
Updates in Answer Set Programming based on structural properties

Fernando Zacaŕıas, Mauricio Osorio, J. C. Acosta Guadarrama∗ and Jürgen Dix
U. Autónoma de Puebla, 14 Sur y Av. San Claudio, PUE. Mexico,

fzflores@siu.buap.mx
U. of the Americas, Puebla, Sta. Catarina Mártir, Cholula,PUE. 72820 Mexico,

josorio@mail.udlap.mx
Clausthal University of Technology, Julius-Albert-Str. 4, Clausthal-Zellerfeld, 38678 Germany,

{guadarrama, dix}@in.tu-clausthal.de

Abstract

Revising and updating knowledge bases is an im-
portant issue in knowledge representation and rea-
soning. Various proposals have been made recently
for updating logic programs, in particular with re-
spect toanswer set programming. So far, most of
these approaches are based on thecausal rejection
principle but most of them are showing an unin-
tuitive behaviour. Our update semantics (based on
minimal generalised answer sets) satisfies several
structural properties and avoids problems of the
other proposals. In addition we introduce some new
properties that we consider an updating/dynamic
semantics should fulfill too:Weak Irrelevance of
Syntax andStrong Consistency. We compare our
approach with the well-knownupd operator due to
Eiter et al. and show that it satisfies the new prop-
erties.
Keywords: Answer set programming;N2 logic;
Updates; Properties.

1 Introduction
In the last few years, a lot of work on updating knowledge in
the context of logic programming focussed on semantics sat-
isfying certain structural properties[Zacarı́as Flores, 2005;
Osorio and Zacarı́as, 2004; Alfereset al., 2004; Leite, 2003;
Eiter et al., 2002]. This dates back to ideas originally intro-
duced by Makinson, Kraus, Lehmann and Magidor and in-
vestigated in detail for logic programming semantics by Dix
(see[Dix, 1995; Brewka and Dix, 1998; Dixet al., 2001]).

However, as pointed out in[Alferes et al., 2004], despite
several existing semantics for updates, there is still no com-
mon agreement on which is the “right” semantics. Some au-
thors have tackled this problem by a detailed analysis and
comparison of different semantics based on structural proper-
ties (see[Eiteret al., 2000; Leite, 2003]).

We believe that, besides the properties described in[Eiter
et al., 2000; Leite, 2003], other important properties are nec-
essary to test the adequacy of semantics for logic program
updates. So we have started to work in this direction in[Oso-
rio and Zacarı́as, 2003; 2004].

∗This project is partially supported by a CONACYT PhD grant.

Regarding the structural properties for updates that we con-
sider a semantics should fulfill, we have one that says that if
we can update a theoryT byT1, the result should only depend
on thelogical contents ofT1, and not on the particular syntax
used to writeT1. This property is calledWeak Irrelevance
of Syntax (WIS in short).

In addition, Pearce[Lifschitz et al., 2001] noticed that an-
swer sets can be expressed naturally inN2 (obtained from
intuitionistic logic by adding the axiom schemaF ∨ (F →
G) ∨ ¬G and axioms of Nelson logic —see[Rasiowa, 1974]
for more details). As a consequence one can define two theo-
riesT1 andT2 to be equivalent wrt.N2, if they are equivalent
in N2: T1 ≡N2

T2.
From the viewpoint of answer set programming, however,

T1 andT2 are equivalent if they have the same answer sets,
denoted byT1 ≡ T2 (there are some other notions of equiv-
alence, notablyuniform andstrongequivalence, but for our
purposes the notion just defined is sufficient).

Accordingly we combine these approaches to update non-
monotonic knowledge bases represented as extended logic
programs under the answer set semantics and define the prop-
erty ofWeak Irrelevance of Syntax

Definition 1.1. (WIS): If T1 ≡N2
T2 then T ⊘T1 ≡ T ⊘T2

where⊘ represents our update operator.

Note that≡N2
is much stronger than≡. Replacing≡N2

by ≡ does not make sense as can be seen by the following
example:T := {b}, T1 := {a ← , b ← b}, T2 := {a ←
¬b, b← b}.

