
Interpreting Golog Programs in Flux

Stephan Schiffel and Michael Thielscher
Department of Computer Science
Dresden University of Technology

{stephan.schiffel,mit}@inf.tu-dresden.de

Abstract

A new semantics for the programming language
Golog is presented based on Fluent Calculus.
The semantics lays the foundation for interpreting
Golog programs in Flux. This allows to employ
the principle of progression to update a state spec-
ification and to evaluate fluent conditions in Golog
programs directly against an updated state.

1 Introduction
Golog is a programming language for intelligent agents that
combines elements from classical programming (condition-
als, loops, etc.) with reasoning about actions. Primitive state-
ments in Golog programs are actions to be performed by the
agent. Conditional statements in Golog are composed of flu-
ents, which describe the dynamic properties of the environ-
ment in which an agent lives. The execution of a Golog pro-
gram requires to reason about the effects of the actions the
agent performs, in order to determine the values of fluents
when evaluating conditional statements in the program.

Existing semantics for Golog are based on Situation Cal-
culus [McCarthy, 1963; Reiter, 2001b], and existing imple-
mentations [Levesque et al., 1997; Giacomo et al., 2000] use
successor state axioms [Reiter, 1991] when evaluating con-
ditional statements in a Golog program. A successor state
axiom defines, for an individual fluent, the value of this fluent
after an action in terms of what holds before. Accordingly, the
implementations use pure regression to evaluate a fluent con-
dition, which means that a given sequence of actions is rolled
back through the successor state axioms. A consequence is
that the evaluation of a condition in a Golog program in gen-
eral depends on the length of the history and the number of
fluents whose (past) values have an influence on the condi-
tional statement. Alternatively, progression [Lin and Reiter,
1997] can be used in combination with successor state ax-
ioms, which means to employ regression to infer the values
of all fluents after an action, and then to store these values for
future evaluation. This avoids to store an ever increasing his-
tory, but the computational effort of a single progression step
depends on the overall number of fluents of a domain.

In this paper, we present an alternative semantics and im-
plementation for Golog to overcome this disadvantage. The

semantics is based on Fluent Calculus, which extends Situa-
tion Calculus by the concept of a state and in which the effects
of actions are specified by state update axioms [Thielscher,
1999]. Our new semantics lays the foundation for an imple-
mentation of Golog in Flux [Thielscher, 2005], where the in-
ference principle of progression is employed to update a state
specification upon the performance of an action. The advan-
tage over regression is that fluent conditions can be evaluated
directly against the updated world model. Moreover, progres-
sion via state update axioms requires to consider the affected
fluents only.

The remainder of the paper is organized as follows. In Sec-
tion 2, we repeat the basic definitions of Golog. We use a
variant that extends the original version by a search opera-
tor, which allows to interleave planning and execution [Gia-
como et al., 2000]. We also briefly recapitulate both Fluent
Calculus and Flux. In Section 3, we present a Fluent Cal-
culus semantics for Golog programs. An implementation of
Golog using Flux is described in Section 4. In Section 5,
we compare the computational behavior of our implementa-
tion wrt. implementations that are based on successor state
axioms. We conclude in Section 6.

2 Background

2.1 Golog

We consider the original Golog defined in [Levesque et al.,
1997] augmented by the search operator introduced in [Gia-
como and Levesque, 1999].

Being a high-level language for agent control, Golog uses
actions (of the agent) as primitive statements and fluents (de-
scribing the environment) for tests, i.e., conditional state-
ments. These basic ingredients are embedded in a lan-
guage that has standard elements of imperative programming.
Specifically, a Golog program can be composed of these con-
structs:1

1Below, δ, δ1, δ2 are Golog programs, φ is a formula with fluents
as atoms, and v is a variable.

nil empty program
a action
φ? test
δ1; δ2 sequence
δ1 | δ2 nondeterministic choice (of programs)
πv. δ nondeterministic choice (of parameters)
δ∗ nondeterministic iteration
Σδ search

In addition, the following macros are used:

if φ then δ1 else δ2
def
= (φ? ; δ1) | (¬φ? ; δ2)

while φ do δ
def
= (φ? ; δ)∗ ; ¬φ?

