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A Generic Framework for Approximate Simulation  
in Commonsense Reasoning Systems

Abstract
This paper introduces the Slick architecture and outlines how 
it may be applied to solve the well known Egg-Cracking 
Problem. In contrast to other solutions to this problem that are 
based on formal logics, the Slick architecture is based on gen-
eral-purpose and low-resolution quantitative simulations. On 
this benchmark problem, the Slick architecture offers greater 
elaboration tolerance and allows for faster elicitation of more 
general axioms.

Introduction
In his influential Naïve Physics Manifesto papers, Patrick 
Hayes (1985) called for AI researchers to end their preoccu-
pation with ‘toy worlds’ and attempt to build large scale for-
malisms. He observed that models of commonsense knowl-
edge are orders of magnitude larger and more complex in 
size than any ‘toy worlds’, and that the construction of large 
models will require new idioms and development method-
ologies to manage the scale of the problem. Addressing this 
criticism, Morgenstern and Miller (2006) have published a 
web-page collecting a set of benchmark problems. One of 
these benchmark problems was contributed by Ernie Davis 
and is known as the ‘egg cracking problem’. While the prob-
lem is far removed from any kind of commercial pressures, 
it nevertheless provides a useful benchmark in which sophis-
ticated commonsense reasoning techniques may be proved. 
The problem is to characterize the following situation:

A cook is cracking a raw egg against a glass bowl. Prop-
erly performed, the impact of the egg against the edge 
of the bowl will crack the eggshell in half. Holding the 
egg over the bowl, the cook will then separate the two 
halves of the shell with his fingers, enlarging the crack, 
and the contents of the egg will fall gently into the bowl. 
The end result is that the entire contents of the egg will 
be in the bowl, with the yolk unbroken, and that the two 
halves of the shell are held in the cook’s fingers. 

Various elaborations are also proposed that can be used to 
test a given solution; elaborations such as the question of 
what would happen if the egg is hard-boiled, if the egg is 
not from a chicken, if the bowl is upside down or made from 
different materials, or if the procedure is performed very fast 
or very slow. 

The egg cracking problem is interesting because a suc-
cessful characterization of the egg cracking problem requires 
a relatively sophisticated theory of naïve physics, of which 
rich elaborations make use of many commonsense phenom-
ena such as position, shape, solids, liquids, viscosity, crack-

ing, gravity, containment, expiration and even the social 
roles, capabilities and desires of the cook.

While the egg-cracking problem does not mandate a char-
acterization based on formal logic, the three proposals in 
the literature (Morgenstern 2001; Shanahan 2004; Lifschitz 
1998) have used action calculi. Other techniques of com-
monsense-reasoning might also be used, such as (though, 
not limited to) Cyc (Lenat et al. 1990), Open Mind Common 
Sense (Singh et al. 2004), qualitative reasoning or a combi-
nation of several techniques.

The objective of this paper is to introduce a novel approach 
to solving the egg cracking problem. We have created Slick, 
an architecture that allows for cost-effective construction of 
commonsense knowledge bases but still yields many of the 
benefits of logical methods. The Slick architecture is based 
on a generalized approach to constructing simulations: it is 
therefore based on a fundamentally non-logical and sub-sym-
bolic method of deduction. Slick, however, is accessed via a 
symbolic layer and can therefore be meaningfully integrated 
with or as a component of a symbolic system—systems can 
be developed in a hybrid manner, playing to the strengths of 
both simulation and formal methods such as action calculi.