Moreover, in this paper we introduce a definition for up-
dates based on the notion ofminimal generalized answer sets
that satisfiesWIS, as well as a new property that we called
Strong Consistency. We show that the latter, together with a
set of basic structural properties[Osorio and Zacarı́as, 2004],
is satisfied for this definition.

Intuitively, Strong Consistencystates that the addition of
rules like{a← b, b← a}, should not result in any additional
answer sets.

Consider the following example, inspired from[Alfereset
al., 2004], describing some beliefs about the sky.

Example 1.1. Let P1 be:

day ← ¬night



night ← ¬day

see(stars) ← night ∧ ¬cloudy

∼see(stars) ← ⊤

The only answer set is{day,∼see(stars)}.
But consider the following program and suppose thatP1 is

updated with it.
Let P2 be:

see(stars) ← see(constellations)

see(constellations) ← see(stars)

As we can see,P2 contains only one new constant
constellations and a new atom “see(constellations)” with
respect toP1. Moreover,see(constellations) is considered
synonymous withsee(stars) by the two defining rules (note
there are no other rules mentioningsee(constellations)).
Thus this can be considered a conservative extension ofP1:
the language is extended but all answer sets should be ex-
tensions of the old answer sets:see(constellations) ought
to be true in any of them iffsee(stars) is true in it. How-
ever, according to[Alferes et al., 2004], P2 introduces a
new answer setfor nearly all existing update-semantics:
{see(stars), see(constellations), night}, which does not
coincide with our intuition. The reason is that although, in-
tuitively, see(stars) can not be true (because of the con-
straint) introducingsee(constellations) givesanother rea-
son for see(stars) to be true. In the semantics cited so far,
an additional answer set is introduced.

One can think of several principles relating to conserva-
tive extensions (extension-by-definition) to make sure that
this does not happen. In our approach, we formulate later on
the stronger property ofStrong Consistencyto avoid such a
behaviour.

The paper is structured as follows. In the next section we
introduce the general syntax of our framework. We then in-
troduce (Section 3) a new definition for updates based on the
notion of minimal generalised answer setsand show that it
satisfiesWIS. Section 4 contains our main results. They in-
clude aset of basic structural properties, as well as theWeak
Irrelevance of Syntaxand a property calledConservative Ex-
tension. We also compare our approach to the well-known
upd operator (due to Eiter et al.). In Section 5 we consider
logic programming with ordered disjunctions. Finally, the
conclusions are contained in Section 6.

2 Basic Notation and Background
We consider logic programs consisting of rules built over
a finite setA of propositional atomsA. Negative atoms
¬A (weakly negated atoms) correspond to default negation.
We then introduce strong negation as done in[Osorio and
Zacarı́as, 2004].

Formulaeare built from propositional atoms, the proposi-
tional constants⊤ and⊥, using negation (represented by¬)
and conjunction (represented by a comma “,”). Arule is an
expression of the form:

A← B1, ..., Bm,¬Bm+1, ...,¬Bn (1)

whereA andBi are atoms.¬B is also calledweakly negated.
If B1, ..., Bm,¬Bm+1, ...,¬Bn is⊤ then we identify rule

(1) with A. If A is ⊥ then the rule (1) can be seen as a con-
straint. Aprogramis a finite set of rules.

2.1 Adding strong negation
Strong negation is denoted by a unary connective “∼”. Syn-
tactically, the status of the strong negation operator “∼” is
both intuitionistically and epistemologically differentfrom
the status of operator¬. The difference is the following:
not p can be denoted by⊥ ← p, i.e., we use “not” when
it is believedthat there is no evidence aboutp —p is not true
by default. In contrast, we use∼p when weknowthatp does
not exist, is false or doesn’t happen.

Answer Sets are usually defined for logic programs pos-
sessing both default negation¬ and the second kind of nega-
tion (called strong negation) just introduced. A literal,L, is
either an atomA (a positive literal) or a strongly negated atom
∼A (a negative literal). For a literalL, thecomplementary lit-
eral, ∼L, is∼A if L = A, andA if L =∼A, for some atom
A. For a setS of literals, we define∼S = {∼L | L ∈ S},
and denote byLitA the setA∪ ∼A for all literals overA. A
literal preceded by¬ is calledweakly negated.