The intuitive meaning of the operator Σδ is to search for a ter-
minating run of sub-program δ and then to execute this run.2

Existing semantics for Golog are based on Situation Cal-
culus [McCarthy, 1963; Reiter, 2001b], a sorted logical lan-
guage with predefined sorts for fluents, actions, and sit-
uations. Situations are histories (i.e., sequences of ac-
tions), which are built using the situation constant S0 and
the function Do(a, s), where a is an action and s a situa-
tion. In [Giacomo et al., 2000], a transition semantics for
Golog is given by an axiomatic definition of two predicates:
Trans(δ, s, δ′, s′), meaning that the execution of the next ac-
tion or the next test in program δ leads from situation s to
situation s′ and to the remaining program δ′. The second
predicate, Final(δ, s), means that program δ does not require
to execute any more action or test in situation s. The core of
this semantics are the definitions for executing an action and
for evaluating a test:

Trans(a, s, δ′, s′) ≡ Poss(a, s)∧
δ′ = nil ∧ s′ = Do(a, s)

Trans(φ?, s, δ′, s′) ≡ φ[s]∧
δ′ = nil ∧ s′ = s

(1)

Here, Poss(a, s) denotes that action a is possible in situa-
tion s, and φ[s] means that condition φ holds in situation
s. This requires a background theory which contains action
knowledge of the application domain in form of precondi-
tion and effect axioms. Specifically, effects are described
by successor state axioms [Reiter, 1991], which define the
value of a particular fluent after an action (that is, in situa-
tion Do(a, s)), in terms of the values of fluents in situation
s. Existing implementations of Golog [Levesque et al., 1997;
Giacomo and Levesque, 1999; Reiter, 2001b] use successor
state axioms along with the principle of regression to evalu-
ate test statements in programs. A straightforward encoding
of (1), for example, is given by these two Prolog clauses:3

trans(A,S,nil,[A|S]) :- poss(A,S).
trans(?(P),S,[],S) :- holds(P,S).

Put in words, the execution of an action is recorded in the sit-
uation (here encoded as list [A|S]). Situations are then used

2The Golog variant of [Giacomo et al., 2000] contains additional
constructs, e.g., for interrupts and procedures, which we will not
deal with in this paper for the sake of simplicity.

3The following is taken from [Giacomo and Levesque, 1999],
with slight simplifications.

to evaluate test statements via holds(P,S). This predicate
is based on successor state axioms, by which situation S is
“rolled back.” An example is the following successor state
axiom for a fluent called doorClosed(s), indicating the sta-
tus of the door of an elevator:

holds(doorClosed,do(A,S)) :-
A=close
;
holds(doorClosed,S), not A=open.

where the actions close and open bear the obvious meaning.

2.2 Fluent Calculus
The Fluent Calculus extends Situation Calculus by a prede-
fined sort for states. The function State(s) denotes the state
(of the environment of an agent) in situation s. State terms are
constructed from fluents (as singleton states) and the function
z1 ◦ z2, where z1 and z2 are states. The foundational axioms
of Fluent Calculus stipulate that function “◦” shares essential
properties with the union operation for sets. A fluent f is then
defined to hold in a state z if the former is a sub-state of the
latter:

Holds(f, z)
def
= (∃z′) z = f ◦ z′

The addition of states to Situation Calculus allows to define
fluents to hold in a situation, written Holds(f, s), by referring
to the state in the situation:

Holds(f, s)
def
= Holds(f, State(s))

Based on the notion of a state, the frame problem [McCarthy
and Hayes, 1969] is solved in Fluent Calculus by state update
axioms, which define the effects of an action a as the differ-
ence between the state prior to the action, State(s), and the
successor State(Do(a, s)).