Methods of Commonsense Reasoning
Constructing an exhaustive formal model of the egg-crack-
ing problem at every level of granularity is obviously beyond 
the capabilities of techniques (or human resources) available 
today. However, given the finite capabilities of a research 
laboratory (or a commercial environment) it is possible to 
sacrifice some of the depth, breadth or expressiveness in or-
der to create a functionally useful system. In fact, many of 
the existing approaches in the literature can be seen to either 
emphasise depth and expressiveness or emphasise breadth: 
by focusing on rich representation it becomes costly to create 
broad knowledge bases, whereas techniques that are used to 
efficiently create broad knowledge bases tend to require shal-
low or informal representations.
Logical and Qualitative Methods. The usage of logics of 
action and of qualitative reasoning are largely inspired by 
Hayes (1985). These approaches are fraught with many dif-
ficulties: the underlying logics and formalisms offer little 
guidance for distinguishing superior representations from 
inferior representations; it is often difficult to validate the de-
veloped theories for inconsistencies; different knowledge en-
gineers are likely to make different simplifying assumptions 
that increase the complexity of integrating multiple knowl-
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edge bases; and finally, effective use of logics and qualitative 
methods typically requires a great deal of aptitude and educa-
tion. It comes as no surprise that the logical approaches have 
enjoyed their greatest successes in domains where a small set 
of engineers can grasp the problem, and ensure that the for-
malization remains logically and philosophically consistent.
Semi-logical and Informal Methods. In constrast to purely 
logical methods, projects such as Cyc (Lenat et al. 1990) and 
the DARPA High-Performance Knowledge Bases (HPKB) 
(Pease et al. 2000) emphasise logic-inspired representa-
tions that support and embrace inconsistency so as to more 
naturally reflect the manner in which humans inconsistently 
perceive and reason about the world. At the extreme are proj-
ects such as Open Mind Common Sense that use very simple 
word associations and logical structures to provide very gen-
eral forms of commonsense ‘intelligence’ (such as word as-
sociations) that can be constructed at low cost and give the 
appearance of intelligence without requiring deep reasoning 
capabilities (Singh et al. 2004). While these methods may 
be suitable for reasoning about general patterns of action, or 
possible tools and actions that may lead to a cracked or bro-
ken egg, such work is currently simply not intended for or 
capable of deep reasoning about specific scenarios.
Multi-paradigm Approaches. In The Society of Mind, Min-
sky (1986) presents the view that a mind consists of a society 
of interacting processes, for which no single representation 
suffices. In this vein, there have been ambitious proposals for 
creating powerful general purpose systems with common-
sense intelligence based on diverse multi-paradigm architec-
tures (McCarthy et al. 2002; Sowa 2002). However, these 
broad proposals are aimed at supporting very rich forms of 
commonsense reasoning, and are far beyond the intended 
scope of this work.

A compelling concrete example of the multi-paradigm ap-
proach is Mueller’s (1998) ThoughtTreasure that combines 
factual logical knowledge and reasoning (similar to Cyc), 
grids (2D maps of stereotypical settings), simulated agent-
based planning and procedural ‘rules of thumb’.

Multi-paradigm architectures may ultimately be necessary 
to create rich commonsense reasoning capabilities, however 
this does not preclude the use of Slick or any other approach-
es to commonsense reasoning. Each such approach could be 
reasonably subsumed as a component providing a specific 
reasoning capability within a multi-paradigm architecture: in 
fact, the development of successful multi-paradigm architec-
tures requires the creation of components (such as Slick) that 
provide powerful reasoning mechanisms.

Simulation
Aside from the simplistic agent-based simulations of plans 
used in ThoughtTreasure (Mueller, 1998), direct simula-
tion as an approach to commonsense reasoning is not often 
mentioned in the literature. Simulation, however, is not an 
unusual approach to commonsense reasoning—qualitative 
reasoning often makes use of qualitative simulations, and de-
duction with formal methods such as action calculi could be 
considered to be a kind of simulation. However, it is interest-
ing to observe that a great deal of extremely rich common-

sense ‘know-how’ can be seen in the simulations that appear 
in modern computer animations and games. Realistic and 
computationally efficient models of solids, liquids, physical 
forces, natural environments, human needs and even rela-
tionships can be found in games and physics libraries (e.g., 
ODE (Smith 2006)), and a compelling argument could be 
made for incorporating these simulations as a component in 
an intelligent system. While we are unaware of any games 
that involve a task of cracking an egg; it is not hard to imag-
ine that one might occur in some future game.

