This paper was selected by a process of
anonymous peer reviewing for presentation at

COMMONSENSE 2007

8th International Symposium on Logical Formalizations of Commonsense Reasoning

Part of the AAAI Spring Symposium Series, March 26-28 2007,
Stanford University, California

Further information, including follow-up notes for some of the
selected papers, can be found at:

www.ucl.ac.uk/commonsenseQ7

Learning a Plan in the Limit

Patrick Caldon and Eric Martin
School of Computer Science and Engineering
The University of New South Wales
UNSW 2052, NSW, Australia

Abstract

Induction is one of the major forms of reasoning; it is there-
fore essential to include it in a commonsense reasoning
framework. This paper examines a class of induction-based
planning problems. These problems can be solved, but not in
the classical sense, where one and only one output—a correct
solution—is to be provided. Here a sequence of outputs, or
hypothetical solutions, is output, with finitely of them being
possibly incorrect, up to a point where the sequence becomes
constant, having converged to a correct solution. Still it is
usually not possible to ever discover when convergence has
taken place, hence it is usually not possible to definitely know
that the problem has been solved, a behavior known in the lit-
erature on inductive inference, or formal learning theory, as
identification in the limit. We present a semantics for iter-
ative (looping) planning based on identification in the limit,
with the planner learning from positive examples (as opposed
for instance to negative examples, or answers to queries). Po-
tential plans are repeatedly hypothesized, and a correct plan
will be converged upon iff such a plan exists. We show that
this convergence happens precisely when a particular logical
entailment relation is satisfied. The existing system KPLAN-
NER, which generates iterative plans by generalizing over
two examples, is analogous to a fragment of this procedure.
We describe an optimizing version, which attempts to satisfy
a goal in the best possible way by defining preferences on
plans, in the form of an order relation. We also discuss poten-
tial extensions to planning which cannot be solved by induc-
tion (and a fortiori, cannot be solved in the classical sense).

Introduction
Objective of this work

The objective of this work is to explore the technical un-
derpinnings of a particular kind of commonsense reasoning
activity where an agent is trying to determine appropriate
behaviour based on empirical knowledge about the world.
Think of how someone develops the skills for a complex
technical activity. For an example, consider boating, but
many activities have the same character.

A boatman necessarily has operational knowledge about
the various activities involved in boating. He knows that if
the boat has a particularly heavy load, water will start lap-
ping over the edge, and also that the engine will consume

Copyright (© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

more fuel. He knows that travelling quickly makes the boat
harder to turn. There are many specialized pieces of knowl-
edge of this kind which are required in order to successfully
operate a boat.

Now consider how these pieces of knowledge can be ac-
quired. One might determine the maximum load for a boat
by examining the geometry of the hull, the weight of the
boat, the density of water, and applying physical theories.
But it is also possible to gain this knowledge empirically,
for instance by observing circumstances under which a sim-
ilar boat is overloaded, or circumstances under which a fast
moving boat turns more slowly. This could be done by try-
ing something, making a mistake, and noting that that ought
not be done again; or it could be done by hearing the story
of someone who made a mistake. For instance a boatman
might one day slightly overload the boat, and notice that it
sits too low in the water, that too much water ships onto
the boat, and then change the actions taken in loading the
boat to ensure that this does not eventuate again. In this way
observations of failed attempts at action are used to guide
future action. In practice humans often acquire this kind of
knowledge empirically, rather than by reasoning from the
first principles of physics. Clearly, empirical reasoning is an
important component of commonsense reasoning.

The kind of commonsense reasoning activity that we have
illustrated involves elements of many existing frameworks.
Reasoning about action, with an underlying non-monotonic
inference relation, is a key component of the scenario. For
instance, the boatman may perform actions where the accu-
mulated experience thus far leads him to believe the actions
are safe, but discover on performing them that they are ac-
tually unsafe; in this way new experience can cause the in-
ference made on the basis of existing experience to be con-
tradicted. The learning involved in this scenario is a kind of
non-monotonic reasoning. Our aim is to put all these pieces
together, propose a framework for learning how to generate
correct plans.

Limiting planning

Reiter draws a distinction between closed and open world

versions of planning (Reiter 2001), to be both contrasted

with our proposed limiting planning.

e In closed world planning, facts concerning the initial sit-
uation are provided before the planner starts, and any po-

tential fact that is not provided is assumed not to hold in
the initial situation.

e In open world planning, facts concerning the initial situa-
tion are provided before the planner starts, but there is no
assumption concerning any of the potential facts that are
not mentioned.

e In limiting planning, an enumeration of fluent values for
all possible initial situations is provided while the planner
runs; all true facts about the initial situation are guaran-
teed to be eventually provided to the planner.

The non-terminating scenario inherent to limiting plan-
ning might seem to be an unnecessary complication, but we
will show that it is an essential feature. Indeed, we will see
that while it is impossible to discover plans for the natural
class of problems that we describe if the set of facts to be
provided is computed in advance, it is still possible to dis-
cover plans if the set of facts to be provided is allowed to be
arbitrarily large. Only finitely many facts will be needed to
output a plan, but which facts are needed, or how many facts
are needed, cannot be known in advance. So we consider
planning problems for which a solution can be found in fi-
nite time, but for which it cannot be known that a solution
has been found. Hence limiting planning is not a variation
on closed world planning; we cannot simply wait until suf-
ficiently many facts are provided to the planner, and apply
closed world planning, as we have no way, in general, to
convert “sufficiently many” into a numeric quantity.

How do we know if planning is successful? In conven-
tional planning, where the initial situation, or collection of
initial situations, is completely specified at the start of the
planning activity, success is equivalent to producing an ob-
ject which, if suitably interpreted, causes the agent to always
(or in some variants, sometimes) reach the goal. But we fo-
cus on planning tasks that go beyond what classical plan-
ning can achieve, we look at planning activity that inher-
ently involves induction, so we need something more than
just “the goal must be reached by the plan.” Here we take
our cue from formal learning theory, and say that planning is
successful if the potential-plans (hypothesized plans which
might or might not work) stabilize to some particular term
which reaches the goal—we call this term a correct plan. If
the agent were never again to change its mind then it would
be successful under a notion which is exactly analogous to
the notion of identification in the limit from formal learning
theory.