Therefore, a rule is an expression of the form:

A0 ∨A1 ∨ . . . ∨Al ← B1, . . . , Bm,¬Bm+1, . . . ,¬Bn (2)

whereA andBi are literals andl, m, n ∈ N. An Extended
Logic Program (ELP[Dix et al., 1996]) P is a set of rules of
the form (2). For any ruler of the form (2) we defineH(r) =
{A} andB(r) = {B1, . . . , Bm,¬Bm+1, . . . ,¬Bn}. Finally,
given a set of literalsA and a programP , we denote by¬A =

{¬a | a ∈ A} and we definẽA = LitP \A. In a similar way
as[Osorio and Zacarı́as, 2004], we use the logicN2 in this
paper.

2.2 Answer Sets
In this paper, we use the Gelfond-Lifschitz transformationas
used e.g. in[Brewkaet al., 1997]. However, we need to gen-
eralise this definition of answer sets in a similar way as done
in [Pearce, 1999], where the author has given a characteri-
sation in terms of certain non-classical logics. His definition
(taken from[Osorioet al., 2004a]) gives a complete charac-
terisation of answer sets for any theory.

We need the following notation:T N2
M is shorthand

for T is consistent (as aN2 theory) andT ⊢N2
M .

Theorem 2.1 (Characterisation of Answer Sets,[Osorio et
al., 2004a]). LetP be any program andM a consistent set of
literals. M is an answer set forP iff P∪¬M̃∪¬¬M N2

M .

2.3 Minimal Generalized Answer Sets
In this section we recapitulate some basic definitions about
syntax and semantics of abductive logic programs. These
semantics are given by minimal generalised answer sets
(MGAS), which provide a more general and flexible seman-
tics than standard answer sets.
Definition 2.1 (Abductive Logic Program,[Balduccini and
Gelfond, 2003]). An abductive logic program is a pair〈P, A〉
whereP is an arbitrary program andA a set of literals, called
abducibles.



Definition 2.2 (Generalized Answer SetGAS, [Balduccini
and Gelfond, 2003]). M(∆) is a generalized answer set
(GAS) of the abductive program〈P, A〉 iff ∆ ⊆ A and
M(∆) is an answer set ofP ∪∆.

Definition 2.3 (Abductive Inclusion Order, [Balduc-
cini and Gelfond, 2003]). We can establish an ordering
among generalized answer sets as follows: LetM(∆1) and
M(∆2) be generalized answer sets of〈P, A〉, we define
M(∆1) ≤A M(∆2) iff ∆1 ⊆ ∆2.

Example 2.1. Suppose{a,b} are abducibles and

P = {a← b, b← a, c← a}

Then{a, b, c}{a} (that is, the resulting answer set is{a, b, c}
and{a} is the abducible) is aGAS, since{a, b, c} is an an-
swer set ofP ∪{a}, as well as{a, b, c}{a,b} and{}{}. There-
fore,{a, b, c}{a} ≤ {a, b, c}{a,b}, since{a} ⊆ {a, b}.
However,{}{} is the minimalGAS of P , as{} is a subset of
any set.

Definition 2.4 (Minimal Generalized Answer SetMGAS,
[Balduccini and Gelfond, 2003]). M(∆) is a minimal gen-
eralized answer set of〈P, A〉 iff M(∆) is a generalized an-
swer set of〈P, A〉 and it is minimal w.r.t. abductive inclusion
order.

It is worth mentioning that minimal generalized answer
sets are used to define the semantics of CR-Prolog. Consis-
tency Restoring Rules is defined in[Balduccini and Gelfond,
2003] using this semantics.

3 Updates using Minimal Generalized
Answer Sets

In the last few years several proposals have been defined
for update logic programs[Eiter et al., 2000; Osorio and
Zacarı́as, 2003; 2004]. According to these semantics, knowl-
edge is given by a sequence of logic programs (see[Eiter et
al., 2000; Osorio and Zacarı́as, 2003; 2004]) where each pro-
gram is considered an update of the previous one. All of them
are based on the notion ofcausal rejection of rules, which
enforces that, in case of conflicts between rules,more recent
rules override older ones.