Morgenstern (2001) reflected on the difficulty of using 
logic to adequately describe the motion of a liquid as it flows 
from an egg to a bowl or the motion of a falling object. In 
contrast, under a simulation such effects follow directly from 
the Newtonian equations of motion, and the force of gravity. 
Since the intent of simulation is to accurately and directly 
emulate real world behaviors, the knowledge engineering 
process is conceptually simplified to the familiar task of 
implementing (typically in a procedural programming lan-
guage) the fundamental commonsense laws of a problem do-
main. Furthermore, the representations used in implementing 
simulations are often highly conducive to 3D visualizations, 
making it easier to observe, refine and validate their output.

While commercial simulation libraries can produce re-
alistic simulations when appropriately configured, they are 
unfortunately not designed with general purpose common-
sense reasoning in mind. Simulation libraries are typically 
optimized for limited classes of physical simulation (such as 
rigid-body physics), and do not include flexible mechanisms 
for associating elements within a simulation with symbolic 
representations that may be used in the high-level meta-rea-
soning of an intelligent system. Nevertheless, the principle 
of using simulation as a form of commonsense reasoning 
is attractive because it offers a rich and natural approach to 
conceiving and expressing commonsense knowledge, and 
because it simplifies knowledge elicitation and knowledge 
maintenance. We have therefore developed Slick as a generic 
framework for simulating a wide range of commonsense 
phenomena: not just rigid-body physics, but liquids, materi-
als and even abstract concepts such as human relationships 
and fatigue in a straightforward way. 

Slick Overview
The Slick architecture is designed to be a component for 
commonsense reasoning within a larger intelligent system. 
Sophisticated reasoning and problem solving is beyond the 
scope of the Slick architecture: it is intended that the host 
architecture be responsible for planning, symbolic reasoning, 
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Figure 1: Slick Architecture



and the resolution of high level goals and contextual infor-
mation. The host system uses Slick to solve commonsense 
problems posed either symbolically, by way of constraints 
derived from sensors, or by some combination of the two. 
From a computational perspective, the Slick architecture is 
a simple constraint solver over multidimensional domains, 
however Slick is not presented here as a technical or algorith-
mic contribution: its benefits lie in the structural architecture 
that is motivated by the need to ground the sub-symbolic pro-
cesses of a simulation to the symbolic representations of the 
host intelligent system or to the real world via sensors.

Slick consists of the following three subcomponents: a 
generic relaxation-based constraint solver; a database of ge-
neric objects and constraints for simulation; and a symbolic 
control language that is used for both instantiating objects 
from the database into the constraint solver and for testing 
constraints and alternative scenarios (See Figure 1).

Slick ‘Constraint Solver’
In order to simulate a wide range of behavior, simulations 
are constructed from abstract structures that we refer to as 
entities and joins. These structures are similar to frames and 
represent the fundamental particles and relations of a simu-
lation. Entities and joins do not have any implementation 
or ‘active’ character, their purpose is to give structure to a 
simulated environment, and to store the ongoing state of that 
simulation. Their naming is intentionally generic, as they 
may be given any interpretation by the knowledge engineer. 
For example, entities and joins may be used to denote people 
and social regard, atoms and intramolecular bonds, balls and 
sticks (as in ball-and-stick models) or even e-mails and dis-
cussion-threads.

In simulating physical environments, entities and joins 
have a natural interpretation as over-sized particles of matter 
and bonds that can be used to approximate the shape and be-
havior of an object (this particular physical interpretation cor-
responds to a 3D generalization of the 2D ‘molecules’ used 
by Gardin and Meltzer (1989)). For example, to represent an 
egg; 60 entities can be used to approximate the mass distri-
bution of an egg and 90 joins to structure the egg’s shape as 
per Figure 2. While each entity and join has an independent 
identity and existence within a simulation, individual entities 
and joins do not necessarily denote any particular real-world 
concept, it is rather a given set of entities and joins that as a 
coherent whole could be regarded as denoting an egg shell.

