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Abstract

This paper presents a solution in a first-order mono-
tonic logic to a simplified version of the Surprise
Birthday Present Problem, a challenge problem
for the formal commonsense reasoning community.
The problem concerns two siblings who wish to
surprise their sister with a present for her birth-
day: the aim is to construct a theory that will sup-
port the desired inferences, not allow undesired in-
ferences, and be sufficiently elaboration tolerant to
support reasoning about problem variations. The
theory presented in this paper includes the devel-
opment of a possible-worlds analysis of the con-
cept of surprise, and an extension to previous work
on multiple-agent planning to handle joint planning
and actions. We show that this theory can solve the
original SBP as well as many of its variants.

1 Introduction
1.1 Problem Statement
This paper presents an initial solution in a first-order mono-
tonic logic to a simplified version of the Surprise Birthday
Present Problem[3], one of a set of challenge problems for
the formal commonsense reasoning community. The problem
concerns two siblings who wish to surprise their sister with a
present for her birthday. The aim is to construct a theory that
will support the desired inferences, not allow undesired infer-
ences, and be sufficiently elaboration tolerant (as in[10]) to
support reasoning about problem variations.

The problem is reproduced below, slightly condensed and
paraphrased for the sake of brevity:

Alice and Bob want to surprise their sister Carol with a
joint present for her birthday, two weeks from now. They
therefore go into a closed room to decide on the present and
to plan how they will buy it.

The problem is to determine that their plan will work. Vari-
ants on the problem include predicting that the plan will not
work if Carol is also in the room; if the door is open and Carol
is in the next room; if one of them tells Carol; if they do not
consult together; if they cannot agree on a present; or if they

∗The full paper can be found at http://www-
formal.stanford.edu/leora/sbp.pdf

wait until after Carol’s birthday; as well as to predict that the
plan will still work if Alice and Bob discuss the plan during a
walk outside, or pass a hidden message, and whether they go
together to buy the present or go separately.

The solution must satisfy the following constraints: first,
the theory should not support the inference that nothing hap-
pens except the events enumerated in the plan (and these
events’ consequences); second, that the theory should not
support the inference that Carol knows nothing except for
statements true in all possible worlds.

1.2 The Approach

The Surprise Birthday Present Problem (SBP) is one of a
set of mid-sized challenge problems proposed for the formal
commonsense reasoning community.1 These problems are
larger than toy problems (Yale Shooting Problem[7], Mis-
sionaries and Cannibals[10]) but much smaller than large-
scale efforts to formalize knowledge, such as the HPKB[14]
project. In contrast to toy problems, which eviscerate most in-
teresting details of commonsense reasoning, and large-scale
efforts whose size necessitates a shallow approach to formal-
izing knowledge, the aim is to construct a relatively deep for-
malization of the mid-sized problem domain.

The aim of constructing these mid-sized formalizations is
threefold[12]. First, the goal is to create core, reusable the-
ories of commonsense reasoning, as in[8]. For example, in
this paper, we develop some core definitions of expectation
and surprise. Second, extending existing work into the mid-
sized axiomatization tests the limits of existing theories: one
either discovers that an existing theory is too brittle to be ex-
panded to the demands of the non-toy problem, or one invents
methods to extend the existing theory. For example, this pa-
per explores how the planning theory of[5] could be extended
to joint plans. Third, analyzing a mid-sized problem could re-
sult in discovering new representational issues and problems.

Many simplifications are necessary for formalization of
even mid-sized problems. The SBP involves time, space,
physics, knowledge, perception, naive psychology, multiple
agents, and planning. Focusing on all these problems in depth
would necessitate a large-scale axiomatization and may lie
beyond the capabilities of AI practitioners today.

1This set of problems can be found at http://www-
formal.stanford.edu/leora/commonsense.



We focus on two issues: formalizing the concept of sur-
prise, and formalizing some concepts relating to joint plans.
In this paper, we present preliminary work toward that goal.
The formalization of joint plans is an extension of the the-
ory of [5], in which plans consist of a single agent making a
request to single or multiple agents, each acting alone.

1.3 Logical Preliminaries
We use a sorted logic.A, S, T, E, P, Q, andX range, respec-
tively, over agents, situations, calendar-clock-times, events,
plans, fluents, and objects. Other sorts will be introduced as
needed. Variables are uppercase; constants are lowercase. In
all statements, variables are assumed to be universally quan-
tified unless otherwise specified.

