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Variables in A
tion Des
riptions: Merging C+ with ADLVladimir Lifs
hitz and Wanwan RenUniversity of Texas, Austin, USAfvl,rww6g�
s.utexas.eduAbstra
tA
tion des
ription language C+ is more expres-sive than ADL in many ways; for instan
e, itaddresses the rami�
ation problem. On theother hand, ADL is based on �rst-order logi
,while C+ is only propositional; expressions withvariables, whi
h are frequently used when a
-tion domains are des
ribed in C+, are merelys
hemas des
ribing �nite sets of 
ausal lawsthat are formed a

ording to the same pattern.In this paper we propose a new approa
h tothe semanti
s of a
tion des
riptions with vari-ables that 
ombines attra
tive features of ADLand C+.1 Introdu
tionCurrent resear
h on the design of a
tion des
ription lan-guages 
ontinues the line of work that started with theinvention of ADL [Pednault, 1994℄. Semanti
ally, an a
-tion des
ription represents a transition system (\state-transition model," in Pednault's terminology), that is, adire
ted graph, with verti
es 
orresponding to states ofthe world, and edges 
orresponding to transitions thatmay be 
aused by the exe
ution of a
tions.Modern a
tion des
ription languages, su
h as C+[Giun
higlia et al., 2004℄, are more expressive than ADLin many ways. In parti
ular, they solve the rami�
ationproblem, that is, allow the user to 
hara
terize e�e
ts ofa
tions indire
tly. But in one sense ADL is more expres-sive than C+: the former is based on �rst-order logi
,and the latter is only propositional. In [Pednault, 1994℄,state-transition models for a �rst-order language are de-�ned (De�nition 2.3); their states are semanti
 stru
-tures, or interpretations, in the sense of �rst-order logi
.In C+, on the other hand, a state is an interpretationof a (multi-valued) propositional signature [Giun
higliaet al., 2004, Se
tion 4.4℄. There are no variables in C+,stri
tly speaking. Expressions with variables, whi
h arefrequently used when a
tion domains are des
ribed inC+, are merely s
hemas des
ribing �nite sets of 
ausallaws that are formed a

ording to the same pattern.For example, the des
ription of the blo
ks-world a
tionPut(b; l) in [Pednault, 1994, Figure 2℄ has the formula

On(b; l) on its add list. In this formula, b and l areobje
t variables in the sense of �rst-order logi
, and Onis a binary predi
ate 
onstant. In C+ we 
an express thesame idea by writingPut(b; l) 
auses On(b; l): (1)But here b and l are metavariables, and we need tospe
ify their possible values when we say that (1) ispart of an a
tion des
ription. We 
an say, for instan
e,that b stands for any of the symbols Blo
k1 , Blo
k2 ,Blo
k3 , and that l stands for Blo
k1 , Blo
k2 , Blo
k3 orTable . Expression (1) will denote then a set of 12 
ausallaws, obtained from (1) by grounding. The expressionOn(Blo
k2 ;Table), o

urring in one of them, is a 
uent
onstant, a

ording to the syntax of C+, but the threeparts that this expression is built from | On, Blo
k2and Table | have no synta
ti
 status in the de�nitionof the language.In this paper we show how to de�ne a semanti
s ofa
tion des
riptions that is similar to the semanti
s of C+and, at the same time, allows us to use genuine obje
tvariables. Like the semanti
s of ADL, it is based onstate-transition models for �rst-order languages.The tool that helps us a
hieve this is the �rst-order
ausal logi
 proposed in [Lifs
hitz, 1997℄. Re
all thatthe semanti
s of C+ is 
hara
terized in [Giun
higlia etal., 2004, Se
tion 4.2℄ by a translation that turns anya
tion des
ription D into a sequen
e of propositional
ausal theories D0; D1; : : :. Models of Dm 
orrespondto the possible behaviors of the state-transition systemdes
ribed by D over su

essive time instants 0; 1; : : : ;m.In parti
ular, models of D0 are the states of the system,and models of D1 are its transitions. In our modi�
ationof this approa
h, Dm be
omes a �rst-order 
ausal the-ory. As a result, the new semanti
s of 
ausal laws withvariables avoids any referen
es to grounding. We arguethat this feature will bring signi�
ant advantages whenapplied to more 
omplex a
tion languages.The 
entral part of this paper is Se
tion 5, whi
h de-s
ribes a new way to represent a
tion des
riptions by
ausal theories. It is pre
eded by the dis
ussion of thesyntax of a
tion des
riptions with variables adopted inthis paper and a review of �rst-order 
ausal logi
, andfollowed by the investigation of mathemati
al propertiesof the new semanti
s.