Entities and joins are similar to frames in that they have a 
set of attributes which are used to store the state of a simula-

tion, however these attributes need not store a single unique 
value but can have a different value for each instant and sce-
nario of a simulation. That is, a particular entity of an egg-
shell might have attributes for its Cartesian coordinates (x, y, 
z), temperature and color: the value of these attributes may 
vary for every instant in time. Some of these attributes are 
informational and necessarily constant over a simulation 
(such as the type and role of the entity or join) so are referred 
to as labels. In our simulations, we have assumed that mass 
and rigidity remain constant for a given entity and so have 
defined these using labels, however it is conceivable that in 
more sophisticated simulations these would be mutable attri-
butes (e.g., rigidity could be made to vary depending on the 
temperature or age of the egg). In our naïve implementation, 
every value of every attribute at every instant is retained; 
however greater space efficiency can be achieved by saving 
only those values that are required.

Figure 3 provides an example of the attributes and cor-
responding values at a given instant, for a sample entity and 
a sample join from an egg-cracking simulation. Labels are 
indicated by bold type.

Values of attributes are assigned and updated in the simu-
lation by way of constraints. These constraints are solved in 
an iterative process, calculating values for attributes over one 
or more discrete simulation dimensions. In our egg-cracking 
simulation there is just one simulation dimension, namely 
time, modelled as a series of discrete instants separated by 
short constant intervals. In other situations these simulation 
dimensions might be used to represent the three dimensions 
of space or more abstract concepts such as database records. 
Furthermore, while our naïve implementation uses equally 
spaced instants in time, this spacing could be adaptive so as 
to perform more accurate simulations at critical moments in 
the simulation (such as when objects are colliding).
A constraint is simply a parameterizeable function that cal-
culates the value of an attribute in a given instant and scenar-
io from its current values. In an physical simulation there are 
separate constraints for phenomena such as persistence, mo-
mentum, gravity, shape-holding rigidity, bond forces, liquid 

Figure 2: Modelling an egg with entities (balls) and joins (sticks)
(Screenshot from Java3D visualization for Slick prototype)

Entity 34 at instant [time:1.35s, scenario:1]
  identifier: world/egg#1/shell/e/shape#4
  type: entity
  role: shape
  number: 4
  shape-rigidity: 0.4
  fragment-mass: 0.2
  color: cream
  temperature: 25°
  x: -0.744
  y: -0.3336788
  z: 1.5337192

Join 41 at instant [time: 1.35s, scenario:1]
  identifier: world/egg#1/shell/j/shape#3
  type: join
  entity-a: <entity 34>
  entity-b: <entity 35>
  role: shape
  number: 3
  spring-constant: 0.7
  snap-length: 1.01
  snapped: false

Figure 3: Example of an Entity and a Join

} the ‘joined’ entities



flow, impermeability and the immobile floor. Each of these 
constraints is given a ranking which determines the order it 
is to be applied in the calculation of the value for an attri-
bute. The ranking can be used to ensure that the ‘persistence’ 
constraint is applied first (corresponding to the default that 
things tend to stay as they are); followed by constraints such 
as gravity; then finally, hard constraints that the user should 
never see violated such as the impermeability and immobil-
ity of the floor.

Scenarios are used to specify multiple executions of simi-
lar but related situations. For example, an egg-cracking sim-
ulation can be set up using several scenarios each having the 
bowl in a different orientation: each scenario is completely 
isolated as though run in an entirely separate simulation.

While a constraint ordinarily returns a single value, other 
return-values are possible: a set of values, a distinguished 
‘inconsistent’ token or a distinguished ‘underspecified’ to-
ken. If a single value is returned, then the relevant attribute 
is set appropriately. However, a set of values can be returned 
to indicate uncertainty or multiple outcomes, so that Slick 
will fork the current scenario into a corresponding set of new 
scenarios each identical except for the values of uncertain 
attribute. If the distinguished values are returned then slick 
will either mark the entire scenario as inconsistent (in the 
case of the ‘inconsistent’ token) or delay the evaluation of the 
constraint as long as possible (in the case of the ‘underspeci-
fied’ token).

An example of the constraints for persistence, momentum 
and gravity appear in Figure 4. Note that while the gravita-
tional constraint only causes a fixed displacement at each 
time instant, it is the persistence and momentum constraints 
that cause these constant effects to accumulate and result in 
gravitational acceleration.

