
This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsense07

A Generic Framework for Approximate Simulation
in Commonsense Reasoning Systems

Abstract
This paper introduces the Slick architecture and outlines how
it may be applied to solve the well known Egg-Cracking
Problem. In contrast to other solutions to this problem that are
based on formal logics, the Slick architecture is based on gen-
eral-purpose and low-resolution quantitative simulations. On
this benchmark problem, the Slick architecture offers greater
elaboration tolerance and allows for faster elicitation of more
general axioms.

Introduction
In his influential Naïve Physics Manifesto papers, Patrick
Hayes (1985) called for AI researchers to end their preoccu-
pation with ‘toy worlds’ and attempt to build large scale for-
malisms. He observed that models of commonsense knowl-
edge are orders of magnitude larger and more complex in
size than any ‘toy worlds’, and that the construction of large
models will require new idioms and development method-
ologies to manage the scale of the problem. Addressing this
criticism, Morgenstern and Miller (2006) have published a
web-page collecting a set of benchmark problems. One of
these benchmark problems was contributed by Ernie Davis
and is known as the ‘egg cracking problem’. While the prob-
lem is far removed from any kind of commercial pressures,
it nevertheless provides a useful benchmark in which sophis-
ticated commonsense reasoning techniques may be proved.
The problem is to characterize the following situation:

A cook is cracking a raw egg against a glass bowl. Prop-
erly performed, the impact of the egg against the edge
of the bowl will crack the eggshell in half. Holding the
egg over the bowl, the cook will then separate the two
halves of the shell with his fingers, enlarging the crack,
and the contents of the egg will fall gently into the bowl.
The end result is that the entire contents of the egg will
be in the bowl, with the yolk unbroken, and that the two
halves of the shell are held in the cook’s fingers.

Various elaborations are also proposed that can be used to
test a given solution; elaborations such as the question of
what would happen if the egg is hard-boiled, if the egg is
not from a chicken, if the bowl is upside down or made from
different materials, or if the procedure is performed very fast
or very slow.

The egg cracking problem is interesting because a suc-
cessful characterization of the egg cracking problem requires
a relatively sophisticated theory of naïve physics, of which
rich elaborations make use of many commonsense phenom-
ena such as position, shape, solids, liquids, viscosity, crack-

ing, gravity, containment, expiration and even the social
roles, capabilities and desires of the cook.

While the egg-cracking problem does not mandate a char-
acterization based on formal logic, the three proposals in
the literature (Morgenstern 2001; Shanahan 2004; Lifschitz
1998) have used action calculi. Other techniques of com-
monsense-reasoning might also be used, such as (though,
not limited to) Cyc (Lenat et al. 1990), Open Mind Common
Sense (Singh et al. 2004), qualitative reasoning or a combi-
nation of several techniques.

The objective of this paper is to introduce a novel approach
to solving the egg cracking problem. We have created Slick,
an architecture that allows for cost-effective construction of
commonsense knowledge bases but still yields many of the
benefits of logical methods. The Slick architecture is based
on a generalized approach to constructing simulations: it is
therefore based on a fundamentally non-logical and sub-sym-
bolic method of deduction. Slick, however, is accessed via a
symbolic layer and can therefore be meaningfully integrated
with or as a component of a symbolic system—systems can
be developed in a hybrid manner, playing to the strengths of
both simulation and formal methods such as action calculi.

Methods of Commonsense Reasoning
Constructing an exhaustive formal model of the egg-crack-
ing problem at every level of granularity is obviously beyond
the capabilities of techniques (or human resources) available
today. However, given the finite capabilities of a research
laboratory (or a commercial environment) it is possible to
sacrifice some of the depth, breadth or expressiveness in or-
der to create a functionally useful system. In fact, many of
the existing approaches in the literature can be seen to either
emphasise depth and expressiveness or emphasise breadth:
by focusing on rich representation it becomes costly to create
broad knowledge bases, whereas techniques that are used to
efficiently create broad knowledge bases tend to require shal-
low or informal representations.
Logical and Qualitative Methods. The usage of logics of
action and of qualitative reasoning are largely inspired by
Hayes (1985). These approaches are fraught with many dif-
ficulties: the underlying logics and formalisms offer little
guidance for distinguishing superior representations from
inferior representations; it is often difficult to validate the de-
veloped theories for inconsistencies; different knowledge en-
gineers are likely to make different simplifying assumptions
that increase the complexity of integrating multiple knowl-