Flux
Fluent Calculus provides the formal underpinnings of the
logic programming method Flux [Thielscher, 2005]. Flux is
based on the encoding of (possibly incomplete) state knowl-
edge with the help of constraints. The effects of actions are
inferred on the basis of state update axioms, which effect an
update of the set of constraints that encode a given state. An
example is the following state update axiom for the action
close of closing the door of an elevator:

state_update(Z1,close,Z2) :-
update(Z1,[doorClosed],[],Z2).

where update(z1, ϑ
+, ϑ−, z2) means that z2 is z1 updated by,

respectively, positive and negative effects ϑ+ and ϑ−. Flux
is thus amenable to the computation principle of progression:
The current state description is updated upon the performance
of an action, which allows to evaluate conditions on the suc-
cessor situation directly against the new state.

3 Fluent Calculus Semantics for Golog
Programs

Our starting point is the transition semantics for Golog given
in [Giacomo et al., 2000] with the exception of the axioms for

concurrency. With the help of the predicates Trans and Final
the semantics of a Golog program can be defined as:

Do(δ, s, s′)
def
=

(∃δ′)Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)

where Trans∗ stands for the reflexive and transitive closure of
Trans. The predicate Do(δ, s, s′) means that the execution of
a Golog program δ in situation s leads to a final situation s′

with a finite number of transitions.
In Fluent Calculus it is now possible to replace the situa-

tion s of a configuration by its associated state State(s) and
thus denote transitions by Trans(δ, z, δ, z′) and final configu-
rations by Final(δ, z) where z = State(s) and z ′ = State(s′).
By doing this we do no longer have to calculate values of flu-
ents by regression over the situation as in Situation Calculus.
Instead we progress the state on every execution of an action.
Then a simple lookup in the Fluent Calculus state is sufficient
to acquire a fluents value, as, by the Completeness Assump-
tion, all fluents that hold in a situation are part of the associ-
ated state. By replacing situations by states, however, we lose
the information about the performed actions. This informa-
tion is necessary in order to be able to actually execute the ac-
tions in the physical environment after reasoning about their
outcomes. This is particularly important for offline execution,
where a sequence of actions is executed only after the termi-
nation of the program (or a part of it) is guaranteed. Thus
we introduce a list of actions not executed so far as additional
result of a transition and will therefore denote a transition be-
tween two configurations by Trans(δ, z, δ′, z′, h′) where h′ is
the history of the actions to be executed in z in order to reach
z′. In fact, the action history h′ is mostly either empty or
a singleton list because the transition semantics performs at
most one primitive action per transition. The action history
can be empty as the result of a test action.

Now we define the semantics of a Golog program in Fluent
Calculus by:

Do(δ, z, z′, h′)
def
=

(∃δ′, h′)Trans∗(δ, z, δ′, z′, h′) ∧ Final(δ′, z′)

where Do(δ, z, z′, h′) means that the execution of a Golog
program δ in state z results in state z′ and h′ contains the
actions executed in between.

Before defining the predicates Trans and Final we intro-
duce some abbreviations:

δv

x
is an abbreviation for the substitution function

sub(v, x, δ), which replaces all occurrences of v in a
Golog program δ by x, or to be more precise, by a term
nameOf(x) where nameOf is a mapping of Fluent
Calculus objects and actions to their corresponding pro-
gram terms. The full definition of sub can be directly
adopted from [Giacomo et al., 2000].

φ[z] is an abbreviation for a predicate HoldsCond(φ, z)
which maps Golog condition expressions to Fluent Cal-

culus state formulas.