We see the key contribution of this paper as the descrip-
tion of a planning by induction framework, formalized with
the help of a particular notion of logical entailment. Further
contributions include the development of the previously un-
published optimizing limiting resolution procedure, and the
descriptions of limitations of similar kinds of framework.
We do have a proof-of-concept implementation of a limiting
planner, but the focus for this paper is the semantics; imple-
mentation is outside the scope due to space constraints.

A Motivating Example

A concrete example is useful to give the idea of the kinds
of problems being addressed and the method for addressing

them.

Example 1. An agent is periodically given a bag of blocks
of unknown size, and must rearrange all the blocks into at
least two piles of size at least two.

This is a straightforward statement of an initial situation for
a plan and the goal of a plan. The planner is permitted to
use iterative expressions of the goal, that is containing loops.
This can be encoded using Levesque’s specification for robot
plans (Levesque 1996) and a few actions; the examples be-
low give the flavor. Here empty is a sensing action to see
if there is a block left in the bag, and put (k) puts a block
into pile k, so for instance put (2) would place a block on
pile number 2. The at-least-two restriction removes some
trivial solutions.

Imagine now an agent (who believes the world is regular)
trying to solve this problem by induction (i.e. generalizing)
over examples. The agent is shown 20 blocks all on the ta-
ble, numbered 1, ..., 20. Suppose it somehow generates:

LOOP:
put (1); put(2); put(3); put(4)
BRANCH (empty) :
true: exit
false: next
END LOOP

The interpretation of this plan corresponds to its natural
reading; we put a block on each pile 1 through 4 until all the
blocks in the bag are exhausted, and end up with 4 piles of
size 5. Now the agent is given a bag with 40 blocks. Let’s
say it proposes the same plan again, which we can see also
satisfies the condition.

Now suppose it is given a bag with 15 blocks; the above
plan will not work, as it will produce 3 stacks of size 4 and
one stack of size 3 and get itself into a situation where the
prescribed action put (4) is not possible. The planner must
re-plan and might produce:

LOOP :
put (1); put(2); put(3); put(4); put(5)
BRANCH (empty) :
true: exit
false: next
END LOOP

Note that this term works for 15, 20 and 40 blocks, and
so is general enough to cover all the examples thus far seen.
This process continues indefinitely, with the planner being
shown initial conditions and producing a plan.

Unlike conventional frameworks, there is no single initial
situation, and the agent has to perform induction from a col-
lection of example initial situations; it is having to learn. It
repeatedly produces plans which satisfy a goal criteria from
the initial situations thus far seen. It can use its theory of
action to determine if a potential-plan works in a particular
initial situation.

It is important to note that iferative plans (involving
loops) are necessary if we are to generalize to piles of any
size. Clearly, classical sequential plans (without loops or
branches) are not sufficient for representing solutions to
this problem. Furthermore, while conditional plans (with
branches) can be produced for any finite collection of piles,
they will not generalize to an infinite enumeration of piles.

An AGM-Based Account?

Now one potential option would be to employ some kind
of belief revision framework. Let us try and apply an
AGM based system to the above(Alchourron, Gardenfors,
& Makinson 1985). An AGM system contains a belief re-
vision operator = which takes a theory 7" and a formula ¢
as arguments, with T' x ¢ denoting the theory obtained af-
ter 7" has been updated with respect to ¢. The AGM con-
ditions constrain the behavior of the x operator with eight
conditions, for instance, that T % ¢ includes . Imagine
we have somehow encoded our theory of piles in Dpjr g,
and proceed using some kind of iterated belief revision;
we might have to represent 15 blocks in the bag by ¢1 =
bagCount(15, s1), indicating that in the first situation, there
are 15 blocks in the bag. Then we might have to write
w2 = bagCount(20, s2) to indicate that in the second sit-
uation there are 20 blocks in the bag. Our (revised) the-
ory would then be (Dpirr * v1) * 2. Now if the set
DpiLe U {¢1,...} is consistent and we set our belief revi-
sion operator to the deductive closure of all the formulas
thus far seen, we will never have to contract our knowledge
base because the addition of new formulas never produces
any inconsistency.

The problem comes when we consider what kinds of
queries we wish to answer with this system. One natural
possibility is queries of the form (abusing notation):

AziomsU{¢1, p2,...} ="
3p [plan(p) A Vs; initial(s;) — works(p, s;)]

This should read: is there some plan such that for all pos-
sible initial situations, the plan works? We might hope
that there is some collection of postulates K, consistent
with Azioms U {®1, @2, ...}, that we can add to Axioms
so that (K U Azioms * ¢1) * pa... = ¢ is equivalent to
Azioms U {p1,92,...} E* ¢, with ¢ being the entailed
formula in the above relation. We can make finitely many
mistakes in stacking our piles, but there should be an [such
that, taking an arbitrary k£ > [and substituting {1, ..., o }
in the above relation for {¢1, 2, ...}, the resulting relation
holds (and actually implies the existence of a witness for the
quantified variable p, that codes a working plan). Still, under
an AGM update policy, our agent cannot draw any conclu-
sion which requires him to generalize over all possible initial
situations (the Vs;... part of the query), so he will never pro-
duce a working plan. ! This feature is natural since the AGM
postulates do not make any reference to the quantificational
structure of formulas.

Towards a Formalization
Identification
We remind the reader of the fundamental concepts of induc-
tive inference (Gold 1967; Jain et al. 1999). Suppose we
have some collection of countable sets L. Given L € L, call

a sequence e of elements of L U {#} % such that every mem-
ber of L is in e, an enumeration of L. Use SEQ, for the

"This is a consequence of the AGM postulate T' x ¢ C {v :
TU{e} =¥}

The # symbol represents no data being provided to the learner.

collection of finite initial segments of enumerations of mem-
bers of L. A learner is a partial function f : SEQz — N,
where N is seen as an index set for L (a set of codes for the
members of £). A learner is said to identify some L € L
if for every enumeration e of L, it reports the index of L in
response to all but a finite number of finite initial segments
of e. The collection L is said to be identifiable if there is
some learner which identifies every member of L. Note that
if L is a singleton, identification becomes trivial; when L is
larger the problem becomes more substantial.