sortsRoom;obje
tsRoom1 , Room2 : Room;
onstantsLo
ation : 
uent(Room);GoTo(Room): a
tion;variablesr: Room;axioms
aused Lo
ation = r if Lo
ation = rafter Lo
ation = r;
aused GoTo(r) if GoTo(r);
aused :GoTo(r) if :GoTo(r);
aused Lo
ation = r if > after GoTo(r);Figure 1: A
tion des
ription R2 ExampleWe assume that the reader has some familiarity withthe synta
ti
 
onstru
ts of C+ [Giun
higlia et al., 2004,Se
tion 4.2℄.An example illustrating the syntax of a
tion des
rip-tions used in this paper is shown in Figure 1. The abbre-viations for 
ausal laws of spe
ial kinds that are intro-du
ed in [Giun
higlia et al., 2004, Appendix B℄ wouldallow us to write the last four lines of Figure 1 more
on
isely:inertial Lo
ation ;exogenous GoTo(r);GoTo(r) 
auses Lo
ation = r;but in the list of axioms all 
ausal laws are written infull, be
ause, for simpli
ity, we do not introdu
e theseabbreviations in our grammar (see Se
tion 3).A de�nition in Se
tion 5 below shows how to turn thisa
tion des
ription R into a sequen
e R0; R1; : : : of 
ausaltheories. It turns out that for any m, a model I of the
ausal theory Rm 
an be spe
i�ed by sele
ting� its universe jI j | a non-empty set;� a subset I [Room ℄ of jI j | the set of rooms in themodel;� distin
t elements I [Room1 ℄, I [Room2 ℄ of jI j | therooms represented by the obje
t names | su
h thatI [Room℄ = fI [Room1 ℄; I [Room2 ℄g;� for ea
h i 2 f0; : : : ;mg, an element I [i : Lo
ation ℄of I [Room℄ | the lo
ation of the agent at time i;� for ea
h i 2 f0; : : : ;m� 1g, a subset I [i : GoTo ℄ ofI [Room℄ | the set of rooms to whi
h the agent goesbetween times i and i+ 1 | su
h that{ I [i : GoTo℄ is either empty or a singleton, be-
ause a
tions in this domain 
annot be exe-
uted 
on
urrently,{ if it is empty then I [i + 1 : Lo
ation ℄ =I [i : Lo
ation ℄, be
ause the 
uent Lo
ation isinertial,

