
such that |S| # 0 for each of its sort names S, the corre-
sponding C+ action description D' is formed as follows.
Its signature consists of

e Boolean simple fluent constants C'(Vi,...,V,) for
each Boolean fluent schema C(Si,...,Sy) in the
constant declaration part of D, where V; (1 <i < n)
is an object name of sort S;;

e a simple fluent constant C' with domain |SORT¢/|,
for each non-Boolean fluent name C declared in D;

e Boolean action constants C'(V1,...,V,,) for each ac-
tion schema C(Si,...,Sy,) in the constant declara-
tion part of D, where V; (1 < ¢ < n) is an object
name of sort S;.

For instance, the signature of the C+ action descrip-
tion R’ corresponding to action description R (Fig-
ure 1) consists of three constants: the simple flu-
ent constant Location with domain {Room!, Room2}
and the Boolean action constants GoTo(Room!) and
GoTo(Room2).

The presence of variables in causal laws in the sense of
Section 3 is not the only feature that makes them more
general than the causal laws of C+. In a formula of the
form t; = t3, we allow each of the terms ¢1, ¢t to be
an arbitrary object name or an arbitrary non-Boolean
fluent name. In atoms in the sense of C+, on the other
hand, the left-hand side must be a constant, and the
right-hand side must be an element of the domain of
that constant. (Also, Boolean constants and equalities
between two constants can be used as abbreviations; see
[Giunchiglia et al., 2004, Section 2.1].) For this reason,
the causal laws of D' are obtained from the causal laws
in the axioms part of D in two steps: first grounding,
then adapting the form of equalities to the requirements
of the syntax of C+.

By D’ we denote the C+ action description obtained
from D by

e grounding all causal laws of D so that the symbols
substituted for each variable x are arbitrary object
names of the sort SORT,,

e then modifying the parts ¢; =t in the expressions
obtained after result of grounding, as follows:

— whenever ¢; and t; are object names, replace
t; =t with T if ¢; equals t5, and with L oth-
erwise;

— then, whenever ¢; is an object name and t; is
a fluent name, replace t; = ts with t5 = ¢1;

— then, whenever t; is a fluent name and ¢- is an
object name of a sort different from SORT;,,
replace t; = to with L.

(See Figure 3 for an example.)

Proposition 4 below shows how models of D,, in the
sense of Section 5 can be characterized in terms of models
of D}, in the sense of C+. In its statement, we refer to the
following two conditions on an interpretation I of om:

(a) I |=Vy # V; for any distinct object names V;, Vs;
(b) I = Voo

VE|SORTC |
fluent name C and any i € {0,...,m}.

C = V for any non-Boolean

For any interpretation I of o”m satisfying these con-
ditions, by I' we denote the interpretation (in the sense

of C+) of the signature oPm such that

caused Location = Room1

if Location = Room1 after Location = Rooml1,
caused Location = Room?2

if Location = Room?2 after Location = Room2,
caused GoTo(Room1) if GoTo(Room1),
caused GoTo(Room?2) if GoTo(Room2),
caused = GoTo(Room1) if ~GoTo(Room1),
caused = GoTo(Room?2) if -GoTo(Room2),
caused Location = Room1

if T after GoTo(Room1),
caused Location = Room?2

if T after GoTo(Room2).

Figure 3: C+ action description R’

e for each Boolean constant ¢ : C(V1,...,V,,),

I'i:C(Va,y..., V) =I[i : CYIVA), ..., I[Va));

e for each non-Boolean constant i : C, I'[i : C] is the
object name V such that I[i : C] = I[V].

(Conditions (a) and (b) guarantee the existence and
uniqueness of such V.)

Proposition 4 An interpretation I of oP™ is a model

of Dy, iff

e [=Vz | S(z) « \/ z=V],
vels|

o [satisfies conditions (a) and (b),
o I' is a model of D!, (in the sense of C+).

Thus for the interpretations satisfying the formula
from Proposition 1 and the conditions needed to de-
fine the mapping I — I’, the new semantics of action
descriptions can be reduced to the semantics of C+ by
grounding.

8 Conclusion

The semantics of action descriptions proposed in this pa-
per combines attractive features of ADL and C+. Like
the former, it is based on state-transition models for lan-
guages with variables and does not refer to grounding;
like the latter, it uses a nonmonotonic causal logic to
solve the ramification problem.

We expect that the advantages of the new approach
to the semantics of action descriptions will become es-
sential when we extend it to additional syntactic con-
structs, important for the purposes of knowledge repre-
sentation. Here are two examples of such features, both
implemented in the input language of the Causal Calcu-
lator (CCALC)?.

The syntax defined in Section 3 allows the list of argu-
ments in an atom to include object names and variable
names, but not constant names. But it is sometimes
convenient to write, for instance, C(Cs), where C; is

®http://www.cs.utexas.edu/users/tag/ccalc/ .

a Boolean fluent name and C is a non-Boolean fluent
name; this expression has the same meaning as

Jz(Csy = z A C1(z)),

where z is a variable of the same sort as C5. A semantics
based on grounding has to be explicit about “expansion
steps” like this; the semantics defined in Section 5 applies
to the extended syntax without any changes.

Second, it is often convenient to declare one sort to be
a subsort of another. In the new approach, the assertion
that S; is a subsort of So can be understood as

S1(z) = Se(z) < T.

Explaining subsort declarations in terms of grounding is
more cumbersome.

Our semantics of action descriptions is somewhat sim-
ilar to the semantics of logic programming proposed
in [Ferraris, Lee, & Lifschitz, 2007]: both refer to non-
monotonic translations into classical second-order logic
and are, in this sense, similar to circumscription [Mc-
Carthy, 1986]. We expect that these parallel approaches
to action descriptions and to stable models will help us
extend the results on representing actions by logic pro-
grams from [Lifschitz & Turner, 1999] to action descrip-
tions with variables.

9 Acknowledgements

We are grateful to Selim Erdogan, Paolo Ferraris,
Joohyung Lee and Hudson Turner for comments on a
draft of this paper. This work was partially supported
by the National Science Foundation under Grant IIS-
0412907.

References

[Ferraris, Lee, & Lifschitz, 2007] Ferraris, P.; Lee, J.;
and Lifschitz, V. 2007. A new perspective on stable
models. In Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI). To appear.

[Giunchiglia et al., 2004] Giunchiglia, E.; Lee, J.; Lif-
schitz, V.; McCain, N.; and Turner, H. 2004.
Nonmonotonic causal theories. Artificial Intelligence
153(1-2):49-104.

[Lifschitz & Turner, 1999] Lifschitz, V., and Turner, H.
1999. Representing transition systems by logic pro-
grams. In Proceedings of International Conference

on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 92-106.

[Lifschitz, 1997] Lifschitz, V. 1997. On the logic of
causal explanation. Artificial Intelligence 96:451-465.

[McCarthy, 1986] McCarthy, J. 1986. Applications of
circumscription to formalizing common sense knowl-
edge. Artificial Intelligence 26(3):89-116.

[Pednault, 1994] Pednault, E. 1994. ADL and the state-

transition model of action. Journal of Logic and Com-
putation 4:467-512.