HoldsCond(p(x1, . . . , xn), z) ≡ p(x1, . . . , xn)[z]

HoldsCond(φ1 ∧ φ2, z) ≡

HoldsCond(φ1, z) ∧ HoldsCond(φ2, z)

HoldsCond(¬φ, z) ≡ ¬HoldsCond(φ, z)

HoldsCond((∃v)φ, z) ≡

(∃y)HoldsCond(φv

y
, z)

where p in the first equation is any fluent or non-
fluent predicate and y in the last equation is any variable
that does not appear in φ.

x[z] is an abbreviation for the function decode(x, z), which
maps Golog program terms x (objects or actions) to their
real counterparts in state z. This function is an adapta-
tion of a similar function in [Giacomo et al., 2000]:

decode(nameOf(x), z) = x

decode(g(x1, . . . , xn), z) = g(x1[z], . . . , xn[z])

(for each non-fluent g)
decode(f(x1, . . . , xn), z) = true ≡

Holds(f(x1[z], . . . , xn[z]), z)

(for each relational fluent f)
decode(f(x1, . . . , xn), z) = v ≡

Holds(f(x1[z], . . . , xn[z], v), z)

(for each functional fluent f)

Functional fluents f(x1, . . . , xn), which have
a particular value v in every situation, cannot be ex-
pressed directly in Fluent Calculus. Therefore, they
are mapped onto fluents f(x1, . . . , xn, v), in which the
value is added as argument. This requires that in all situ-
ations and for all x1, . . . , xn there is a unique v such that
f(x1, . . . , xn, v) holds. The consequence of this is that
an action can only change the value of f(~x) for a finite
number of instances of ~x, otherwise the action would
have an infinite number of effects.

Now we can define the relations Trans and Final induc-
tively for all Golog programs:

• Empty program:

Trans(nil, z, δ′, z′, h′) ≡ False
Final(nil, z) ≡ True

• Sequence:

Trans(δ1; δ2, z, δ′, z′, h′) ≡

(∃δ′1)δ
′ = (δ′1; δ2) ∧ Trans(δ1, z, δ′1, z

′, h′)

∨

Final(δ1, z) ∧ Trans(δ2, z, δ′, z′, h′)

Final(δ1; δ2, z) ≡ Final(δ1, z) ∧ Final(δ2, z)

• Nondeterministic branch:

Trans(δ1|δ2, z, δ′, z′, h′) ≡

Trans(δ1, z, δ′, z′, h′) ∨ Trans(δ2, z, δ′, z′, h′)

Final(δ1|δ2, z) ≡ Final(δ1, z) ∨ Final(δ2, z)

• Nondeterministic choice of argument:

Trans(πv.δ, z, δ′, z′, h′) ≡

(∃x)Trans(δv

x
, z, δ′, z′, h′)

Final(πv.δ, z) ≡ (∃x)Final(δv

x
, z)

• Iteration:

Trans(δ∗, z, δ′, z′, h′) ≡

(∃γ)δ′ = γ; δ∗ ∧ Trans(δ, z, γ, z′, h′)

Final(δ∗, z) ≡ True

• Search operator:

Trans(Σδ, z, δ′, z′, h′) ≡

(∃γ′)δ′ = Σγ′ ∧ Trans(δ, z, γ′, z′, h′) ∧

(∃γ′′, z′′, h′′)Trans∗(γ′, z′, γ′′, z′′, h′′) ∧

Final(γ′′, z′′)

Final(Σδ, z) ≡ Final(δ, z)

Notably, the definitions above are essentially just syntacti-
cal transformations of the original ones from [Giacomo et al.,
2000]: Situations are replaced by states, and the action his-
tory h′ is added to the Trans predicate. The major differences
arise in the definitions for primitive actions and test actions.
These Trans predicates in Fluent Calculus are:

Trans(a, z, δ′, z′, h′) ≡

Poss(a[z], z) ∧ δ′ = nil ∧ (∃s)State(s) = z ∧

z′ = State(Do(a[z], s)) ∧ h′ = a[z]

Trans(φ?, z, δ′, z′, h′) ≡

φ[z] ∧ δ′ = nil ∧ z′ = z ∧ h′ = []

compared to the definition of [Giacomo et al., 2000],

Trans(a, s, δ′, s′) ≡

Poss(a[s], s) ∧ δ′ = nil ∧ s′ = Do(a[s], s)

Trans(φ?, s, δ′, s′) ≡

φ[s] ∧ δ′ = nil ∧ s′ = s

The major difference is that in Situation Calculus s′ =
Do(a[s], s) is just a variable assignment but in Fluent Cal-
culus (∃s)State(s) = z ∧ z′ = State(Do(a[z], s)) results in a
state update which calculates the new state z′ from z and the
effects of executing the action a[z] in z.