{ if it is a singleton then its element equalsI [i+ 1 : Lo
ation ℄, be
ause after going to aroom, the agent is in that room.3 Syntax of A
tion Des
riptionsAn a
tion des
ription 
onsists of �ve parts, as in theexample above. The �rst of them is a list of sort names:<sort de
larations> ::= sorts f<sort name>`;'gThe obje
t de
laration part is a list of obje
t spe
i�-
ations. An obje
t spe
i�
ation is a list of obje
t namesfollowed by a sort name:<obje
t de
larations> ::= obje
ts f<obje
t spe
>`;'g<obje
t spe
> ::= f<obje
t name>`,'g<obje
t name> `:' <sort name>The 
onstant de
laration part is a list of 
onstant spe
-i�
ations. Ea
h 
onstant represents either a simple 
u-ent or an a
tion; for simpli
ity, we do not allow stati-
ally determined 
uent 
onstants (see [Giun
higlia et al.,2004, Se
tion 4.2℄). A 
uent 
onstant 
an be Booleanor non-Boolean. For simpli
ity, we do not allow non-Boolean a
tion 
onstants; also, non-Boolean 
uent 
on-stants are not allowed to take arguments:<
onstant de
larations>::= 
onstants f<
onstant spe
>`;'g<
onstant spe
> ::= <Boolean 
uent spe
> j<non-Boolean 
uent spe
> j<a
tion spe
><Boolean 
uent spe
>::= f<Boolean 
uent s
hema>`,'g<Boolean 
uent s
hema> `:' 
uent<non-Boolean 
uent spe
>::= f<non-Boolean 
uent name>`,'g<non-Boolean 
uent name>`:' 
uent `('<sort name>`)'<a
tion spe
> ::= f<a
tion s
hema>`,'g<a
tion s
hema> `:' a
tion<Boolean 
uent s
hema>::= <Boolean 
uent name>[`('f<sort name>`,'g <sort name>`)'℄<a
tion s
hema>::= <a
tion name>[`('f<sort name>`,'g <sort name>`)'℄The form of the variable de
laration part is similar tothe form of the obje
t de
laration part.The axiom part is a list of 
ausal laws:<axioms> ::= axioms f<
ausal law>`;'g<
ausal law> ::= <stati
 law> j<a
tion dynami
 law> j<
uent dynami
 law><stati
 law> ::= 
aused <
uent formula>if <
uent formula><a
tion dynami
 law> ::= 
aused <a
tion formula>if <formula><
uent dynami
 law> ::= 
aused <
uent formula>if <
uent formula>after <formula>



<
uent formula> ::= <formula><a
tion formula> ::= <formula>Formulas are formed using propositional 
onne
tives;for simpli
ity, quanti�ers are not allowed:<formula> ::= <atom> j `('<term>`='<term>`)' j? j > j `:'<formula> j`(' <formula> <binary 
onne
tive><formula> `)'<atom>::= (<Boolean 
uent name> j <a
tion name>)[`('f<argument>,g <argument>`)'℄<argument> ::= <obje
t name> j <variable name><term> ::= <non-Boolean 
uent name> j<obje
t name> j <variable name>Any name o

urring in an a
tion des
ription shouldbe de
lared exa
tly on
e. In de
larations, atoms andterms, a name 
an only be used in a

ordan
e with itsde
laration.A 
uent formula 
annot 
ontain a
tion names. Ana
tion formula should 
ontain an a
tion name, but it
annot 
ontain 
uent names.4 Review of Causal Logi
The review of the syntax and semanti
s of 
ausal theoriesin this se
tion follows [Lifs
hitz, 1997, Se
tion 2℄.A 
ausal rule is an expression of the formF ( G; (2)where F and G are �rst-order formulas, 
alled the headand the body of the rule. Expression (2) reads: there isa 
ause for F if G holds. A 
ausal theory is de�ned by� a �nite subset of the signature1 of the underlyinglanguage, 
alled the explainable symbols of the the-ory, and� a �nite set of 
ausal rules.In the de�nition of the semanti
s of 
ausal theories be-low, we use the substitution of variables for the explain-able symbols in a formula. In 
onne
tion with this, it is
onvenient to denote formulas by expressions like F (E),where E is the list of all explainable symbols. Then, forany tuple e of variables that is similar2 to E, the resultof repla
ing all o

urren
es of the 
onstants E in F (E)by the variables e 
an be denoted by F (e).Consider a 
ausal theory T with the explainable sym-bols E and the 
ausal rulesFi(E; xi)( Gi(E; xi) (i = 1; : : :);1The signature of a (nonsorted) �rst-order language is theset of its fun
tion 
onstants and predi
ate 
onstants (otherthan equality). This in
ludes, in parti
ular, obje
t 
onstants(fun
tion 
onstants of arity 0) and propositional 
onstants(predi
ate 
onstants of arity 0).2The similarity 
ondition means that (i) e has the samelength as E, (ii) if the k-th member of E is a fun
tion 
onstantthen the k-th member of e is a fun
tion variable of the samearity, and (iii) if the k-th member of E is a predi
ate 
onstantthen the k-th member of e is a predi
ate variable of the samearity.