Visualize this scenario as playing a game where you must
guess a set that we have in mind. Suppose we decide to
play with £ as the collection of sets consisting of all the
numbers greater than some natural number (an example
for L is {5,6,7,...}). Having first chosen (for example)
{2,3,4, ...}, we then proceed through the game in rounds
of guesses, as follows. Suppose we tell you 4 is in the set;
you might guess {4,5,6,...} as the set. If we tell you 7 is
in the set, then presumably you would decide to stick with
your guess. If however we tell you next that 2 is in the set,
you might want to change your mind and revise your guess
to {2,3,4,...}. As from this point on we will never men-
tion the number 1, you’ll always be happy with this guess
of {2,3,4,...}. But since you’ve only ever seen a finite
initial sequence, it will appear to you that you may have to
revise your guess at any time, and for this set L there’s no fi-
nite collection of data which allows you to be sure that your
guess is correct, and so you will not have a property analo-
gous to compactness in classical logic. It is clear, however,
that the strategy of “guess the set whose least element is the
lowest number thus far presented” will, in the limit, produce
the correct hypothesis, that is, after at most a finite number
of mind changes on your part.

Situation Calculus

The situation calculus is a formalism which provides a sys-
tematic methodology for expressing actions, and encom-
passes problems in conditional planning; we present a sim-
plified summary here. 3 The only concrete difference be-
tween this and conventional expositions is that we require
countably many initial situations producing a forest of iso-
morphic situation trees rooted at these initial situations, but
we do not introduce a modal operator or K relation.The sit-
uation calculus assumes a first-order vocabulary, with sym-
bols classified as follows. Terms of the form do(a, s) are
distinguished as situations, where s is itself a situation, and
so(i) is an initial situation, one for each ¢ € N (using N is
just for convenience); this generalizes the singleton s used
in the standard developments of the framework. Here « is
an action term, and do(q, s) is the situation obtained by per-
forming action « in situation s. All constants which are not
actions or situations are objects. Fluents are predicates of
the form e.g., ontable(by, s), with a situation only in the fi-
nal argument; this would represent that b; is on the table in

3Many situation calculus details are glossed over here for space
reasons, and suggestive examples are given rather than formal def-
initions; see Reiter’s book (Reiter 2001), particularly chapter 4, for
a complete exposition.

situation s—functional fluents are not considered in this ac-
count. The predicate Poss(«, s) is true iff a is possible in
situation s.

A situation calculus theory is divided into collections of
axioms. The foundational axioms ¥ entail that the situa-
tions form a tree and that there are no non-standard situa-
tions; the unique names axioms guarantee that all actions
are distinct, and identical actions have identical arguments;
logic programming formalisms, particularly the restriction
to Herbrand models, can be used to guarantee these are
maintained (Baral & Gelfond 1999). A collection of action
precondition axioms D, defines the predicate Poss, which
enjoys a uniformity property ensuring that the preconditions
for the executability of some action are determined solely by
the current situation; these are of the form e.g.

Y, s(Poss(pickup(x), s) < ontop(x, s) A freehand(s))

Successor state axioms Dss define what happens to the
truth value of some fluent as some action is performed
and are of the form e.g. Va,s(handempty(do(a,s)) <
handempty(s) AVx(a # pickup(zx))). These similarly en-
joy a uniformity property.

Given a language for situation calculus, we can de-
fine a p-plan as a term in Levesque’s robot planning lan-
guage (Levesque 1996). As noted, interactive plans are re-
quired if we are to perform induction over a collection of
initial situations. This language is the closure of the follow-
ing:

seq(a, p), for action a and p-plan p

branch(a, p1, p2) for action a and p-plans p; and py

loop(p1, p2) for p-plans p; and py

next and exit

Call this language P. Below, we will define a correct plan
as a p-plan which causes the goal to be reached.

Given a planning domain, we will not in general want to
consider all possible initial situations; some of these initial
situations will be degenerative, and we would expect a plan
to fail for these. Some initial situations will be valid states
for commencing the execution of a correct plan which we
expect will lead to the goal, named success initial situa-
tions. For a given problem, these will be terms of the form
s0(i), denoted S. An initial fluent value is a potential value
of a fluent in the initial situation, and will have the form
£l s0(0)):

Some planning axioms are also required; they are given
in P, which is a fragment of a logic program based on the
robot program axiomatization (Levesque 1996). These ax-
ioms give precise conditions for a p-plan moving the state
from one situation to another. This permits the clausal def-
inition of a predicate moveto(p, si, st), with intended inter-
pretation that the execution of p-plan p in situation s; may
lead to some situation s;. We then check that the goal flu-
ents have appropriate values in sy to make the statement that
the p-plan works. The following axioms for P are required;
they are taken directly from (Levesque 1996):

P(SEQ(aap)vsivsf7w) —
Poss(a,s) A P(p,do(a, s;), sy, x)
P(next, s, s, 1)
P(exit, s, s,0)
P(branch(a,p1,p2), si, 57,) <
Poss(a,s) N SF(a,s;) A P(p1,do(a, s), sy,
P(branch(a, p1,p2), si, Sf,T) <
Poss(a,s) AN=SF(a,s;) N P(
P(loop(p17p2)75i75f’x) —
P(phsivs/ao) /\P(p275/78f7
P(lOOp(pl,pQ),Si,Sf,.’E) —
P(p175i75/a 1) A P(ZOOP(p17P2)75/a Sf,
moveto(p, s;, s¢) «— P(p, si,s¢,1)

x)
p2,do(a, s), sy, x)
x)
x)

Informally, the predicate P makes the plan progress forward
by one action.

Mapping Piles to Identification

Suppose we have the following axiomatization in the Piles
domain as described informally in Example 1; for actions
we have:

e sensing action empty where Poss(empty, s) is always
true and SF(empty,s) <« bagCount(0,s)—we are
“empty” if the bag of blocks is empty.

o put(k) with Poss(put(k), s) < bagCount(n,s)An > 0.
Here SF is an axiom for sensing actions, which gives the

result of performing a sensing action at any time.
For successor state axioms we have:

e bagCount(n — 1, do(put(k), s)) < bagCount(n, s)

e pileCount(k,n + 1, do(put(k), s)) <
pileCount(k,n, s)

e Frame axioms for the fluents

We now want to develop interactive plans which satisfy
these conditions, called Dp;z, g, plus some collection of ini-
tial situations.

Rather than having the initial situations being presented
logically, we will present them using the following coding c,
where c(k) is defined as

{bagCount(k, so(k))} U {pileCount(i,0, so(k)) : ¢ € N}
Further suppose we have a function p where:

p(z) = loop(seq(put(1),...seq(put(z),
branch(empty, exit, next))...)

with x many puts in the sequence. The examples in the
discussion above are for p(4) and p(5).