This approach to simulation has several major advantag-
es:

1.	 Ease of specification. Constraints are analogous to 
point-wise axioms in a logical approach. The advantage 
is that there is a direct correspondence to the fundamen-
tal laws of Newtonian physics—macro-scale effects 
such as the nature of a crack and how it may increase 
in size are emergent behaviors that do not need to be 
explicitly specified. 

2.	 Constraints are reusable. An implementation of mass-

spring constraints for entities and joins can be reused for 
any solid: a ceramic bowl is subject to the same physi-
cal constraints as an egg shell; it merely has a different 
shape and rigidity.

3.	 The frame problem is elegantly solved. Persistence 
and friction limit the changes that are possible between 
one moment and the next, and also propagate the state 
of unchanged attributes.

Slick Database
While the general purpose simulation framework described 
above grants an intelligent system the ability to simulate a di-
verse variety of commonsense problems, it offers no mecha-
nism for relating the primitives of the simulation to abstract 
symbols or for interpreting the outcomes of a simulation. The 
Slick database is used for associating symbols to the corre-
sponding entities, joins and constraints that must be instanti-
ated into the simulator. We have taken a pragmatic approach 
for the time being by allowing only simple hierarchical struc-
tures: the database is a forest of trees whose leaf nodes are 
schema for the instantiation of the simulation primitives, and 
whose internal nodes are labelled to provide a decomposition 
structure. For example, to instantiate an egg, the database is 
searched for a tree whose root node is labelled with the egg 
symbol. This tree will have internal child nodes with labels 
such as shell, yolk and white. The ‘shell’ branch of the tree 
will in turn have leaf nodes that are schema for the construc-
tion of 60 entities whose position, mass, color and brittle-
ness are set to appropriate values for realistic simulation of 
an egg shell. More abstract concepts such as ‘cracked’ would 
be defined to accept a parameter during instantiation and are 
represented in the database as trees whose leaf nodes are only 
schemas for constraints (the symbol ‘cracked’, when instan-
tiated for an egg shell, would create constraints that report 
the inconsistent value in any scenario where the egg is not 
cracked).

Slick Control Language
The Slick control language is very simple; it consists of op-
erators to perform the following tasks:

1.	 Creation of new scenarios for simulation,
2.	 Instantiation, from symbols, of schema within the data-

base,
3.	 Querying and manipulating trees in both the database 

and simulation scenarios (e.g., a chocolate egg could be 
created by grafting the chocolate texture onto an egg 
shell shape, and deleting the branches for the yolk and 
white),

4.	 Directly instantiating simulation primitives (entities, 
joins and constraints),

5.	 Setting and querying values of attributes in the simula-
tion.

Our concrete implementation of Slick currently uses a simple 
stack-based language with a declarative style of usage both 
for populating the database and as the control language. The 
syntactic details of this language are unimportant as the con-
trol language could equivalently be implemented using, for 
example, XML or as an API for an existing language.

Constraint: Persistence

xt′	=	 xt-1
yt′	=	 yt-1
zt′	 =	 zt-1

{<x: xt′, y: yt′, z: zt′>}
where,

Constraint: Momentum

xt′	=	 xt 	+ 	﴾xt-1 - 	xt-2﴿
yt′	=	 yt 	 + 	﴾yt-1 - 	yt-2﴿
zt′	 =	 zt 	 + 	﴾zt-1 - 	zt-2﴿

{<x: xt′, y: yt′, z: zt′>}
where,

Constraint: Gravity

zt′	 =	 zt 	+ 	1	g ﴾tinterval﴿2				    −				    2

{<z: zt′>}
where,

Figure 4: Example Specifications of Constraints



In practice, the control language is one of the most pow-
erful benefits of Slick. The ability to interact with the Slick 
database and readily produce new and meaningful concept 
combinations (such as ‘chocolate eggs’) is an outcome that 
is difficult to achieve using formal logics. Yet, in Slick, these 
benefits are realized with just a small set of obvious operators 
for querying, deletion and grafting of trees.