where xi is the list of all free variables of the i-th rule.Take a tuple e of new variables similar to E. By T �(e)we denote the formulaî 8xi(Gi(E; xi)! Fi(e; xi)):Note that the o

urren
es of explainable symbols in theheads are repla
ed here by variables, and the o

urren
esin the bodies are not. We will view T as shorthand forthe senten
e 8e(T �(e)$ e = E): (3)(The expression e = E stands for the 
onjun
tion of theequalities between the members of e and the 
orrespond-ing members of E.) For instan
e, by a model of T wemean a model of (3); a formula is entailed by T if it isentailed by (3). Note that the tuple e may 
ontain fun
-tion and predi
ate variables, so that (3) is, generally, ase
ond-order formula.Intuitively, the 
ondition T �(e) expresses that the pos-sible values e of the explainable symbols E are \
ausallyexplained" by the rules of T . Senten
e (3) says that thea
tual values of these symbols are the only ones that areexplained by the rules of T .For instan
e, let T be the 
ausal theory with the rulesRoom(Room1 )( >;Room(Room2 )( >;:Room(x)( :Room(x); (4)where the predi
ate 
onstant Room is explainable, andthe obje
t 
onstants Room1 , Room2 are not explainable.Intuitively, the last line of (4) expresses the 
losed-worldassumption for Room in the language of 
ausal logi
:if x is not a room then there is a 
ause for this. In this
ase, E is Room, e is a unary predi
ate variable room ,and T �(room) isroom(Room1 )^ room(Room2 )^8x(:Room(x)! :room(x)):The se
ond-order senten
e8room(T �(room)$ room = Room)
an be equivalently rewritten as the �rst-order senten
e8x(Room(x)$ x = Room1 _ x = Room2 ): (5)5 Semanti
s of A
tion Des
riptionsGiven an a
tion des
ription D and a nonnegative inte-ger m, the 
orresponding 
ausal theory Dm is formed asfollows.Its signature �Dm 
onsists of� an explainable unary predi
ate 
onstant S for ea
hsort name S de
lared in D;� a non-explainable obje
t 
onstant V for ea
h obje
tname V de
lared in D;� an explainable predi
ate 
onstant i : P for ea
hBoolean 
uent name P de
lared in D, and everyi 2 f0; : : : ;mg; the arity of i : P is the same as thearity of P ;



� an explainable obje
t 
onstant i : C for ea
h non-Boolean 
uent name C de
lared in D, and everyi 2 f0; : : : ;mg;� an explainable predi
ate 
onstant i : P for ea
ha
tion name P de
lared in D, and every i 2f0; : : : ;m � 1g; the arity of i : P is the same asthe arity of P .For instan
e, the signature �Rm 
orresponding to thea
tion des
ription R shown in Figure 1 
onsists of theobje
t 
onstantsRoom1 ; Room2 ; i : Lo
ationand the unary predi
ate 
onstantsRoom; i : GoTo:Among these, Room1 and Room2 are non-explainable.For any obje
t name V de
lared in D, SORTV standsfor the sort name assigned to V in the obje
t de
lara-tion part, and similarly for variable names and for non-Boolean 
uent names. By i : F we denote the result ofprepending i : to all 
uent names and a
tion names in F .The 
ausal theory Dm 
onsists of the following rules:(i) :S(x) ( :S(x) for ea
h sort name S, where xis an obje
t variable;(ii) SORTV (V ) ( > for ea
h obje
t name V ;(iii) V1 6= V2 ( > for ea
h pair of distin
t obje
tnames V1, V2;(iv) the rules0 : P (x1; : : : ; xn) ( 0 : P (x1; : : : ; xn)^S1(x1) ^ � � � ^ Sn(xn);: 0 : P (x1; : : : ; xn) ( : 0 : P (x1; : : : ; xn)^S1(x1) ^ � � � ^ Sn(xn)for ea
h Boolean 
uent s
hema P (S1; : : : ; Sn)from D, where x1; : : : ; xn are distin
t obje
t vari-ables;(v) the rules: i : P (x1; : : : ; xn) ( :Sj(xj) (1 � j � n)for ea
h Boolean 
uent s
hema P (S1; : : : ; Sn)from D and 0 � i � m, and for ea
h a
tions
hema P (S1; : : : ; Sn) fromD and 0 � i < m, wherex1; : : : ; xn are distin
t obje
t variables;(vi) the rules0 : C = x ( 0 : C = x ^ SORTC(x)and: (i : C = x) ( :SORTC(x) (0 � i � m)for ea
h non-Boolean 
uent name C, where x is anobje
t variable;(vii) the rulesi : F ( i : G ^ x̂ SORTx(x) (0 � i � m)for ea
h stati
 