Benjamin Johnston, Mary-Anne Williams

University of Technology, Sydney
Faculty of Information Technology

johnston@it.uts.edu.au, mary-anne@it.uts.edu.au

edge bases; and finally, effective use of logics and qualitative
methods typically requires a great deal of aptitude and educa-
tion. It comes as no surprise that the logical approaches have
enjoyed their greatest successes in domains where a small set
of engineers can grasp the problem, and ensure that the for-
malization remains logically and philosophically consistent.
Semi-logical and Informal Methods. In constrast to purely
logical methods, projects such as Cyc (Lenat et al. 1990) and
the DARPA High-Performance Knowledge Bases (HPKB)
(Pease et al. 2000) emphasise logic-inspired representa-
tions that support and embrace inconsistency so as to more
naturally reflect the manner in which humans inconsistently
perceive and reason about the world. At the extreme are proj-
ects such as Open Mind Common Sense that use very simple
word associations and logical structures to provide very gen-
eral forms of commonsense ‘intelligence’ (such as word as-
sociations) that can be constructed at low cost and give the
appearance of intelligence without requiring deep reasoning
capabilities (Singh et al. 2004). While these methods may
be suitable for reasoning about general patterns of action, or
possible tools and actions that may lead to a cracked or bro-
ken egg, such work is currently simply not intended for or
capable of deep reasoning about specific scenarios.
Multi-paradigm Approaches. In The Society of Mind, Min-
sky (1986) presents the view that a mind consists of a society
of interacting processes, for which no single representation
suffices. In this vein, there have been ambitious proposals for
creating powerful general purpose systems with common-
sense intelligence based on diverse multi-paradigm architec-
tures (McCarthy et al. 2002; Sowa 2002). However, these
broad proposals are aimed at supporting very rich forms of
commonsense reasoning, and are far beyond the intended
scope of this work.

A compelling concrete example of the multi-paradigm ap-
proach is Mueller’s (1998) ThoughtTreasure that combines
factual logical knowledge and reasoning (similar to Cyc),
grids (2D maps of stereotypical settings), simulated agent-
based planning and procedural ‘rules of thumb’.

Multi-paradigm architectures may ultimately be necessary
to create rich commonsense reasoning capabilities, however
this does not preclude the use of Slick or any other approach-
es to commonsense reasoning. Each such approach could be
reasonably subsumed as a component providing a specific
reasoning capability within a multi-paradigm architecture: in
fact, the development of successful multi-paradigm architec-
tures requires the creation of components (such as Slick) that
provide powerful reasoning mechanisms.

Simulation
Aside from the simplistic agent-based simulations of plans
used in ThoughtTreasure (Mueller, 1998), direct simula-
tion as an approach to commonsense reasoning is not often
mentioned in the literature. Simulation, however, is not an
unusual approach to commonsense reasoning—qualitative
reasoning often makes use of qualitative simulations, and de-
duction with formal methods such as action calculi could be
considered to be a kind of simulation. However, it is interest-
ing to observe that a great deal of extremely rich common-

sense ‘know-how’ can be seen in the simulations that appear
in modern computer animations and games. Realistic and
computationally efficient models of solids, liquids, physical
forces, natural environments, human needs and even rela-
tionships can be found in games and physics libraries (e.g.,
ODE (Smith 2006)), and a compelling argument could be
made for incorporating these simulations as a component in
an intelligent system. While we are unaware of any games
that involve a task of cracking an egg; it is not hard to imag-
ine that one might occur in some future game.

Morgenstern (2001) reflected on the difficulty of using
logic to adequately describe the motion of a liquid as it flows
from an egg to a bowl or the motion of a falling object. In
contrast, under a simulation such effects follow directly from
the Newtonian equations of motion, and the force of gravity.
Since the intent of simulation is to accurately and directly
emulate real world behaviors, the knowledge engineering
process is conceptually simplified to the familiar task of
implementing (typically in a procedural programming lan-
guage) the fundamental commonsense laws of a problem do-
main. Furthermore, the representations used in implementing
simulations are often highly conducive to 3D visualizations,
making it easier to observe, refine and validate their output.