Suppose we have a second-order axiom 1) to minimize the
P predicate above. A plan will exist for a single instance of
k if there is a number ¢ satisfying XU Dy, UD pr g Uc(k)U
P U{Y} = Vs moveto(p(i), so(k), s¢).

Suppose weset L, = {k-i:i e N}tand L ={Ly : k €
NT}. Then the following can easily be shown:

Proposition 2. There is a learner f which identifies L.

Having set f({i1,...,ix)) = ged({i1,..., % }), it is easy
to verify that f is a learner for L. More importantly, the
functions p and c (or its inverse) allow us to map a sequence
of sets of initial fluent values to a plan for L. With L} =
{c(@) : i € N}, itis clear that we can analogously identify
L from an enumeration, to produce an integer index for 7,
and then map this index using p to a plan for solving the
planning problem above. The semantics of planning have
become equivalent to the act of identifying a collection of
initial situations. 4

One possible complaint is that the limiting planning agent
will never know that the plan is correct—correctness here
is a limiting property. The usual expectation is that a plan-
ner outputs a single (correct) plan in response to any prob-
lem. For the natural class of problems we are considering,
it is impossible to construct a (conventional) planner which
produces only correct plans. The following propositions are
straightforward consequences of learning theory and are de-
rived from similar results in (Jain et al. 1999). They show
that an identification-in-the-limit approach is necessary for
solving problems in some planning domains, but incapable
of solving all planning problems.

Suppose 0 is the index for the empty set. Define e; as the
ith element of enumeration e. In the manner of (Jain et al.
1999), define a self-monitoring learner as a learner f such
that for all enumerations e, there exists a unique n € N such
that f(e,,) = Oand for all i > n, f(e;) = f(ej+1). The idea
is that 0 is used as a marker in the output indicating that the
following values will be definitive.

Proposition 3. No self-monitoring learner can identify L.

The relevance of this is that it shows the limiting planning
framework is distinct to the open-world and closed-word
frameworks. One natural suggestion is to build a system
which accumulates the initial part of the sequence as it be-
comes available, and use some mechanism m which takes
this initial part of the sequence as its argument to determine
when enough data is available. Once m reports that suffi-
cient data is available to produce a plan, it hands that data
over to a conventional planner. Using m and a conventional
planner, we can however construct a self-monitoring learner
for £, so no such m can exist. While this argument is pre-
sented informally here, formalization is not difficult.

It should also be clear from this analysis that the problem
of finding a correct plan requires some kind of iterative plan-
ning for all but the most trivial cases. In particular, it is not
possible to find a conditional plan which identifies £ above,
but there is an iterative plan for every member of L.

Logical Framework
Representing Data

While all of this work is perhaps interesting, logic is not a
first-class citizen in the above analysis; the situation calcu-
lus is just a formalism that encodes the problem. We now
present a logical account. In this inductive framework, some

“Note that this is a discussion of the semantics of planning; it is
of course not being suggested that the g.c.d. operator is a general
planning mechanism.

formalism is required to represent sequences of initial sit-
uations, each of which intuitively corresponds to the direct
observations an agent can make. Suppose we have some
theory of action D, then this sequence ought to have several
features:

e it must be an enumeration, that is every initial situation
must appear at some stage in the sequence,

e it must be consistent with D,
e it must consist of literals

The restriction to literals makes sense given that the se-
quence is meant to represent primitive observations an agent
can make. For instance, it seems intuitively reasonable that
an agent can observe a directly that the initial situation has
15 blocks in the bag, but it does not seem reasonable that an
agent can observe “all bags contain a multiple of 5 blocks”.
However, this statement does seem appropriate as back-
ground information, since it might be possible that our agent
somehow knows this information a-priori.

In this way, we identify two sets of formulas, one being
possible data D, corresponding to possible observations, that
is formulas which may appear in an enumeration, the other
being possible assumptions A, a collection of formulas from
which we will draw background information. The observa-
tions will be a subset of). Suppose we have some vocabu-
lary 'V for the situation calculus. To build a theory of action,
the possible assumptions will be the collection of possible
successor state and action precondition axioms over V, with
those axioms in Dg, which do not describe initial fluent val-
ues.

The collection of possible data will be the collection of
possible initial fluent values. For instance, in the piles ex-
ample, it will be the collection of all positive instances of
the bagCount predicate, i.e. D = {bagCount(n, so(i)) :
n,i € N}

We can form a subset of D from a structure 9t by taking
the collection of all the formulas of D true in 901. Call this
subset the D-diagram of 91, and write:

Diagp (M) = {o € D : M |= ¢}

To constrain this further, we do not permit arbitrary pos-
sible worlds, but restrict to Herbrand structures. This makes
the foundation axioms and the unique-names axioms of the
situation calculus implicit, as well as ensuring that there are
no non-standard elements corresponding to non-realizable
potential plans. Using answer-set semantics, as do Baral
and Gelfond (Baral & Gelfond 1999), would have a simi-
lar effect, however we would not have the limiting property
in our semantics. This restriction causes the foundational
axioms and the unique names axioms to be satisfied. There
will also be some domain theory D which is a subset of A,
that is a collection of action preconditon and successor state
axioms, alongside any axioms from Dsj which do not de-
scribe initial fluent values. For the class of intended models
of a background theory, it is sensible to follow the exam-
ple of various situation calculus frameworks and choose the
class of Herbrand models of D as intended models.

With these elements in place, it is possible to describe
a planning problem, which are the objects from which in-

ference will be performed. A planning problem is a set of
formulas of the form D U Diagp (90t), where 9t = D and
each fluent has a unique value in each initial situation. This
is then the domain theory with the collection of initial con-
ditions an agent might encounter attached to it.

Define a D-minimal model of ' = D U Diagp (90) as a
Herbrand model of 7" with a minimal ID-diagram under set
inclusion. The relation T =" ¢ is read as “every ID-minimal
model of 7" is a model of ¢.” Suffice it to say here that this
logical consequence relation is stronger than classical logi-
cal consequence, so if T = ¢ then T =" . Of course,
the converse does not hold in general. Since this notion
is not compact, it requires a more general notion of proof;
identification forms the crux of this notion. The motivation
and a discussion of the model theory of these semantics are
in (Martin, Sharma, & Stephan 2002).