ausal law
aused F if Gin D, where the 
onjun
tion is over all variables xo

urring in F or G;

:Room(x) ( :Room(x);Room(Room1 ) ( >;Room(Room2 ) ( >;Room1 6= Room2 ( >;: i : GoTo(x) ( :Room(x) (0 � i < m);0 : Lo
ation = x ( 0 : Lo
ation = x ^ Room(x);: (i : Lo
ation = x) ( :Room(x) (0 � i � m);i+ 1 : Lo
ation = r ( i+ 1 : Lo
ation = r^ i : Lo
ation = r ^ Room(r);i : GoTo(r) ( i : GoTo(r) ^ Room(r);: i : GoTo(r) ( : i : GoTo(r) ^ Room(r);i+ 1 : Lo
ation = r ( i : GoTo(r) ^ Room(r)(0 � i < m):Figure 2: Rules of 
ausal theory Rm(viii) the rulesi : F ( i : G ^ x̂ SORTx(x) (0 � i < m)for ea
h a
tion dynami
 
ausal law
aused F if Gin D, where the 
onjun
tion is over all variables xo

urring in F or G;(ix) the rulesi+ 1 : F ( i+ 1 : G ^ i : H ^ Vx SORTx(x)(0 � i < m)for ea
h 
uent dynami
 
ausal law
aused F if G after Hin D, where the 
onjun
tion is over all variables xo

urring in F , G or H .Clauses (vii){(ix) in this de�nition generalize the pro-
ess of translating 
ausal laws of C+ into propositional
ausal logi
 des
ribed in [Giun
higlia et al., 2004, Se
-tion 4.2℄.Intuitively, the models of Dm in the sense of Se
tion 4represent the possible behaviors, or \histories," of thestate-transition system des
ribed by D over su

essivetime instants 0; 1; : : : ;m.For instan
e, the 
ausal theory Rm 
orresponding tothe a
tion des
ription R from Figure 1 is shown in Fig-ure 2. The models of this theory are des
ribed in Se
-tion 2 above.For any sort name S, by jSj we denote the set of allobje
t names of sort S.Proposition 1 For any sort name S, Dm entails8x0�S(x)$ _V 2jSjx = V1A :In other words, the extent of any sort in a model ofDmis the set of elements of the universe representing theobje
ts of that sort. For instan
e, any model of Rmsatis�es (5).