In particular[Eiter et al., 2000] is a proposal that presents
a complete analysis with respect to properties that an update
operator should have, with the aim to define a safe and re-
liable evolution of beliefs for agents, and ours follows this
approach.

At this point we have presented alternative solutions to the
examples in[Osorio and Zacarı́as, 2003; 2004], as well as
a semantics using a new mechanism of minimal generalized
answer setsMGAS for updates that consist of the following
definitions: We only considerupdate pairs(instead ofse-
quences). Formally, by anupdate pair, we understand a pair
(P1, P2) logic programs. We say thatP is an update pairover
A iff A represents the set of atoms curring inP1 ∪ P2.

Definition 3.1 (Update). Given an update pairP = (P1, P2)
over a set of atomsA, we define the update programP⊘ =

P1 ⊘ P2 overA∗ (extendingA by new abducible atoms) on-
sisting of the following items:

(i) all constraints inP1

(ii) for eachr ∈ P1 we add an abducibleb (a new atom) and
the ruler ← ¬b

(iii) all rulesr ∈ P2

Note that we do not need nested rules (although they are per-
fectly defined as formulae inN2). We may simple replace
each rulehead ← body ∈ P1 by the rulehead ← body,¬b.
So our update program is an ordinary logic program.

Last,⊘ represents our update operator.

Definition 3.2. Let P = (P1, P2) be an update pair over a set
of atomsA. Then,S ⊆ LitA is an update answer set ofP if
only if S= S’∩LitA for some answer setS’ of P⊘.

Next, we present an example taken from[Eiteret al., 2000]
illustrating that our mechanism sometimes coincides with
their proposal.

Example 3.1. Let us illustrates a daily update regarding en-
ergy flaw.

Let P1 be:

sleep ← ¬tv(on)

night ← ⊤

watch(tv) ← tv(on)

tv(on) ← ⊤

Let P2 be

∼tv(on) ← power(failure)

power(failure) ← ⊤

by applying the update definition given in[Eiter et al., 2000]
to both programs, we get that the single answer set ofP =
(P1, P2) is

S = {power(failure),∼tv(on), sleep, night}

On the other hand, by codifying this example under our
new semantics we have thatP1 is transformed as follows: for
each rule ofP1, we add an atom ofA (abducible). Moreover,
we add to each rule the classic negation of such an abducible
at the end of the rule.P2 is not transformed, it remains the
same. Therefore, the updated program is

Abducibles: {y1, y2, y3, y4},

Rules:

sleep ← ¬tv(on),¬y1

night ← ¬y2

tv(on) ← ¬y3

watch(tv) ← tv(on),¬y4

∼tv(on) ← power(failure)

power(failure) ← ⊤



the only answer set of this program coincides with the one in
[Eiteret al., 2000].

Note that strictly following Definition 3.1, rulesleep ←
¬tv(on) is translated into

(sleep← ¬tv(on))← ¬b

and this rule is equivalent inN2 to sleep← ¬tv(on),¬b.

3.1 Disjunctive programs
Unlike DLP, another advantage of our approach is that it may
be applied to disjunctive logic programs.

Example 3.2. Let us model a situation in which men and
women apply for a grant in Mexico, where aCONACYT
Grant is also known asNational Grant.

Let P1 be:

man ∨ woman ← ⊤

good(grades) ← ⊤

conacyt(grant) ← woman, good(grades)

∼conacyt(grant) ← ⊤

Now suppose thatP1 is updated withP2:

conacyt(grant) ← national(grant)

national(grant) ← conacyt(grant)

As we can see,P1 has only one answer set:

{good(grades), man,∼conacyt(grant)}

However, just as Alferes points out, programs with new infor-
mation introduce new models (for nearly all existing updating
semantics).