This first of all means that computing a transition for a
primitive action with our semantics is more expensive in

terms of calculation time than with the original semantics.
The reward for this is that the evaluation of φ[s] in Situation
Calculus means to do a regression over the situation for each
fluent f in φ and for each fluent on which the value of f de-
pends. In contrast, in Fluent Calculus φ[z] can be evaluted
by looking up the values of the fluents in the state z that was
computed by the last transition.

Thus calculating a transition for test actions in Fluent Cal-
culus does not depend on the length of the action history and
is therefore less expensive in cases with situations of a certain
length.

The Final predicates for primitive actions and test actions
are again just syntactical transformations of the original ones:

• Primitive action:

Final(a, z) ≡ False

• Test action:

Final(φ?, z) ≡ False

4 Flux-Interpeter for Golog
Based on the semantics defined in the previous section we
have developed a Prolog implementation of a Golog inter-
preter in (special4) Flux, called “GoFlux”.

The interpreter borrows elements from the LeGolog in-
terpreter [Levesque and Pagnucco, 2000] taken from the
LeGolog web page5. It consists mainly of the direct encod-
ing of the Trans, Final and HoldsCond predicates and the ad-
ditional functions sub and decode. This is combined with
the kernel program of Flux for updating states on execution
of actions and evaluating fluents. It requires to encode state
update axioms by Prolog predicates state update(Z, A, Zp)
as described in Section 2. Furthermore, the predicate
prim fluent(F) defines all fluents F, and the predicate
prim action(A) serves the same purpose for actions. The
precondition axioms for actions are encoded by a predicate
poss(A, P) assigning to action A a Golog conditional expres-
sion P representing the precondition axiom for action A.

In the original LeGolog implementation, the (crucial) def-
inition of Trans for primitive actions is similar to the defini-
tion of trans in Section 2. The precondition of the action is
tested and the action is recorded in the resulting situation. In
GoFlux, the definition is now as follows:

trans(A, Z, [], Zr, [Ap]) :-
decode(A, Ap, Z), prim_action(Ap),
poss(Ap, P), holdsCond(P, Z),
state_update(Z, Ap, Zr).

The clause state update(Z,Ap,Zr) infers a new
state Zr resulting from the execution of the action Ap in state
Z. In that way this clause for trans differs from the original

4Special Flux is an implementation of a subset of Fluent Calculus
which deals only with ground states and therefore does not allow
to describe uncertainty or knowledge or deal with indeterministic
actions.

5http://www.cs.toronto.edu/cogrobo/Legolog/

one, whose only effect is to record the executed action A in
the resulting situation [A|H].

The second major difference arises in the implementation
of decode and HoldsCond. We use a predicate has val(F,
V, Z)which is true iff the (functional) fluent F has the value
V in state Z.
has_val(F, V, Z) :-

func_fluent_to_rel(F, V, Frel),
holds(Frel, Z).

First we convert the functional fluent F to a relational fluent
Frel by adding the fluents value V as last argument. Then
our implementation uses the Flux predicate holds(Frel,
Z) to determine the truth-value of the fluent Frel in state
Z. This predicate does just a look-up for fluent Frel in
state Z. Thus the complexity depends only on the size of the
state, where the state is either the initial state or computed by
state update on execution of an action. As opposed to
the original implementation, where has val(F, V, S)
determines the value V of fluent F in situation S in that way:
• if S = [](= S0) then see if the fluent held initially
• if S = [A|Sp] then see (with the help of the successor

state axiom for F) if either A changes the value of F to V
or if A did not change F and has val(F, V, Sp)

That means has val(F, V, S) does a regression over
the situation, i.e. the list of actions executed so far. This
has potentially exponential complexity because the succes-
sor state axioms can contain conditions on other fluents and
these have to be regressed as well.