Using this, we can at last formally define an [-planner as
a partial function from initial segments of enumerations of
some D to the collection of p-plans.

Limiting Resolution

Limiting Resolution (LR) is a resolution system which pro-
vides a proof procedure sound and complete with respect to
the above semantics (="). A complete exposition appears
in (Caldon & Martin 2004), but an abbreviated description of
the LR procedure is given here. A program (called a limiting
definite program) is a form of general logic program, which
includes negative D-literals, the full details of which are ex-
plained in (Caldon & Martin 2004). A particular feature of a
limiting definite program is the inclusion of an enumeration
of some Diagp (91) above. A limiting definite query Q is a
closed formula of the form: 3z (v (Z) A Vy—x(T, 7)) (with
additional restrictions on v and x), and the LR procedure
will construct a sequence of computed answer substitutions
(c.a.s.) based on such a query and a limiting definite pro-
gram. The query attempts to find a witness for T generated
by 1; x can be seen as a test phase for the generated witness.
Note that there is no requirement for 1) to be decidable.

Given an enumeration (@i, ps,...) of the Diagp ()
component of some planning problem, the LR procedure is
as follows:

Set 1=0; Set k=0

Loop:
Set P=BU{¢1,...,0i}
Attempt ¢ over P producing {6i,..., 6;}

For each witness 6; attempt x-6; over P:
If x-6; does not succeed
within ¢ steps for some j <¢,
choose least j and place 6#; in S;
Increment 4; If S; # Si;—1 increment k
Report (S:, k)
End Loop

Here x - 6 is the formula produced from x by applying
the substitution . Wherever the algorithm states “attempt
query,” construct a SLD-resolution tree from the query 1 or
X - 0 and theory P to produce a collection of unifiers in the
standard fashion, except that negative D-literals in the par-
tial tree unify with negative D-literals in the program. The
output of the algorithm is the reported sequence of sets of

computed answer substitutions, along with the number of
mind changes so far: (S;, k). Note that the procedure is non-
terminating, so the sequence is infinite. If there is an upper
bound on the number of mind changes k in the ordered pair,
then the procedure is said to succeed for @); otherwise it
fails. If the procedure succeeds, then the successful witness
is the substitution corresponding to this upper bound. The
procedure is sound and complete, that is the procedure will
succeed for some limiting definite program P and query Q
iff P |:D Q. There are clear similarities with SLDNF, how-
ever unlike SLDNF, we replace finite failure with a limiting
(i.e. non-finite) version of failure.

Planning Problems

Suppose that D can be expressed in a limiting definite pro-
gram. Note that by using a subset of the Lloyd-Topor trans-
formations, the axiomatization for Example 1 can be readily
transformed into a limiting definite program.

On account of the use of a minimal model semantics, we
could re-express this theory as its Clark completion. Nega-
tion occurs in the above theory, in ~SF' and in inequality
which will appear in the frame axioms; the existence of this
precludes the theory in its above form from being a limit-
ing definite program. However, in the context of solving
planning problems, the value SF' should be completely de-
termined by the (finite) collection of initial fluent values cor-
responding to an initial situation and the successor state ax-
ioms. Further inequality can be expressed positively under
the assumption of a finite vocabulary. If this condition holds
in any enumeration of Diagp, (91), all positive fluent values
for the initial situation will eventually appear, enabling us to
use negation-as-failure to determine the value and SF'. Note
that here none of the axioms require an explicit modal op-
erator, which is defined in terms of a successor state axiom
for K in (Levesque 1996). Further unlike this work, since
we are restricted to Herbrand structures in the logical conse-
quence relationship and limiting definite programs, we will
necessarily have the minimal such P and do not need an ex-
plicit second-order axiom to guarantee the minimal such P.
As per Levesque’s comments, the distinction between next
and exit is that inside a loop(r;,), the former causes r;
and then the loop to be executed, whereas the latter causes
r; to be executed.

Thus far this is close to the conventional development of
planning using the situation calculus. We do not however
require a closed initial database; instead D is defined as the
collection of predicates of the form f(v, so(4)), with the in-
tended interpretation that fluent f has value v in situation
s0(2). Choosing a particular Herbrand model 2t of D is
equivalent to setting the initial fluent values for the problem
at hand.

We choose the collection of initial situations for which we
intend our (correct) plan to succeed by enumerating all the
members of D true in some structure 97. The set Diagp, (97)
will take the role of D, in more conventional developments
of the planning using the situation calculus. Note we don’t
need any additional axioms in Dg,, but it might be conve-
nient to add them in practice for performance reasons. For
instance, we might want to add pileCount(z,0, so(7)), but

this is not required.

Thus in a particular domain, every planning problem is
identified with a particular subset of D which is consistent
with the background knowledge. The background knowl-
edge will specify a collection of Herbrand models. A par-
ticular, such structure 9t will be selected (as a particular in-
stance of the problem, this instance being a priori unknown
to the planner), and the 1-planner will receive an enumera-
tion of Diagp (91). If a solution exists, the 1-planner will
be able to identify the particular Diagp(9) of interest. A
byproduct of that identification is a plan. Putting all this to-
gether, the program will be of the form D U P U Diagy, (91).
Note Diagy, (991) can be infinite.

For example, suppose 91 is an interpretation of Dp;rp
with 10, 15,20, ... blocks inside the bag in the situations
50(). This would give the set

{bagCount (10, s0(1)), bagCount (15, s9(2)), ... }U
{pileCount(x,0,s¢(7)) : x,i € N}

as Diagp (01); note that there are no negative literals here.
Now one enumeration of Diagy, (97) might be:

(pileCount (2,0, s0(2)), 1,
bagCount (10, so(1)), bagCount(15, s0(2)), 1, ...)

Recall that every element of Diagp, (9)t) must appear in an
enumeration; so for any ¢, by examining a sufficiently large
initial segment of an enumeration, we can be sure that all the
initial fluent values for sq(¢) have been specified.