In this example, we updateP1 with new information rep-
resented byP2. Therefore,P1 has only one answer set. Ac-
cording to Alferes, several semantics for updates based on the
causal rejection principle,P1 updated withP2 adds a second
answer set, namely,

{woman, national(grant), conacyt(grant), good(grades)}

The causal rejection principle states that all models ofP1 up-
dated withP2 must also be models ofP1 updated with{}.
Then, with our semantics we get the update ofP1 with P2 as
follows:

Abducibles = {y1, y2, y3, y4}
Rules:

man ∨ woman ← ¬y1

good(grades) ← ¬y2

conacyt(grant) ← woman, good(grades),¬y3

∼conacyt(grant) ← ¬y4

conacyt(grant) ← national(grant)

national(grant) ← conacyt(grant)

Then the only answer set of this program is

{good(grades), man,∼conacyt(grant)}

which coincides with our intuition.

4 Main results
In this section, we present our main results of our update
semantics. We begin by presenting a set of basic structural
properties that the update operator in[Eiter et al., 2000] sat-
isfies and that our proposal does too. Note thatP1 ≡ P2

means thatP1 andP2 have the same answer sets.

1. Initialisation: ∅ ⊘ P ≡ P

This is presented in[Eiter et al., 2000] as follows: the
update of an initial empty knowledge base yields just
the update itself.

2. Idempotence:P ⊘ P ≡ P

This property means that the update of programP by
itself has no effect.

3. Weak Noninterference: If P1 andP2 are programs de-
fined over disjoins alphabets, and either both of them
have answer sets or do not, thenP1 ⊘ P2 ≡ P2 ⊘ P1

This property implies that the order of updates that do
not interfere with each other, normally does not matter.

4. Augmented update:If P1 ⊆ P2 thenP1 ⊘ P2 ≡ P2

Updating with additional rules makes the previous up-
date obsolete.

5. Strong Consistency:SupposeP1 ∪ P2 has at least an
answer set. ThenP1 ⊘ P2 ≡ P1 ∪ P2.

The update coincides with the union whenP1 ∪ P2 has
at least an answer set.

6. Weak Irrelevance of Syntax: Let P , P1, andP2 be
logic programs under the same languageL, if P1 ≡N2

P2 thenP ⊘ P1 ≡N2
P ⊘ P2.

It says that if we update a programP by P1 (or P2),
the result should depend on the logical contents ofP1

(or P2), not on the particular syntax used to writeP1 (or
P2).

It is very important to point out thatStrong Consistency
corresponds to the second property mentioned in[Katsuno
and Mendelzon, 1991].

Now let us introduce our main theorem that satisfies all
properties previously mentioned.

Theorem 4.1. Our update operator (⊘) satisfies the six prop-
erties previously mentioned.

Proof of Theorem 4.1. (Sketch)
(Initialisation) : ∅ ⊘ P = P by construction. Hence∅ ⊘

P ≡ P .
(Strong Consistency): Let M be an answer set ofP1 ∪P2

(it exists by hypothesis). ThenM∅ is a generalized answer
of P1 ⊘ P2. Hence, the minimal generalized answer sets of
P1 ⊘ P2 must be of the formM ′

∅, for someM ′. Those are
exactly the answer sets ofP1 ∪ P2.

(Idempotence): If P does not have answer sets, then nor
doesP ⊘ P . If P has answer sets, thenP ∪ P does, and
hence, by Strong Consistency,P ∪P ≡ P ⊘P . In each case
P ≡ P ⊘ P .

(WIS): SinceP1 ≡N2
P2 for every programP , P ∪ P1 is

equivalent inN2 to P ∪P2. Thus,(P ∪A)∪P1 and(P ∪A)∪
P2 have exactly the same consistent completions, the setA is



a subset of the abducibles. Thus,P ⊘ P1 andP ⊘ P2 have
exactly the same generalized answer sets. Therefore,P ⊘ P1

andP⊘P2 have exactly the minimal generalized answer sets.
Hence,P1 ∪ P2 ≡ P1 ⊘ P2.

(Augmented Update): If P2 does not have answer sets,
nor doesP1⊘P2. If P2 has at least one answer set, then, since
P1 ⊆ P2 and by Strong ConsistencyP1 ∪ P2 ≡ P1 ⊘ P2. In
each caseP2 ≡ P1 ⊘ P2.