While commercial simulation libraries can produce re-
alistic simulations when appropriately configured, they are
unfortunately not designed with general purpose common-
sense reasoning in mind. Simulation libraries are typically
optimized for limited classes of physical simulation (such as
rigid-body physics), and do not include flexible mechanisms
for associating elements within a simulation with symbolic
representations that may be used in the high-level meta-rea-
soning of an intelligent system. Nevertheless, the principle
of using simulation as a form of commonsense reasoning
is attractive because it offers a rich and natural approach to
conceiving and expressing commonsense knowledge, and
because it simplifies knowledge elicitation and knowledge
maintenance. We have therefore developed Slick as a generic
framework for simulating a wide range of commonsense
phenomena: not just rigid-body physics, but liquids, materi-
als and even abstract concepts such as human relationships
and fatigue in a straightforward way.

Slick Overview
The Slick architecture is designed to be a component for
commonsense reasoning within a larger intelligent system.
Sophisticated reasoning and problem solving is beyond the
scope of the Slick architecture: it is intended that the host
architecture be responsible for planning, symbolic reasoning,

Host System

Database

Slick

Constraint
Solver

Control Language

Figure 1: Slick Architecture

and the resolution of high level goals and contextual infor-
mation. The host system uses Slick to solve commonsense
problems posed either symbolically, by way of constraints
derived from sensors, or by some combination of the two.
From a computational perspective, the Slick architecture is
a simple constraint solver over multidimensional domains,
however Slick is not presented here as a technical or algorith-
mic contribution: its benefits lie in the structural architecture
that is motivated by the need to ground the sub-symbolic pro-
cesses of a simulation to the symbolic representations of the
host intelligent system or to the real world via sensors.

Slick consists of the following three subcomponents: a
generic relaxation-based constraint solver; a database of ge-
neric objects and constraints for simulation; and a symbolic
control language that is used for both instantiating objects
from the database into the constraint solver and for testing
constraints and alternative scenarios (See Figure 1).

Slick ‘Constraint Solver’
In order to simulate a wide range of behavior, simulations
are constructed from abstract structures that we refer to as
entities and joins. These structures are similar to frames and
represent the fundamental particles and relations of a simu-
lation. Entities and joins do not have any implementation
or ‘active’ character, their purpose is to give structure to a
simulated environment, and to store the ongoing state of that
simulation. Their naming is intentionally generic, as they
may be given any interpretation by the knowledge engineer.
For example, entities and joins may be used to denote people
and social regard, atoms and intramolecular bonds, balls and
sticks (as in ball-and-stick models) or even e-mails and dis-
cussion-threads.

In simulating physical environments, entities and joins
have a natural interpretation as over-sized particles of matter
and bonds that can be used to approximate the shape and be-
havior of an object (this particular physical interpretation cor-
responds to a 3D generalization of the 2D ‘molecules’ used
by Gardin and Meltzer (1989)). For example, to represent an
egg; 60 entities can be used to approximate the mass distri-
bution of an egg and 90 joins to structure the egg’s shape as
per Figure 2. While each entity and join has an independent
identity and existence within a simulation, individual entities
and joins do not necessarily denote any particular real-world
concept, it is rather a given set of entities and joins that as a
coherent whole could be regarded as denoting an egg shell.

Entities and joins are similar to frames in that they have a
set of attributes which are used to store the state of a simula-

tion, however these attributes need not store a single unique
value but can have a different value for each instant and sce-
nario of a simulation. That is, a particular entity of an egg-
shell might have attributes for its Cartesian coordinates (x, y,
z), temperature and color: the value of these attributes may
vary for every instant in time. Some of these attributes are
informational and necessarily constant over a simulation
(such as the type and role of the entity or join) so are referred
to as labels. In our simulations, we have assumed that mass
and rigidity remain constant for a given entity and so have
defined these using labels, however it is conceivable that in
more sophisticated simulations these would be mutable attri-
butes (e.g., rigidity could be made to vary depending on the
temperature or age of the egg). In our naïve implementation,
every value of every attribute at every instant is retained;
however greater space efficiency can be achieved by saving
only those values that are required.

Figure 3 provides an example of the attributes and cor-
responding values at a given instant, for a sample entity and
a sample join from an egg-cracking simulation. Labels are
indicated by bold type.