The goal is specified in a logical formula; to fit in nicely
with the query syntax, we specify a non-goal state. For Ex-
ample 1, this is:

nongoal(s) < 3k, ko, n1,na(pileCount(ky,nq,s) A
pileCount(ka,na, 8) ANk1 # ko Ang >0 A
ng > 0 Ang # ng) V kpileCount(k, 1, s)

Queries for Planning

Most deductive planning approaches (e.g. (De Giacomo et
al. 1997; Levesque 1996)) answer an existential query to see
if a (correct) plan exists, i.e.: is there a sequence of actions
that, starting from the initial state, leads to a state where a
given property (the goal) holds? In the situation calculus,
using the domain described by D starting at situation s (de-
scribed by Ds,), this will be equivalent to discovering

Ds, UDUP = 3p, sy moveto(p, so, S¢) A goal(sy) (1)

and further whether it is possible to find a specific term as a
witness for p. Conventional situation calculus approaches
would also add second-order axioms to minimize the P
predicate and restrict actions to standard terms.

If there is a planning language allowing for conditional
plans and loops, then p, instead of being a sequence of
actions, is a term in the planning language. In this case,
directly solving planning problems using a naive theorem
proving approach is difficult. For this reason, it has been
proposed to solve this problem by solving a series of prob-
lem instances. The problem instances themselves should be

demonstrably solvable, so were it possible to find a solution
solving all of these problem instances, we will be able to
produce a solution to the entire problem.

We choose the collection of initial situations for which
we intend our correct plan to succeed by enumerating all the
members of D true in some structure 1.

Definition 4. Say that there is a correct plan for some plan-
ning problem in the form D U P U Diagp (IN)° if:

D U PUDiagp (M) =2 Ip(plan(p) A

2
Vi, sy satisfiesGoal(p, so(i),sy)) @

The intended interpretation is that plan(p) is true iff p is a
member of P, and situation(x) is true iff is a member of L.
Define the abbreviation satisfiesGoal:

satisfiesGoal(p, so(i), sf) < situation(so(i))
— —(moveto(p, so(t), sf) A nongoal(sy))

Call the query in (2) the problem query for D U P U
Diagp (901). Note that the satisfiesGoal abbreviation can
be expressed as the negation of positive predicates; this is
the requirement for a limiting definite query. This abbrevia-
tion corresponds to the subformula —x (%, 7) in the LR query
form above. Non-goals are used here as they happen to be
more convenient to fit into the LR query syntax. It says: it
never happens that a success initial situation leads to a fail-
ure situation, the desired safety property.

Note that s is in fact calculable from p and s¢(%), so sf
could be expressed as a function of p and sq(¢) were we not
restricted to Herbrand models. The predicate above forms
5y in an analogous manner to PROLOG execution. The ob-
jective is to construct a witness for p. When implemented
in the LR framework above and p-plan errors are found,
the program backtracks to construct another potential plan.
Should the execution of a particular p-plan be undecidable in
the context of the action theory, execution will proceed until
more data appears, and the p-plan generated on the back of
the additional data is re-evaluated.

The plan(p) is the ¢ (T) in the LR query.

Proposition 5. Suppose DUPUDiagy, (IN) is a limiting def-
inite program describing a situation calculus domain (that
is, interpretable in a situation calculus theory) with a finite
number of fluents, which in any particular initial situation
have at most a finite number of possible values. Then the
LR procedure applied to query (2) will generate a successful
witness iff the relation in (2) holds.

Note that the LR procedure is the I-planner which in this
case, will produce a plan which works in every initial situ-
ation. The proof is straightforward but tedious, and based
on (Caldon & Martin 2004), which shows that a limiting
definite program and query are solvable by LR iff a solu-
tion exists. The restriction to limiting definite programs is
a substantial restriction. The finiteness criterion on the vo-
cabulary is essential, as it permits one to avoid using the

Recall D = TUD,,UD;sUDs, in conventional developments
of the situation calculus.

Lloyd-Topor transformations directly, and express negation
by constructing an alternative positive predicate represent-
ing the negated concept; this could also be done with a fi-
nite domain solver. The proof consists of verifying that the
axiomatization of P can be expressed as a limiting definite
program.

If we were to assume that the “generate” and “test” phases
of the planning activity were decidable, then this strat-
egy would also be trivial, but note that the paper (Lin &
Levesque 1998) shows how to give a coding for a Turing
machine with looping conditional plans.

Extensions
Comparison with KPLANNER

The KPLANNER system(Levesque 2005) can be viewed as
a fragment of this procedure with an extra axiom added.
The KPLANNER system works by distinguishing a particu-
lar fluent called the planning parameter, which is unknown
at planning time and for which no loop would be required
if the value were known. Whereas for KPLANNER it ap-
pears that every plan with a different planning parameter in-
stance is expected to have a correct plan, here we demand
the weaker condition that under these semantics, all mem-
bers of Diagy, (991) must have a correct plan.

The KPLANNER system allows for the relatively effi-
cient generation of plans with loops. Rather than enumer-
ate all possible plans, it generates a conditional robot plan
based on one particular fluent value (the generate value) us-
ing a regression-based technique and then attempts to see if
there is an iterative robot plan equivalent to it, by unwinding
the loop. Having built this plan, it then sets the planning pa-
rameter to the (much larger) fest value, and checks that this
robot plan works. Generation of the conditional plan is per-
formed by regression in a similar system to INDIGOLOG.
While the example theory is not regressible, it is not diffi-
cult to employ a KPLANNER style technique here to find a
solution.

Suppose D;, are our initial conditions in a conventional
situation calculus planning framework. To these we can add
a fluent parameter, and any extra formulas required to fur-
ther restrict the initial fluent values.

For instance, in the above example, we could set

parameter(n, s) < bagCount(n, s),

so parameter would correspond to the bagCount fluent.

Note that while this approach will solve the KPLANNER
examples, it is more general as we do not require the modal
operator here. In our semantics, a correct plan may work
for five initial blocks but not for four, whereas KPLANNER
would interpret the fluent as meaning “there are (inclusively)
up to five blocks on the table,” encompassing the possibility
of there being four blocks there.

Add the kpGen and kpTest predicate symbols to the vo-
cabulary, and add the axioms:

kpGen(p,n) < 3sf,i parameter(n, so(i)) —
moveto(p', so(), sy) A goal(sy) A unwind(p,p’)

kpTest(p,n) < 3s¢,i parameter(n,so(i)) —
moveto(p, so(i),ss) A goal(sy)

If we were to be truer to the KPLANNER spirit, we would
ensure that moveto was regressible. Unwind converts the
conditional robot plan into an iterative plan. This formula
captures the KPLANNER ‘generate’ step. Let P’ be P with
this axiom and these parameter formulas added.