(Weak Noninterference): If both P1 andP2 lack of an-
swer sets then the update (in any order) lacks of answer sets.
If P1 and P2 have answer sets, thenP1 ∪ P2 does too —
because they are defined over disjoint alphabets. By Strong
Consistency,P1 ∪ P2 ≡ P1 ⊘ P2. Also P2 ∪ P1 ≡ P2 ⊘ P1.
Hence,P1 ⊘ P2 ≡ P2 ⊘ P1.

4.1 Comparing our approach with upd
In this section, we show the importance of building an ap-
proach on basic structural properties; how our approach han-
dles the example mentioned in the introduction (and is there-
fore compatible withStrong Consistency); as well as a com-
parison with the one presented in[Eiter et al., 2000]. But let
us illustrate through an example from[Alferes and Pereira,
2002] the main differences.

Example 4.1. Consider Example 1.1 again but,P2 with a
slight change like it is shown at once.

Let P2 be:

see(stars)← see(stars)

now supposeP1 is updated withP2. Then, by applying the
update definition in[Eiteret al., 2000], the answer sets of this
update are:{see(stars), night} and {day,∼ see(stars)}.
As we can see, this update adds a second answer set. Ac-
cording to Alferes, this new model arises since the updateP2

causally rejects the rule ofP1 which stated that it was not
possible to see the stars, and it is present in nearly all pro-
posals for updating semantics of logic programs. However,
we present a solution based on our previous configuration for
updates.

By applying our proposal toP1 andP2 we get the follow-
ing program:

Abducibles: {z1, z2, z3, z4},

Rules:

day ← ¬night,¬z1

night ← ¬day,¬z2

see(stars) ← night,¬cloudy,¬z3

∼see(stars) ← ¬z4

see(stars) ← see(stars)

By applying our update mechanism defined previously (Def-
inition 3.1) we realise that the only answer set is

{day,∼see(stars)}1

As we can see, this result coincides with our intuition just
as noted in[Alferes and Pereira, 2002].

Here is another example taken from[Alferes and Pereira,
2002] that several proposals don’t solve it satisfactorily.

1Note thatz’s andy’s are out by definition.

Example 4.2. Consider again previous Example 4.1 but, now
with a slight modification as follows:

Let P1 be:

day ← ¬night

see(stars) ← night,¬cloudy

night ← ¬day

∼see(stars) ← ⊤

sky(clear) ← ⊤

the only answer set of this program is

{day, sky(clear),∼see(stars)}

Now, suppose thatP1 is updated withP2:

see(stars) ← see(constellations)

∼sky(clear) ← ⊤

see(constellations) ← see(stars)

Here,P2 represents information containingStrong Consis-
tency (Tautologies, in Alferes’ words). Now considering the
proposal presented in[Eiter et al., 2000] this update adds
new models, which contradicts our intuition as mentioned by
Alferes et. al., and with whom we coincide. However, using
our proposal this example is codified as follows:

Abducibles: {z1, z2, z3, z4, z5}

Rules:

day ← ¬night,¬z1

night ← ¬day,¬z2

see(stars) ← night,¬cloudy,¬z3

∼see(stars) ← ¬z4

sky(clear) ← ¬z5

see(stars) ← see(constellations)

see(constellations) ← see(stars)

∼sky(clear) ← ⊤

And the only answer set of this update is{day,∼
sky(clear),∼see(stars)}, which agrees with Alferes et al.
In contrast,[Eiteret al., 2000] doesnot solve this problem.

5 Logic Programming with Ordered
Disjunctions

Ordered Logic programming is defined by[Brewka, 2002] as
follows: a simple ordered disjunction program is a set of rules
of the form:

C1 × · · · × Cn ← A1, . . . , Am,¬B1, . . . ,¬Bk

whereCi, Aj andBl are all ground literals.C1, . . . , Cn are
usually named the choices of a rule and their intuitive reading
is as follows: The ordered disjunctions are used in the rule
heads to select some of the answer sets of a program as the
preferred ones. IfC1 is possible, thenC1; if C1 is not pos-
sible, thenC2; . . . ; if none ofCi, . . . , Cn−1 is possible then



Cn. Moreover, we can identify some special cases such as: if
n = 0 we call the rule a constraint; and finally, we call facts
to those rules wherem = k = 0. In our proposal we will
consider ordered disjunctive programs wheren = 2, m =
k = 0 to denote the subset of logic programs ordered dis-
junctions. For space limitations we do not present it in more
detail, but the reader is invited to consult[Brewka, 2002;
Brewkaet al., 2004].