6 States and TransitionsThe models of D0 will be 
alled states; the models of D1are transitions.In the theory of C+, the view that histories of lengthm
an be thought of as paths in a transition system is jus-ti�ed by two theorems, Propositions 7 and 8 from [Giun-
higlia et al., 2004℄. The �rst of them shows that anytransition \starts" in a state and \ends" in a state. A
-
ording to the se
ond theorem, an interpretation of thesignature of Dm is a model of Dm if and only if it \
on-sists of m transitions." Propositions 2 and 3 below aresimilar to these theorems.Let D be an a
tion des
ription. For any interpreta-tion I of �D1 , by I0 and I1 we denote the interpretationsof �D0 de�ned as follows:jI ij = jI j;I i[S℄ = I [S℄ for every sort name S;I i[V ℄ = I [V ℄ for every obje
t name V;I i[0 : C℄ = I [i : C℄ for every 
uent name C (i = 0; 1):Proposition 2 For any transition I, the interpretationsI0 and I1 are states.For any interpretation I of �Dm , by I(i) (0 � i < m)we denote the interpretations of �D1 de�ned as follows:jI(i)j = jI j;I(i)[S℄ = I [S℄ for every sort name S;I(i)[V ℄ = I [V ℄ for every obje
t name V;I(i)[0 :C℄ = I [i :C℄ for every 
uent or a
tion nameC;I(i)[1 :C℄ = I [i+ 1:C℄ for every 
uent name C:Proposition 3 For any positive integer m and any in-terpretation I of �Dm , I is a model of Dm i� every I(i)(0 � i < m) is a transition.7 Redu
tion to C+As dis
ussed in the introdu
tion, our semanti
s treatsvariables in essentially the same way as the semanti
sof 
lassi
al logi
. On the other hand, when a
tions aredes
ribed in C+, variables 
an be only used in s
hemati
expressions that represent groups of 
ausal laws obtainedfrom these expressions by grounding. To relate these twoviews to ea
h other, we show in this se
tion that ground-ing allows us to 
hara
terize the new semanti
s in termsof the semanti
s of C+, at least under the assumptionthat the \extent" jSj of every sort S is non-empty. Thisassumption 
orresponds to the requirement, in the se-manti
s of C+, that the domain of every 
onstant be anon-empty set.Given an a
tion des
riptionD in the sense of Se
tion 3su
h that jSj 6= ; for ea
h of its sort names S, the 
orre-sponding C+ a
tion des
ription D0 is formed as follows.Its signature 
onsists of� Boolean simple 
uent 
onstants C(V1; : : : ; Vn) forea
h Boolean 
uent s
hema C(S1; : : : ; Sn) in the
onstant de
laration part ofD, where Vi (1 � i � n)is an obje
t name of sort Si;

� a simple 
uent 
onstant C with domain jSORTC j,for ea
h non-Boolean 
uent name C de
lared in D;� Boolean a
tion 
onstants C(V1; : : : ; Vn) for ea
h a
-tion s
hema C(S1; : : : ; Sn) in the 
onstant de
lara-tion part of D, where Vi (1 � i � n) is an obje
tname of sort Si.For instan
e, the signature of the C+ a
tion des
rip-tion R0 
orresponding to a
tion des
ription R (Fig-ure 1) 
onsists of three 
onstants: the simple 
u-ent 
onstant Lo
ation with domain fRoom1 ;Room2gand the Boolean a
tion 
onstants GoTo(Room1 ) andGoTo(Room2 ).The presen
e of variables in 
ausal laws in the sense ofSe
tion 3 is not the only feature that makes them moregeneral than the 
ausal laws of C+. In a formula of theform t1 = t2, we allow ea
h of the terms t1, t2 to bean arbitrary obje
t name or an arbitrary non-Boolean
uent name. In atoms in the sense of C+, on the otherhand, the left-hand side must be a 
onstant, and theright-hand side must be an element of the domain ofthat 
onstant. (Also, Boolean 
onstants and equalitiesbetween two 
onstants 
an be used as abbreviations; see[Giun
higlia et al., 2004, Se
tion 2.1℄.) For this reason,the 
ausal laws of D0 are obtained from the 
ausal lawsin the axioms part of D in two steps: �rst grounding,then adapting the form of equalities to the requirementsof the syntax of C+.By D0 we denote the C+ a
tion des
ription obtainedfrom D by� grounding all 
ausal laws of D so that the symbolssubstituted for ea
h variable x are arbitrary obje
tnames of the sort SORTx,� then modifying the parts t1 = t2 in the expressionsobtained after result of grounding, as follows:{ whenever t1 and t2 are obje
t names, repla
et1 = t2 with > if t1 equals t2, and with ? oth-erwise;{ then, whenever t1 is an obje
t name and t2 isa 
uent name, repla
e t1 = t2 with t2 = t1;{ then, whenever t1 is a 
uent name and t2 is anobje
t name of a sort di�erent from SORTt1 ,repla
e t1 = t2 with ?.(See Figure 3 for an example.)Proposition 4 below shows how models of Dm in thesense of Se
tion 5 
an be 
hara
terized in terms of modelsofD0m in the sense of C+. In its statement, we refer to thefollowing two 
onditions on an interpretation I of �Dm :(a) I j= V1 6= V2 for any distin
t obje
t names V1, V2;(b) I j= _V 2jSORTC j i : C = V for any non-Boolean
uent name C and any i 2 f0; : : : ;mg.For any interpretation I of �Dm satisfying these 
on-ditions, by I 0 we denote the interpretation (in the senseof C+) of the signature �D0m su
h that