Finding a p-plan which solves a problem instance (in a
conventional situation calculus indexed by n¢) then amounts
to solving for p: DU P’ |= Ip kpGen(p, ng).

In KPLANNER the following inference rule is being em-
ployed (abusing natural deduction style notation):

kpGen(p, so(ngen)) kpTest(p, so(niest))
Vn € N kpTest(p, so(n))

Here nge,, is a generate value for a potential plan, and nses¢
is a test value for the potential plan. In KPLANNER, clever
use of the modal situation calculus can permit a robot plan
to be shown to work for numbers less than the generate or
test value; we do not require this here. It is clear that this
rule is unsound, and not difficult to find planning problems
which encounter this unsoundness. For practical use of this
system, an appropriate n:.s; must be found. A user may run
KPLANNER several times with different choices for nscs:
in an attempt to invalidate their choice. The LR procedure
explicitly incorporates this invalidation step, but does not de-
pend on the decidability of the p-plan generation.

We can generalize the KPLANNER query and effectively
borrow wholesale its plan generation technique by consider-
ing:

D U PUDiagp (M) => Ip(kpGen(p, ngen) A
Vi, s p satisfiesGoal(p, s0(4), s¢))

In KPLANNER, the choice of 91 is equivalent to choos-
ing a mapping p : N — 2{/(v:50(v)wE€V} "where V is the
collection of possible values of some particular fluent f, and
all other fluents have the same value for all the sq (7). If we
set Diagp (91) to be {f(1(n),so(n)) : n € N} for some
particular i, the correspondence between the frameworks
becomes clear. In all the examples given in (Levesque 2005),
L is the identity mapping.

3)

Other Limitations

It is not the case that this strategy will work for all problems
of this style. The X5 syntax (i.e. JaVy matriz(z,y)) of
the limiting definite query is an essential and permits this
strategy to work. For more complex queries, this condi-
tion breaks down; it is possible to output a particular p-
plan cofintitely many times despite this being a non-working
plan. Suppose we are interested in the following problem
when we plan with exogenous actions which are presented
to the planner as a finite sequence coded as the argument
to some predicate in ID; sample members of D would be
exogenousAction([aq, ..., a]) for actions v, ..., k.

We don’t give full details of how to build a situation cal-
culus framework using exogenous actions here, but given
these elements it is not difficult to imagine a framework.
One can imagine adapting a fragment of the framework in
the style of (Giacomo, Lesperance, & Levesque 1997) to at-
tempt planning with induction and exogenous actions, and

using the sequence of actions provided in the execution of
the robot program with exogenous actions. For this analysis
a simpler framework suffices. The P predicate above is ex-
tended to give an additional argument, a sequence of poten-
tial exogenous actions. An exogenous action is performed in
preference to the p-plan action unless the exogenous action
is , representing a null action.®

Were such a framework constructed, one may wish to ask
the following kinds of questions:

Is there a correct plan p which works in some (pos-
sibly infinite) collection of initial situations s(z) such
that for all ¢ where p causes the goal for ¢ to be satis-
fied, there exists some sequence of exogenous actions
e causing some additional goal to be reached.

We can formalize this as the query as:

3p plan(p) A [Ve,i (exogenousAction(e) A situation(i))
— satisfiesGoal(p, e,i) A (Fe’ exogenousAction(e')A
satisfiesAdditionalGoal(p, € ,i))]
“)

Here the three-place satisfiesGoal will be identical to the
above binary satisfiesGoal with the exception of a sequence
of exogenous actions which may be provided for the plan-
ner to deal with. This assumes that satisfiesAdditionalGoal
is essentially identical to satisfiesGoal but with a differ-
ent predicate instead of nongoal describing some additional
goal. Constructing this is straightforward.

Unfortunately, it is not possible to construct a 1-planner
f which solves this problem. For suppose we have a Godel
coding scheme for the situation calculus language, and "z
is the number which codes for z. Suppose o; . is the se-
quence of the initial ¢ elements of an enumeration e of codes
of Diagp, (91). There is no learner f having the property that
foralle f(o;) = "t, " for some ¢, which is a witness for p
in (4) for cofinitely many ¢. It follows directly from this that
there is no l-planner which converges iff (4) has a witness
for p.

A formal proof would require showing that there are sets
of X3 complexity in the arithmetic hierarchy described by
the above formula. Note that such a learner is constructible
from the LR procedure for (2); this shows that there can be
no analogous procedure to the LR procedure for the above
problem.

If ezogenousAction were some non-recursive predicate a
similar argument would apply. On the other hand if there is a
decidable procedure allowing one to produce the appropriate
exogenous action sequence from the p-plan and the initial
situation, then this counter-example breaks down.

An Optimizing Planner

Suppose we instead want an optimal (correct) plan:
Example 6. Solve the problem of Example 1 but with the
additional condition that the piles be as large as possible.

8See appendix for an axiomatization of this

There is a clear similarity between this problem and find-
ing the greatest common divisor of an infinite collection of
numbers, and the infinite g.c.d. problem is a clear analogue
to the lower-bound problem of the previous paper. The so-
lution to this problem assumes an order on plans, with some
plans being preferable to others. Suppose that our vocabu-
lary contains the binary predicate symbol =< for an order on
plans.

Say that a partial order (X, <) has finite tips iff for all
members x of X, the set of all y € X with x < y is finite.
For example, the interpretation of < as < over the negative
numbers has finite tips, but this interpretation over the in-
tegers does not have finite tips. Let K be a collection of
formulas such that for all Herbrand models 99t of K, the in-
terpretation of < in M is fixed (independent of 9N) and is a
partial order with finite tips.

Let ¢ be the closed formula 3Z (1 A Vy(—ha A VZ(E —
—1)3))) where:

e 11, 19 and 13 are built from formulas, all of whose closed
instances belong to D or theoretical atoms built from pred-
icates of a limiting definite program, using A and V only.

e ¢ is built from formulas of the form x < z, with z a vari-
able that occurs in T and z a variable that occurs in Zz,
using V and A only.