Our interpreter is proved to be sound wrt. the semantics
of Golog programs in Fluent Calculus [Schiffel, 2004]. The
implementation is not complete in a sense that there are
Golog programs δ, states z, z′ and action histories h such that
Do(δ, z, z′, h) (or ¬Do(δ, z, z′, h)) is entailed by the back-
ground theory but the goal Do(δ, z, z′, h) does not terminate.
This is due to the nature of Golog programs, which may con-
tain loops that will not finish with a finite number of transi-
tions.

5 Computational Behavior
For comparing the computational behavior of our Golog in-
terpreter GoFlux and a situation calculus based Golog imple-
mentation we used the IndiGolog interpreter contained in the
LeGolog distribution5. As an example domain we took the
elevator domain of [Levesque et al., 1997; Reiter, 2001b] and
adapted it to a more sophisticated version. In the domain we
have an elevator in a building with 20 floors. For making a
more intelligent elevator controller that can bring the people
faster to their destinations, there is a panel at each floor where
people can enter their desired destination floor while obtain-
ing a request id. (For the sake of simplicity we assume that all
the requests are already entered at the beginning, such that we
don’t have to consider exogenous actions.) The elevator now
goes up and down bringing the people to their destination. On
opening the door at a floor the elevator shows the request ids
of the people which are admitted to the elevator at this stage.
The elevator has only a limited capacity; we assume that only
five people may be in the elevator at the same time.

The elevator controller has five primitive actions:
• up(n). Move the elevator up to floor n.
• down(n). Move the elevator down to floor n.
• open. Open the door of the elevator.
• close. Close the door of the elevator.
• invite(id). Show request id of the person who may en-

ter the elevator.
These actions affect the following fluents:
• currentF loor(s) = f . In situation s the elevator is at

floor f .
• capacity(s) = n. In situation s there is room for n peo-

ple left in the elevator.
• request(id, f1, f2, s) ∈ {true, false}. In situation s

there is a request with id id of a person to go from
floor f1 to f2.

• carries(f, s) = n. In situation s the elevator carries n
people destined for floor f .

• doorClosed(s) ∈ {true, false}. In situation s the ele-
vator door is closed.

• lastDirection(s) ∈ {up, down, none}. The direction
the elevator last moved in before reaching situation s.

The strategy of the elevator controller is to either go up or
down and stop at every floor where either he carries people to
or where there is a request in its current moving direction, if
there is space left in elevator. The elevator goes in the other
direction if there is neither request heading from or destined
in the current direction.

The core of the strategy is encoded in the following Golog
procedures:

proc serve

π direction.(

decide direction(direction);

(invite someone(direction) |

goto next floor(direction))

) endProc;

proc park

if currentF loor 6= 0 then

close; down(0); open

else nil

endProc;

proc control

(while(exists request ∨ carries something)

do serve) ;

park

endProc;

The GoFlux interpreter as well as the full implementation
of the elevator controller is published on our web page6.

6http://www.fluxagent.org

initial Golog
requests without with progression

GoFlux

10 19.8s 2.7s 0.9s
20 168.3s 8.7s 3.3s

100 8612.8s 146.8s 35.0s

Table 1: Experimental results for online execution of the ele-
vator control program by IndiGolog and GoFlux. The times
were measured on a desktop computer system (1.7GHz AMD
AthlonXP).

As one can see in table 1 executing a long sequence of ac-
tions without progression is not feasible. But GoFlux is even
faster than Golog with progression. This is due to the fact that
progression in Golog is done by calculating the value of all
fluents in the current situation from time to time and setting
this as new “initial” situation by clearing the action history.
In contrast to this progression in Flux is done by updating
the state on every execution of an action. Thereby not every
fluent’s value is calculated in the new state, but only those
fluents are considered, which are effects of the executed ac-
tion, i.e. which change by executing the action. Since in most
domains an action only changes a small set of fluents updat-
ing the state on every execution is still less expensive than
calculating all fluents by regression only after some actions.