It is very important to notice thatPsmodels[Brewkaet al.,
2004] is an efficient tool used in our examples: a modifica-
tion of smodelsthat can be used to compute preferred stable
models of normal logic programs under the ordered disjunc-
tion semantics. It tells us how many times the test program is
invoked to check whether a given stable model is a preferred
one. All examples presented here have been run and tested
using this program: they are is correct and coincide with the
discussion in[Alferes and Pereira, 2002; Eiteret al., 2000;
Osorio and Zacarı́as, 2004].

Example 5.1. Consider Example 1.1 again and recall that
this example was codified as follows:

Abducibles: {y1, y2, y3, y4}

Rules:

sleep ← ¬tv(on),¬y1

night ← ¬y2

tv(on) ← ¬y3

watch(tv) ← tv(on),¬y4

∼tv(on) ← power(failure)

power(failure) ← ⊤

Following [Osorioet al., 2004b] the minimal generalized an-
swer sets of every abductive program〈P, A〉 correspond to
the intended models of some ordered disjunctive programP ′

that can be easily computed from〈P, A〉. The translation in
this particular example corresponds to the following ordered
disjunctive program

z1× y1

z2× y2

z3× y3

z4× y4

day ← ¬night,¬y1

night ← ¬day,¬y2

see(stars) ← night,¬cloudy,¬y3

∼see(stars) ← ¬y4

see(stars) ← see(constellations)

see(constellations) ← see(stars)

Here,z1, z2, z3 andz4 are new atoms. Recall that this trans-
formation is correct and described in detail in[Osorioet al.,
2004b].

Executing this program inPsmodelsunder ordered dis-
junctions semantics, its only answer set is:{day,∼
see(stars)}, which coincides with our intuition.

6 Conclusions
We have introduced a new semantics for updates that is more
general that the one presented in[Eiter et al., 2000]. In ad-
dition, we have emphasised the importance of an approach
based on keystructural properties. Our semantics can be
used for any type of program. Moreover, it satisfies the
WIS property introduced in[Osorio and Zacarı́as, 2004]. We
also illustrate through several examples how our proposal
solves several problems occurring in recent update-semantics.
Alferes et al. noticed these problems as well and addressed
them differently. In contrast, we introduced a new property
calledStrong Consistencyand show its usefulness.

We would like to point out that stronger properties can be
obtained be replacing≡ with the stronger notions ofuniform
or evenstrongequivalence introduced by Pearce.

Finally, we would like to illustrate how to do multiple up-
dates as a future work with the following example:

Example 6.1. Three updates.
Let P1 be:

a← ⊤

P2:
∼a← ⊤

P3:
b← ⊤

Then the updated program would be:

z × r1 × r2

a← ¬r1

∼a← ¬r2

b← ⊤

The updated answer set is{b,∼a}.
Suppose now thatP3 were:

a← ⊤

Then the updated answer set is{a}.

References
[Alferes and Pereira, 2002] J. Alferes and L. Pereira. Logic

programming updating: a guided approach, 2002.

[Alfereset al., 2004] José Alferes, F. Banti, Antonio Brogi,
and J. Leite. Semantics for dynamic logic programming: A
principle-based approach. In V. Lifschitz and I. Niemelä,
editors,LPNMR-7, pages 8–20, 2004.

[Balduccini and Gelfond, 2003] Marcello Balduccini and
Michael Gelfond. Logic programs with consistency-
restoring rules. InProceedings of the AAAI Spring 2003
Symposium., 2003.

[Brewka and Dix, 1998] Gerhard Brewka and Jürgen Dix.
Knowledge representation with logic programs. In J. Dix,
L. Pereira, and T. Przymusinski, editors,Logic Program-
ming and Knowledge Representation, LNAI 1471, pages
1–55, Berlin, 1998. Springer. Full version will appear as
Chapter 6 inHandbook of Philosophical Logic, 2nd edi-
tion (2005), Volume 6, Methodologies.