Values of attributes are assigned and updated in the simu-
lation by way of constraints. These constraints are solved in
an iterative process, calculating values for attributes over one
or more discrete simulation dimensions. In our egg-cracking
simulation there is just one simulation dimension, namely
time, modelled as a series of discrete instants separated by
short constant intervals. In other situations these simulation
dimensions might be used to represent the three dimensions
of space or more abstract concepts such as database records.
Furthermore, while our naïve implementation uses equally
spaced instants in time, this spacing could be adaptive so as
to perform more accurate simulations at critical moments in
the simulation (such as when objects are colliding).
A constraint is simply a parameterizeable function that cal-
culates the value of an attribute in a given instant and scenar-
io from its current values. In an physical simulation there are
separate constraints for phenomena such as persistence, mo-
mentum, gravity, shape-holding rigidity, bond forces, liquid

Figure 2: Modelling an egg with entities (balls) and joins (sticks)
(Screenshot from Java3D visualization for Slick prototype)

Entity 34 at instant [time:1.35s, scenario:1]
 identifier: world/egg#1/shell/e/shape#4
 type: entity
 role: shape
 number: 4
 shape-rigidity: 0.4
 fragment-mass: 0.2
 color: cream
 temperature: 25°
 x: -0.744
 y: -0.3336788
 z: 1.5337192

Join 41 at instant [time: 1.35s, scenario:1]
 identifier: world/egg#1/shell/j/shape#3
 type: join
 entity-a: <entity 34>
 entity-b: <entity 35>
 role: shape
 number: 3
 spring-constant: 0.7
 snap-length: 1.01
 snapped: false

Figure 3: Example of an Entity and a Join

} the ‘joined’ entities

flow, impermeability and the immobile floor. Each of these
constraints is given a ranking which determines the order it
is to be applied in the calculation of the value for an attri-
bute. The ranking can be used to ensure that the ‘persistence’
constraint is applied first (corresponding to the default that
things tend to stay as they are); followed by constraints such
as gravity; then finally, hard constraints that the user should
never see violated such as the impermeability and immobil-
ity of the floor.

Scenarios are used to specify multiple executions of simi-
lar but related situations. For example, an egg-cracking sim-
ulation can be set up using several scenarios each having the
bowl in a different orientation: each scenario is completely
isolated as though run in an entirely separate simulation.

While a constraint ordinarily returns a single value, other
return-values are possible: a set of values, a distinguished
‘inconsistent’ token or a distinguished ‘underspecified’ to-
ken. If a single value is returned, then the relevant attribute
is set appropriately. However, a set of values can be returned
to indicate uncertainty or multiple outcomes, so that Slick
will fork the current scenario into a corresponding set of new
scenarios each identical except for the values of uncertain
attribute. If the distinguished values are returned then slick
will either mark the entire scenario as inconsistent (in the
case of the ‘inconsistent’ token) or delay the evaluation of the
constraint as long as possible (in the case of the ‘underspeci-
fied’ token).

An example of the constraints for persistence, momentum
and gravity appear in Figure 4. Note that while the gravita-
tional constraint only causes a fixed displacement at each
time instant, it is the persistence and momentum constraints
that cause these constant effects to accumulate and result in
gravitational acceleration.

This approach to simulation has several major advantag-
es:

1.	 Ease of specification. Constraints are analogous to
point-wise axioms in a logical approach. The advantage
is that there is a direct correspondence to the fundamen-
tal laws of Newtonian physics—macro-scale effects
such as the nature of a crack and how it may increase
in size are emergent behaviors that do not need to be
explicitly specified.

2.	 Constraints are reusable. An implementation of mass-

spring constraints for entities and joins can be reused for
any solid: a ceramic bowl is subject to the same physi-
cal constraints as an egg shell; it merely has a different
shape and rigidity.

3.	 The frame problem is elegantly solved. Persistence
and friction limit the changes that are possible between
one moment and the next, and also propagate the state
of unchanged attributes.

Slick Database
While the general purpose simulation framework described
above grants an intelligent system the ability to simulate a di-
verse variety of commonsense problems, it offers no mecha-
nism for relating the primitives of the simulation to abstract
symbols or for interpreting the outcomes of a simulation. The
Slick database is used for associating symbols to the corre-
sponding entities, joins and constraints that must be instanti-
ated into the simulator. We have taken a pragmatic approach
for the time being by allowing only simple hierarchical struc-
tures: the database is a forest of trees whose leaf nodes are
schema for the instantiation of the simulation primitives, and
whose internal nodes are labelled to provide a decomposition
structure. For example, to instantiate an egg, the database is
searched for a tree whose root node is labelled with the egg
symbol. This tree will have internal child nodes with labels
such as shell, yolk and white. The ‘shell’ branch of the tree
will in turn have leaf nodes that are schema for the construc-
tion of 60 entities whose position, mass, color and brittle-
ness are set to appropriate values for realistic simulation of
an egg shell. More abstract concepts such as ‘cracked’ would
be defined to accept a parameter during instantiation and are
represented in the database as trees whose leaf nodes are only
schemas for constraints (the symbol ‘cracked’, when instan-
tiated for an egg shell, would create constraints that report
the inconsistent value in any scenario where the egg is not
cracked).