Then there exists a partial function f, defined on the set of
finite sequences of members of D into {0, 1} such that for
all Herbrand models 9t of K and for all enumerations e of
Diagp,(901), f converges on e to 1 iff Diagp, (9) = (. Note
that there is no guarantee that f is computable in general.
But if K is defined by one of our extended logic programs,
and if this logic program is able to generate the set of terms
“better”, w.r.t. =, than a given closed term, then f can be
made computable. This is implemented in an extension of
LR, the optimizing limiting resolution procedure:

Set i=0; Set k=0
Loop:
Set P=BU{p1,...,9i}
Attempt query 1 over P yielding {6:...0;}
For each witness 0; attempt t2-60; over P:
If no success within % steps for 7 < 1
choose the least such j
Attempt queryt £-6; producing 6’
Attempt query vs - 6; - 6
If succeeds, backtrack to i
If does not succeed within
¢t steps for 5 < %
choose least j and put 6; in S;
Increment 4; If S; # S;—1 increment k
Report (Si,k)
End Loop

Proposition 7. Suppose B UDiagp, (9M) is a planning prob-
lem, and < is finitely refutable’ in the optimizing problem
query for B U Diagp(9). Then the optimizing LR proce-
dure will have an upper bound for k iff the formula (5) is
satisfied. If there is an upper bound, then the plan p; pro-
duced by the optimizing LR procedure for this k will be a
witness for p in (5).

’i.e. co-re.

Note that for given 6; the collection of #’ is finite and
decidable; each 6’ will contain a witness for z. Now we
can ask the query:

DU P UDiagy(M) = 3p kpGen(p, ngen)
A Vi, s5 satisfiesGoal(p, so(i),sf) N
Vp' [works(p', ngen) A
Vi', sy satisfiesGoal(p, so(i)', s) — —(p < p')] (5)

Recall satisfiesGoal is the subformula in (2). This is sim-
ilar to the (2) query with the additional restriction that the
an optimal correct plan in the < ordering is chosen. The
= predicate determines the number of stacks after p-plan
execution with the n4e, value and performs reverse integer
comparison on these values. Since this fluent is a natural
number, it will have finite tips. Note that there are domains
where many properties will not have finite tips.

Conclusion

This analysis gives insight into why the KPLANNER frame-
work seems to work in practice, despite being unsound.
When attempting to use KPLANNER for a task one chooses
the test value so as to be likely to invalidate non-working
(potential) plans—one plays devil’s advocate, trying to find
a way of destroying the constructed plan. The modal flu-
ent semantics make it easy to test a finite range of values at
once. What happens if the planner nevertheless produces an
invalid plan? In practice the user of such a system would
iterate a process of fiddling with this test value to invali-
date the incorrect plan and eventually cause a working plan
to be produced. The analysis of KPLANNER in this pa-
per incorporates this “fiddle” process directly into the limit-
ing planning semantics, and the resulting procedure is sound
and complete. In this way one can argue that KPLANNER
is a fragment of a sound and complete identification in the
limit procedure, and this is the reason why the procedure
works in practice. The procedure can then be extended to
optimal planning. Unlike KPLANNER, instead of the task
being: “given a goal, find a robot program that achieves it”,
the task is transformed into: given a goal and a collection
of initial conditions, find a robot program which describes
those initial conditions. A robot program is now a pattern
that describes precisely the set of initial conditions of inter-
est.

Clearly, an alternative to this enumeration is to provide
some finitely describable property which characterizes the
success initial situations; however, for some problems, such
a description may not exist or may not be easily available.
In particular, the case (as here) where the domain is poten-
tially infinite requires a different approach to that employed
in conventional planning, and extends existing work on plan-
ning with incomplete information. One could argue that the
semantics are unrealistic, inasmuch as the soundness and
completeness are limiting properties, and thus any planner
will not be able to detect whether a plan is successful or not.
We have shown that the limiting property is essential to a
subclass of these problems, and that it is impossible to attain
better results in general. Nevertheless, we have shown that it

is still possible to produce workable inductive planners de-
spite these constraints.

It is not straightforward whether there is a difference in
power between the simple limiting planner and the opti-
mizing planner; that is, whether for any optimizing (pro-
gram,query) pair, there is a simple (problem, query) pair
such that the solution to the simple problem is also a so-
lution to the optimizing problem for any choice of structure
to be enumerated. We conjecture that there is a difference in
the strength between the two planners.

References

Alchourron, C.; Gardenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction
and revision functions. The Journal of Symbolic Logic
50(2):510-530.

Baral, C., and Gelfond, M. 1999. Reasoning agents in
dynamic domains. In Minker, J., ed., Workshop on Logic-
Based Artificial Intelligence, Washington, DC, June 14-16,
1999. College Park, Maryland: Computer Science Depart-
ment, University of Maryland.

Caldon, P., and Martin, E. 2004. Limiting Resolution:
from theory to implementation. In Proceedings of 20th In-
ternnational Conference on Logic Programming. St Malo,
France: Springer Verlag.

De Giacomo, G.; Iocchi, L.; Nardi, D.; and Rosati, R.
1997. Planning with sensing for a mobile robot. In Pro-
ceedings of the European Conference on Planning (ECP-
97), number 1348 in Lecture Notes in Artificial Intelli-
gence, 156—168. Springer-Verlag.

Giacomo, G. D.; Lesperance, Y.; and Levesque, H. J. 1997.
Reasoning about concurrent execution, prioritized inter-
rupts, and exogenous actions in the situation calculus. In
IJCAI 1221-1226.

Gold, E. M. 1967. Language identification in the limit.
Information and Control 10.

Jain, S.; Osherson, D.; Royer, J.; and Sharma, A. 1999.
Systems that Learn. Cambridge, Mass., USA: ML.L.T. Press,
second edition.

Levesque, H. 1996. What is planning in the presence of
sensing? In Proceedings of AAAI-96 Conference, 1139—
1146.

Levesque, H. 2005. Planning with loops. In Proceedings
of the IJCAI-05 Conference.

Lin, F., and Levesque, H. J. 1998. What robots can do:
Robot programs and effective achievability. Artificial In-
telligence 101(1-2):201-226.

Martin, E.; Sharma, A.; and Stephan, F. 2002. Logic,
learning and topology in a common framework. In Cesa-
Bianchi, N.; Numao, M.; and Reischuk, R., eds., Proceed-
ings of the 13th International Conference on Algorithmic
Learning Theory. Springer Verlag.

Reiter, R. 2001. Knowledge in Action. MIT Press.