[Brewkaet al., 1997] Gerd Brewka, Jürgen Dix, and Kurt
Konolige.Nonmonotonic Reasoning: An Overview. CSLI
Lecture Notes 73. CSLI Publications, Stanford, CA, 1997.

[Brewkaet al., 2004] Gerhardt Brewka, Ilkka Niemelä, and
Tommi Syrjänen. Implementing ordered disjunction using
answer set solvers for normal programs.Computational
Intelligence, 2004.

[Brewka, 2002] Gerhard Brewka. Logic programming with
ordered disjunction. InProceedings of the 18th National
Conference on Artificial Intelligence, AAAI-2002.Morgan
Kaufmann, 2002.

[Dix et al., 1996] Jürgen Dix, Georg Gottlob, and Viktor
Marek. Reducing disjunctive to non-disjunctive se-
mantics by shift-operations.Fundamenta Informaticae,
XXVIII(1/2):87–100, 1996.

[Dix et al., 2001] Jürgen Dix, Ulrich Furbach, and Ilkka
Niemelä. Nonmonotonic Reasoning: Towards Efficient
Calculi and Implementations. In Andrei Voronkov and
Alan Robinson, editors,Handbook of Automated Reason-
ing, pages 1121–1234. Elsevier-Science-Press, 2001.

[Dix, 1995] Jürgen Dix. A Classification-Theory of Seman-
tics of Normal Logic Programs: I. Strong Properties.Fun-
damenta Informaticae, XXII(3):227–255, 1995.

[Eiteret al., 2000] T. Eiter, M. Fink, G. Sabattini, and
H. Thompits. Considerations on updates of logic pro-
grams. In Manuel Ojeda-Aciego, Inman P. de Guzmán,
Gerhard Brewka, and Moniz Pereira, editors,Logics in
Artificial Intelligence, European Workshop, JELIA 2000,
Malaga, Spain, 2000. Springer Verlag.

[Eiteret al., 2002] Thomas Eiter, Michael Fink, Giuliana
Sabbatini, and Hans Tompits. On properties of update se-
quences based on causal rejection.TPLP, 2(6):711–767,
2002.

[Katsuno and Mendelzon, 1991] Hirofumi Katsuno and Al-
berto O. Mendelzon. Propositional knowledge base
revision and minimal change. Artificial Intelligence,
52(3):263–294, 1991.

[Leite, 2003] J. A. Leite. Evolving Knowledge Bases. IOS
Press, 2003.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce,
and Agustin Valverde. Strongly equivalent logic programs.
ACM Transactions on Computational Logic, 2:526–541,
2001.

[Osorio and Zacarı́as, 2003] Mauricio Osorio and Fernando
Zacarı́as. Irrelevance of syntax in updating answer set pro-
grams. InProceedings of the Fourth Mexican International
Conference on Computer Science (ENC’ 03) In Workshop
on Logic and Agents, Apizaco, México, 2003.

[Osorio and Zacarı́as, 2004] Mauricio Osorio and Fernando
Zacarı́as. On updates of logic programs: A properties-
based approach. InFoIKS, pages 231–241, 2004.

[Osorioet al., 2004a] Mauricio Osorio, Juan Antonio
Navarro, and José Arrazola. Applications of intuitionistic
logic in answer set programming.Theory and Practice of
Logic Programming, 2004.

[Osorioet al., 2004b] Mauricio Osorio, Magdalena Ortiz,
and Claudia Zepeda. Using cr-rules for evacuation plan-
ning. InWorkshop Proceedings of Deduction and Reason-
ing Techniques, 2004.

[Pearce, 1999] David Pearce. Stable inference as intuitionis-
tic validity. Logic Programming, 38:79–91, 1999.

[Rasiowa, 1974] Helena Rasiowa.An Algebraic Approach to
Non-Classical Logics, volume 78 ofStudies in Logic and
the Foundations of Mathematics. North-Holland, Amster-
dam, 1974.

[Zacarı́as Flores, 2005] Fernando Zacarı́as Flores.Belief Re-
vision and Updates in Commonsense Reasoning. PhD the-
sis, University of the Americas-Puebla, School of Engi-
neering, 2005.