Slick Control Language
The Slick control language is very simple; it consists of op-
erators to perform the following tasks:

1.	 Creation of new scenarios for simulation,
2.	 Instantiation, from symbols, of schema within the data-

base,
3.	 Querying and manipulating trees in both the database

and simulation scenarios (e.g., a chocolate egg could be
created by grafting the chocolate texture onto an egg
shell shape, and deleting the branches for the yolk and
white),

4.	 Directly instantiating simulation primitives (entities,
joins and constraints),

5.	 Setting and querying values of attributes in the simula-
tion.

Our concrete implementation of Slick currently uses a simple
stack-based language with a declarative style of usage both
for populating the database and as the control language. The
syntactic details of this language are unimportant as the con-
trol language could equivalently be implemented using, for
example, XML or as an API for an existing language.

Constraint: Persistence

xt′	=	 xt-1
yt′	=	 yt-1
zt′	 =	 zt-1

{<x: xt′, y: yt′, z: zt′>}
where,

Constraint: Momentum

xt′	=	 xt 	+ 	﴾xt-1 - 	xt-2﴿
yt′	=	 yt 	 + 	﴾yt-1 - 	yt-2﴿
zt′	 =	 zt 	 + 	﴾zt-1 - 	zt-2﴿

{<x: xt′, y: yt′, z: zt′>}
where,

Constraint: Gravity

zt′	 =	 zt 	+ 	1	g ﴾tinterval﴿2				 −				 2

{<z: zt′>}
where,

Figure 4: Example Specifications of Constraints

In practice, the control language is one of the most pow-
erful benefits of Slick. The ability to interact with the Slick
database and readily produce new and meaningful concept
combinations (such as ‘chocolate eggs’) is an outcome that
is difficult to achieve using formal logics. Yet, in Slick, these
benefits are realized with just a small set of obvious operators
for querying, deletion and grafting of trees.

Results
Without any standard quantitative method for evaluating the
elaboration tolerance of solutions to the egg cracking prob-
lem, it is difficult to comprehensively evaluate Slick within
the space constraints of this paper. However, we believe that
Figure 5 speaks volumes: it depicts the internal state of a sim-
ple simulation in which an egg shell has cracked after being
dropped onto a table. A crack can be observed in Figure 5 as
broken joins along the sides of the shell. In our real-time vi-
sualization, this crack can be seen progressing along the edge
of the shell, cracking in a manner consistent with our human
intuitions. Most importantly, this simulation does not require
the explicit a priori definition of abstract constraints such as
a ‘crack’ because the cracking behavior simply emerges from
the physical constraints that apply to the entities and joins.

In richer simulations that we have tested, Slick is able to
correctly answer more difficult questions such as whether the
egg or bowl remains unbroken and whether the bowl or table
is ‘wet’. While these abstract properties (such as ‘cracked’,
‘broken’ and ‘wet’) will emerge from the fundamental laws
governing the simulation, it is still useful to create additional
constraints that correspond to these abstract concepts so that
the outcome of a simulation may be analyzed symbolically.
For example, when ‘cracked’ is defined as having at least one
join broken, the host intelligent system can test if an egg has
been cracked simply by testing to see if the constraint holds.

Various elaborations and what-if-scenarios can be enter-
tained by adjusting the parameters of the simulation. In fact,
it is in the comparative ease by which elaborations are accom-
modated, that the benefit of Slick becomes most evident:
Speed and Force. By virtue of simulation, such elaborations
present no difficulty. If there is insufficient force, the egg
shell’s rigidity will not be overcome, and conversely if there
is too much force it may even exceed the rigidity and snap-
length of the bowl (breaking the bowl).
Shape and Orientation. Again, once the shape and position
has been configured in the simulation’s initial conditions,
such elaborations present no difficulty. For example, if the
bowl is too small then the simulated egg yolk and white will
simply overflow the bowl without any prior need to model
concepts such as ‘fullness’.
Texture. A wide range of solids, liquids and gasses can be
simulated by adjusting parameters for rigidity, breaking
points, viscosity and permeability. The different behaviors of
chocolate eggs, coconuts, hard-boiled eggs, duck eggs, soc-
cer balls and of paper, clay and ceramic bowls can all be
accommodated (to a usable degree of approximation) simply
by appropriate configuration of these material parameters.
Detail. Finer-grained approximations require further specifi-
cation, but this is readily done by elaborating the initial con-