Results
Without any standard quantitative method for evaluating the 
elaboration tolerance of solutions to the egg cracking prob-
lem, it is difficult to comprehensively evaluate Slick within 
the space constraints of this paper. However, we believe that 
Figure 5 speaks volumes: it depicts the internal state of a sim-
ple simulation in which an egg shell has cracked after being 
dropped onto a table. A crack can be observed in Figure 5 as 
broken joins along the sides of the shell. In our real-time vi-
sualization, this crack can be seen progressing along the edge 
of the shell, cracking in a manner consistent with our human 
intuitions. Most importantly, this simulation does not require 
the explicit a priori definition of abstract constraints such as 
a ‘crack’ because the cracking behavior simply emerges from 
the physical constraints that apply to the entities and joins.

In richer simulations that we have tested, Slick is able to 
correctly answer more difficult questions such as whether the 
egg or bowl remains unbroken and whether the bowl or table 
is ‘wet’. While these abstract properties (such as ‘cracked’, 
‘broken’ and ‘wet’) will emerge from the fundamental laws 
governing the simulation, it is still useful to create additional 
constraints that correspond to these abstract concepts so that 
the outcome of a simulation may be analyzed symbolically. 
For example, when ‘cracked’ is defined as having at least one 
join broken, the host intelligent system can test if an egg has 
been cracked simply by testing to see if the constraint holds.

Various elaborations and what-if-scenarios can be enter-
tained by adjusting the parameters of the simulation. In fact, 
it is in the comparative ease by which elaborations are accom-
modated, that the benefit of Slick becomes most evident:
Speed and Force. By virtue of simulation, such elaborations 
present no difficulty. If there is insufficient force, the egg 
shell’s rigidity will not be overcome, and conversely if there 
is too much force it may even exceed the rigidity and snap-
length of the bowl (breaking the bowl).
Shape and Orientation. Again, once the shape and position 
has been configured in the simulation’s initial conditions, 
such elaborations present no difficulty. For example, if the 
bowl is too small then the simulated egg yolk and white will 
simply overflow the bowl without any prior need to model 
concepts such as ‘fullness’.
Texture. A wide range of solids, liquids and gasses can be 
simulated by adjusting parameters for rigidity, breaking 
points, viscosity and permeability. The different behaviors of 
chocolate eggs, coconuts, hard-boiled eggs, duck eggs, soc-
cer balls and of paper, clay and ceramic bowls can all be 
accommodated (to a usable degree of approximation) simply 
by appropriate configuration of these material parameters.
Detail. Finer-grained approximations require further specifi-
cation, but this is readily done by elaborating the initial con-

ditions (rather than the laws of simulation). For example, in 
a real chicken egg there is a membrane between the white 
and the shell that holds a slightly-cracked egg together: the 
simulation could be enriched by inserting such a membrane 
(a pliable surface) into the initial conditions of the egg.
Scope. Additional constraints would be required to address 
elaborations far beyond the problem’s original scope. For ex-
ample, additional constraints would be required for ‘rotting’ 
and ‘cooking’ if the action is to be performed over months or 
at high temperatures. However, it is important to note that the 
addition of these constraints does not require revision of ex-
isting constraints: gravity and momentum continues to work 
on all matter. ‘Cooking’ would be simulated just by adding a 
constraint to allow a subset of bonds to ‘harden’ after a cer-
tain temperature has been reached.

The Slick framework is therefore able to evaluate an ex-
tremely rich range of questions and elaborations without ex-
hibiting the same brittleness evident in the elaborations of 
solutions using action calculi as proposed by Morgenstern 
(2001), Shanahan (2004) and Lifschitz (1998).

An implementation of the Slick framework is a relatively 
complex software product that requires an up-front invest-
ment of developer time, but once implemented provides an 
extremely flexible basis for experimenting with variants on 
the egg cracking problem: for example, constraints for grav-
ity, friction and mass-spring kinetics are virtually all that is 
required for simulation of most commonsense situations in-
volving solids. While we have not conducted a formal exper-
iment to quantify the cost savings of the Slick architecture, 
we can report our personal experiences with implementing 
constraints in the Slick architecture:

•	 Identification of necessary constraints was trivial as 
missing constraints became painfully obvious when 
watching the simulations (for example, the need for 
friction was evident when an egg slid across the floor 
‘forever’).