6 Conclusion
We have presented a new semantics for Golog based on the
Fluent Calculus, by which the standard model for Golog is
enriched with the notion of a state. The essential difference to
previous semantics is that states, and not situations (i.e. histo-
ries of actions) are propagated when describing the execution
of a Golog program. We have given a Fluent Calculus inter-
pretation for all language elements of the original Golog (as
defined by [Levesque et al., 1997]) augmented by the search
operator introduced in [Giacomo et al., 2000]. All further
constructs from the latter, extended dialect, e.g. those for in-
terrupts and procedures, can be interpreted in our semantics
in a straightforward way.

Our new semantics lays the foundation for interpreting
Golog programs in Flux. This allows to employ states and
the inference principle of progression for state update. The
motivation for the alternative semantics and implementation
is that
• progression of states allows to evaluate conditions in

Golog programs directly against the updated state;
• progression via state update axioms only requires to con-

sider those fluents that are affected by an action.
In an extended version of a standard scenario for
Golog [Levesque et al., 1997], our new implementation
proved to be a more efficient interpreter for Golog compared
to existing implementations. For future work, we intend to
conduct systematic experiments and to analyze which compu-
tation principle is better suited for different classes of Golog
programs. We are currently developing automatic translations
of domain descriptions from Situation Calculus to Fluent Cal-
culus and vice versa. Finally, we intend to extend our inter-

preter to knowledge-based Golog programs [Reiter, 2001a],
thereby using the full expressiveness of Flux for incomplete
states.

References
[Giacomo and Levesque, 1999] Giuseppe De Giacomo and

Hector Levesque. An incremental interpreter for high-
level programs with sensing. In H. Levesque and F. Pirri,
editors, Logical Foundations for Cognitive Agents, pages
86–102. Springer, 1999.

[Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector Levesque. ConGolog, a con-
current programming language based on the situation
calculus. Artificial Intelligence, 121(1–2):109–169, 2000.

[Levesque and Pagnucco, 2000] Hector Levesque and Mau-
rice Pagnucco. Legolog: Inexpensive experiments in cog-
nitive robotics. In Cognitive Robotics Workshop at ECAI,
pages 104–109, Berlin, Germany, August 2000.

[Levesque et al., 1997] Hector Levesque, Raymond Reiter,
Yves Lespérance, Fangzhen Lin, and Richard Scherl.
GOLOG: A logic programming language for dynamic do-
mains. Journal of Logic Programming, 31(1–3):59–83,
1997.

[Lin and Reiter, 1997] Fangzhen Lin and Ray Reiter. How
to progress a database. Artificial Intelligence, 92:131–167,
1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Machine Intelligence, 4:463–502,
1969.

[McCarthy, 1963] John McCarthy. Situations and Actions
and Causal Laws. Stanford Artificial Intelligence Project,
Memo 2, Stanford University, CA, 1963.

[Reiter, 1991] Ray Reiter. The frame problem in the situa-
tion calculus: A simple solution (sometimes) and a com-
pleteness result for goal regression. In V. Lifschitz, editor,
Artificial Intelligence and Mathematical Theory of Com-
putation, pages 359–380. Academic Press, 1991.

[Reiter, 2001a] Ray Reiter. On knowledge-based program-
ming with sensing in the situation calculus. ACM Trans-
actions on Computational Logic, 2(4):433–457, 2001.

[Reiter, 2001b] Raymond Reiter. Knowledge in Action. MIT
Press, 2001.

[Schiffel, 2004] Stephan Schiffel. Development of a fluent
calculus semantics for golog programs. Großer Beleg,
Dresden University of Technology, 2004.

[Thielscher, 1999] Michael Thielscher. From situation cal-
culus to fluent calculus: State update axioms as a solution
to the inferential frame problem. Artificial Intelligence,
111(1–2):277–299, 1999.

[Thielscher, 2005] Michael Thielscher. FLUX: A logic pro-
gramming method for reasoning agents. Theory and
Practice of Logic Programming, 2005. Available at:
www.fluxagent.org.