ditions (rather than the laws of simulation). For example, in
a real chicken egg there is a membrane between the white
and the shell that holds a slightly-cracked egg together: the
simulation could be enriched by inserting such a membrane
(a pliable surface) into the initial conditions of the egg.
Scope. Additional constraints would be required to address
elaborations far beyond the problem’s original scope. For ex-
ample, additional constraints would be required for ‘rotting’
and ‘cooking’ if the action is to be performed over months or
at high temperatures. However, it is important to note that the
addition of these constraints does not require revision of ex-
isting constraints: gravity and momentum continues to work
on all matter. ‘Cooking’ would be simulated just by adding a
constraint to allow a subset of bonds to ‘harden’ after a cer-
tain temperature has been reached.

The Slick framework is therefore able to evaluate an ex-
tremely rich range of questions and elaborations without ex-
hibiting the same brittleness evident in the elaborations of
solutions using action calculi as proposed by Morgenstern
(2001), Shanahan (2004) and Lifschitz (1998).

An implementation of the Slick framework is a relatively
complex software product that requires an up-front invest-
ment of developer time, but once implemented provides an
extremely flexible basis for experimenting with variants on
the egg cracking problem: for example, constraints for grav-
ity, friction and mass-spring kinetics are virtually all that is
required for simulation of most commonsense situations in-
volving solids. While we have not conducted a formal exper-
iment to quantify the cost savings of the Slick architecture,
we can report our personal experiences with implementing
constraints in the Slick architecture:

•	 Identification of necessary constraints was trivial as
missing constraints became painfully obvious when
watching the simulations (for example, the need for
friction was evident when an egg slid across the floor
‘forever’).

•	 Specification of these constraints was trivial—suitable
specifications can be found in any high-school physics
text-book.

•	 Implementation of these constraints is routine and
straightforward: the mathematics required to convert
commonsense-based physical laws into Java code in
the Slick framework is possessed by most high-school
graduates.

•	 Validation was significantly simplified because the vi-
sualizations could be used to gauge whether the model
accurately reflects intuition.

Figure 5: Simulation of an egg-shell cracking after being dropped
onto a table

•	 Populating the database with 3D objects required mini-
mal effort—we used a chemist’s tool originally designed
to create 3D wire-frame models of molecules.

•	 The most tedious aspect of using Slick was tuning pa-
rameters so that, for example, the rigidity and snap-
length on the egg shell is such that it cracks as expected
when dropped from a suitable height. We anticipate that
this task could be automated in future by a simple ma-
chine learning or optimization algorithm.

These experiences are in contrast to those we have observed
when we have attempted to create and update equivalently
rich formalizations of similar problems using action calculi:
our impression is that within logical formalisms the tasks of
identification, specification and implementation/validation
are orders of magnitude more difficult, time consuming and
intellectually challenging than with Slick. Furthermore, with
appropriate tools that integrate modelling with automatic pa-
rameter optimization, it should be possible to further sim-
plify the knowledge engineering process with Slick. In fact,
we eventually intend to populate the database semi-automati-
cally based on experimentation and sensor readings collected
by a robot from its situated environment (i.e., perceiving the
3D shape and fitting parameters automatically).

Limitations and Future work
While the egg cracking problem is useful for exposition and
comparison with other techniques, in future we intend to test
Slick with more abstract applications of simulation such as
the creation of commonsense models of business process-
es, market behavior, professional human relationships and
schedule feasibility (both from a physical perspective, but
also from the perspective of modelling factors such as human
fatigue and productivity). The Slick architecture is ideal for
domains that are governed largely by a set of fundamental
laws from which most observable behavior emerges. This
is clearly the case with simple physical scenarios that are
governed by Newton’s laws of motion, however useful and
usable approximations can be found in other domains—for
example, simple game theoretic models may be used for
modelling economic and social behavior.