aused Lo
ation = Room1if Lo
ation = Room1 after Lo
ation = Room1 ,
aused Lo
ation = Room2if Lo
ation = Room2 after Lo
ation = Room2 ,
aused GoTo(Room1 ) if GoTo(Room1 ),
aused GoTo(Room2 ) if GoTo(Room2 ),
aused :GoTo(Room1 ) if :GoTo(Room1 ),
aused :GoTo(Room2 ) if :GoTo(Room2 ),
aused Lo
ation = Room1if > after GoTo(Room1 ),
aused Lo
ation = Room2if > after GoTo(Room2 ).Figure 3: C+ a
tion des
ription R0� for ea
h Boolean 
onstant i : C(V1; : : : ; Vn),I 0[i : C(V1; : : : ; Vn)℄ = I [i : C℄(I [V1℄; : : : ; I [Vn℄);� for ea
h non-Boolean 
onstant i : C, I 0[i : C℄ is theobje
t name V su
h that I [i : C℄ = I [V ℄.(Conditions (a) and (b) guarantee the existen
e anduniqueness of su
h V .)Proposition 4 An interpretation I of �Dm is a modelof Dm i�� I j= 8x0�S(x)$ _V 2jSj x = V1A,� I satis�es 
onditions (a) and (b),� I 0 is a model of D0m (in the sense of C+).Thus for the interpretations satisfying the formulafrom Proposition 1 and the 
onditions needed to de-�ne the mapping I 7! I 0, the new semanti
s of a
tiondes
riptions 
an be redu
ed to the semanti
s of C+ bygrounding.8 Con
lusionThe semanti
s of a
tion des
riptions proposed in this pa-per 
ombines attra
tive features of ADL and C+. Likethe former, it is based on state-transition models for lan-guages with variables and does not refer to grounding;like the latter, it uses a nonmonotoni
 
ausal logi
 tosolve the rami�
ation problem.We expe
t that the advantages of the new approa
hto the semanti
s of a
tion des
riptions will be
ome es-sential when we extend it to additional synta
ti
 
on-stru
ts, important for the purposes of knowledge repre-sentation. Here are two examples of su
h features, bothimplemented in the input language of the Causal Cal
u-lator (CCal
)3.The syntax de�ned in Se
tion 3 allows the list of argu-ments in an atom to in
lude obje
t names and variablenames, but not 
onstant names. But it is sometimes
onvenient to write, for instan
e, C1(C2), where C1 is3http://www.
s.utexas.edu/users/tag/

al
/ .

a Boolean 
uent name and C2 is a non-Boolean 
uentname; this expression has the same meaning as9x(C2 = x ^ C1(x));where x is a variable of the same sort as C2. A semanti
sbased on grounding has to be expli
it about \expansionsteps" like this; the semanti
s de�ned in Se
tion 5 appliesto the extended syntax without any 
hanges.Se
ond, it is often 
onvenient to de
lare one sort to bea subsort of another. In the new approa
h, the assertionthat S1 is a subsort of S2 
an be understood asS1(x)! S2(x)( >:Explaining subsort de
larations in terms of grounding ismore 
umbersome.Our semanti
s of a
tion des
riptions is somewhat sim-ilar to the semanti
s of logi
 programming proposedin [Ferraris, Lee, & Lifs
hitz, 2007℄: both refer to non-monotoni
 translations into 
lassi
al se
ond-order logi
and are, in this sense, similar to 
ir
ums
ription [M
-Carthy, 1986℄. We expe
t that these parallel approa
hesto a
tion des
riptions and to stable models will help usextend the results on representing a
tions by logi
 pro-grams from [Lifs
hitz & Turner, 1999℄ to a
tion des
rip-tions with variables.9 A
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