•	 Specification of these constraints was trivial—suitable 
specifications can be found in any high-school physics 
text-book.

•	 Implementation of these constraints is routine and 
straightforward: the mathematics required to convert 
commonsense-based physical laws into Java code in 
the Slick framework is possessed by most high-school 
graduates.

•	 Validation was significantly simplified because the vi-
sualizations could be used to gauge whether the model 
accurately reflects intuition.

Figure 5: Simulation of an egg-shell cracking after being dropped 
onto a table



•	 Populating the database with 3D objects required mini-
mal effort—we used a chemist’s tool originally designed 
to create 3D wire-frame models of molecules.

•	 The most tedious aspect of using Slick was tuning pa-
rameters so that, for example, the rigidity and snap-
length on the egg shell is such that  it cracks as expected 
when dropped from a suitable height. We anticipate that 
this task could be automated in future by a simple ma-
chine learning or optimization algorithm.

These experiences are in contrast to those we have observed 
when we have attempted to create and update equivalently 
rich formalizations of similar problems using action calculi: 
our impression is that within logical formalisms the tasks of 
identification, specification and implementation/validation 
are orders of magnitude more difficult, time consuming and 
intellectually challenging than with Slick. Furthermore, with 
appropriate tools that integrate modelling with automatic pa-
rameter optimization, it should be possible to further sim-
plify the knowledge engineering process with Slick. In fact, 
we eventually intend to populate the database semi-automati-
cally based on experimentation and sensor readings collected 
by a robot from its situated environment (i.e., perceiving the 
3D shape and fitting parameters automatically).

Limitations and Future work
While the egg cracking problem is useful for exposition and 
comparison with other techniques, in future we intend to test 
Slick with more abstract applications of simulation such as 
the creation of commonsense models of business process-
es, market behavior, professional human relationships and 
schedule feasibility (both from a physical perspective, but 
also from the perspective of modelling factors such as human 
fatigue and productivity). The Slick architecture is ideal for 
domains that are governed largely by a set of fundamental 
laws from which most observable behavior emerges. This 
is clearly the case with simple physical scenarios that are 
governed by Newton’s laws of motion, however useful and 
usable approximations can be found in other domains—for 
example, simple game theoretic models may be used for 
modelling economic and social behavior.

We have mentioned that Slick can be readily integrated 
with other approaches, including logics of action: in future 
we intend to explore this in greater depth. A naïve integra-
tion is possible by exposing Slick to a theorem prover as an 
‘external’ predicate that is invoked as isolated simulations. 
The Slick database makes it easy to instantiate simula-
tions from symbolic references, so predicates such as can-
crack(chocolate-egg,  bowl, 3N) can be readily exposed 
to a logical theorem prover. Deeper integration may be pos-
sible with, theorem provers based on proof methods such 
as analytic tableaux or SLD resolution, by exploiting the 
similarity between scenarios and branches of a proof tree or 
tableau. For example, a theorem prover encountering drop-
when(0 seconds, egg) would configure Slick’s initial condi-
tions, while is-cracked(3seconds, egg) would subsequently 
invoke Slick to evaluate the outcome. In a language such as 
Prolog, this integration could be done in a similar way to 
CHR (Frühwirth 1998).

Conclusion
Slick is a pragmatic mechanism for commonsense reasoning. 
Slick can provide a useful facility to an intelligent system for 
performing efficient and cost-effective commonsense rea-
soning about a diverse range of concepts:

•	 Slick simplifies and reduces the cost of knowledge en-
gineering (and knowledge maintenance) in domains that 
are principally governed by a set of fundamental laws,

•	 Slick’s commonsense ‘theories’ can be readily validated 
using tools such as 3D visualizations,

•	 Slick is readily implemented and computationally effi-
cient (and will always terminate),

•	 Slick’s database allows internal representations to be 
grounded to high level symbols or sensor input,

•	 Slick’s database allows for elegant integration with 
other formalisms (such as action calculi), allowing for 
hybrid reasoning that draws on the strengths of each.
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