We have mentioned that Slick can be readily integrated
with other approaches, including logics of action: in future
we intend to explore this in greater depth. A naïve integra-
tion is possible by exposing Slick to a theorem prover as an
‘external’ predicate that is invoked as isolated simulations.
The Slick database makes it easy to instantiate simula-
tions from symbolic references, so predicates such as can-
crack(chocolate-egg, bowl, 3N) can be readily exposed
to a logical theorem prover. Deeper integration may be pos-
sible with, theorem provers based on proof methods such
as analytic tableaux or SLD resolution, by exploiting the
similarity between scenarios and branches of a proof tree or
tableau. For example, a theorem prover encountering drop-
when(0 seconds, egg) would configure Slick’s initial condi-
tions, while is-cracked(3seconds, egg) would subsequently
invoke Slick to evaluate the outcome. In a language such as
Prolog, this integration could be done in a similar way to
CHR (Frühwirth 1998).

Conclusion
Slick is a pragmatic mechanism for commonsense reasoning.
Slick can provide a useful facility to an intelligent system for
performing efficient and cost-effective commonsense rea-
soning about a diverse range of concepts:

•	 Slick simplifies and reduces the cost of knowledge en-
gineering (and knowledge maintenance) in domains that
are principally governed by a set of fundamental laws,

•	 Slick’s commonsense ‘theories’ can be readily validated
using tools such as 3D visualizations,

•	 Slick is readily implemented and computationally effi-
cient (and will always terminate),

•	 Slick’s database allows internal representations to be
grounded to high level symbols or sensor input,

•	 Slick’s database allows for elegant integration with
other formalisms (such as action calculi), allowing for
hybrid reasoning that draws on the strengths of each.

References
Frühwirth, T. 1998, ‘Theory and Practice of Constraint Handling
Rules’, J. of Logic Programming, vol. 37, no. 1, pp. 95-138.
Gardin, G. & Meltzer, B. 1989, ‘Analogical representations of na-
ïve physics’, Artificial Intelligence, vol. 38, no. 2, pp. 139-159.
Hayes, P.J. 1985, ‘The second naïve physics manifesto’, in J.R.
Hobbs and R.C. Moore (eds), Formal Theories of the Common-
sense World, Ablex, pp. 1-36.
Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D. & Shepherd, M.
1990, ‘Cyc - toward Programs with Common-Sense’, Communica-
tions of the ACM, vol. 33, no. 8, pp. 30-49.
Lifschitz, V. 1998, ‘Cracking an Egg: An Exercise in Common-
sense Reasoning’, Presented at the 4th Symposium on Logical For-
malizations of Commonsense Reasoning.
McCarthy, J., Minsky, M., Sloman, A., Gong, L., Lau, T., Mor-
genstern, L., Mueller, E.T., Riecken, D., Singh, M. and Singh, P.
2002, ‘An architecture of diversity for commonsense reasoning’,
IBM Systems Journal, vol. 41, no. 3, pp. 530-539.
Minsky, M. 1986, The Society of Mind, Simon & Schuster, NY.
Mueller, E.T. 1998, Natural language processing with Thought-
Treasure, Signiform, New York, <http://www.signiform.com/tt/
book/>.
Mueller, E.T. 2000, ‘A calendar with common sense’, The 2000 In-
ternational Conference on Intelligent User Interfaces, ACM Press,
New York, pp. 198-201.
Morgenstern, L. 2001, ‘Mid-Sized Axiomatizations of Common-
Sense Problems: A Case Study in Egg-Cracking’, Studia Logica,
vol. 67, no. 3, pp. 333-384.
Morgenstern, L. and Miller, R. 2006, The Commonsense Problem
Page, <http://www-formal.stanford.edu/leora/commonsense/>.
Pease, A., Chaudhri, V., Lehmann, F. & Farquhar, A. 2000, ‘Practi-
cal Knowledge Representation and the DARPA High Performance
Knowledge Bases Project’, Principles of Knowledge Representa-
tion and Reasoning, pp. 717-724.
Shanahan, M. 2004, ‘An attempt to formalize a non-trivial bench-
mark problem in common sense reasoning’, Artificial Intelligence,
vol. 153, no. 1-2, pp. 141-165.
Singh, P., Barry, B. and Liu, H. 2004, ‘Teaching machines about
everyday life’, BT Technology, vol. 22, no. 4, pp. 227-240.
Smith, R. 2006, Open Dynamics Engine, <http://www.ode.org/>.
Sowa, J.F. 2002, ‘Architectures for intelligent systems’, IBM Sys-
tems Journal, vol. 41, no. 3, pp. 331-349.