We use the situation-based temporal logic of[5]. Time
branches forward, but not back. Situations are ordered by
the< relation. Associated with each situation is a calendar-
clock-time, also ordered by the< relation.

Finite intervals are specified by their starting and ending
situations. The predicateholdsrelates fluents and situations:
holds(S, Q)means that the fluentQ is true in the situation
S. Events occur over intervals.occurs(S1,S2, e)means that
eventE occurs over the interval[S1,S2].

2 Formalizing the concept of surprise
We formalize the concept of surprise as an unexpected event
or fact. To do this, we formalize the notion of expectation
and extend previous work on the interaction between time,
knowledge, and belief. We use the operatorsKnow andBe-
lieveand two corresponding operators describing prediction:
Know-futureandExpect.

We note that using only theKnowandKnow-futureopera-
tors would limit the kind of surprise that could be expressed.
Consider that one may be surprised byQ because one had no
expectation thatQ (weak surprise); but one may also, and in a
stronger sense, be surprised by because one had the expecta-
tion that in fact¬Q would hold (strong surprise). We can use
Know to express weak but not strong surprise. For it is not
possible forA to Know that¬Q will hold at some timeT, but
for Q then to hold atT: knowledge implies truth. Although
weak surprise is a sufficient concept for many situations (such
as the SBP), we prefer to develop a theory that is capable of
the fairly natural extension to the concept of strong surprise.

We have the usual accessibility relationsK and B, relat-
ing, respectively, knowledge-accessible worlds and belief-
accessible worlds. Intuitively:K(A, S1, S2)holds if from
what A knows to be true,S2 is indistinguishable fromS1;
B(A, S1, S2)holds if from whatA believes to be true,S2 is
indistinguishable fromS1.

Definition 1 We have the expected definitions:
holds(S1, Know(A,Q))⇔∀S2 K(A,S1,S2)⇒holds(S2, Q)
holds(S1, Believe(A,Q))⇔∀S2 B(A,S1,S2)⇒holds(S2, Q)

The definitions and axioms that we will have for knowl-
edge and belief are often very similar. We frequently group
related definitions and axioms together to save space.

We specify that theK relation is reflexive and transitive,
and that theB relation is symmetric and transitive, yielding an
S4 logic of knowledge and a weak S5 logic for belief. This

gives the usual axioms on epistemic and doxastic operators
[6]. The full paper gives the reason for the choice of seman-
tics.

We place the following restriction on these relations:

Axiom 1 {S2|B(A,S1,S2)} ⊆ {S2|K(A,S1,S2)}
To see thatB ⊆ K, note that the truth requirement for

knowledge, as opposed to belief, means that an agent can
believe more propositions than he knows; since he com-
mits, belief-wise, to more propositions than he commits,
knowledge-wise, the set of knowledge-accessible worlds is
larger than the set of belief accessible-worlds.

From Definition 1 and Axiom 1, we have:

Theorem 1 holds(S, Know(A,Q))⇒holds(S, Believe(A,Q))

To formalize the notion of surprise one must reason about
the future. An agent may know (resp. believe) that fluent
Q will hold at some future time. Thus, we need to reason
about the ways in which knowledge (resp. belief) and time
interact. An agent may have little or no knowledge about the
actions that will be performed. Therefore, we need to express
an agent’s ability to reason about the future when that future
is expressed not in terms of actions being performed but in
terms of the passage of time or specific calendar dates.

We assume that the calendar-clock-time structure runs
through all possible worlds, and that all agents always know
(resp. believe) the calendar-clock-time of the situation they
are in.

Axiom 2 K(A,S1,S2)⇒time(S1) = time(S2)

From Axiom 1,B(A,S1,S2)⇒time(S1) = time(S2).
We say that an agentA knows (resp. believes) thatQ will

be true at some future timeT if, for any knowledge (resp.
belief) accessible situationS2, Q will always be true at some
situationS3later thanS2, as long asS3’s time stamp isT.

Definition 2 holds(S1, Know-future(resp. Expect)(A,Q,T))
⇔
∀S2,S3 K(A,S1,S2) (resp. B(A,S1,S2))∧S2< S3∧time(S3) =
T⇒holds(S3, Q)

We overload the Know-future/Expect operators so that we
can talk about predictions and expectations of event occur-
rences:

Definition 3 holds(S1, Know-future(resp. Expect)(A,E, T1))
⇔
∀S2,S3 K(A,S1,S2) (resp. B(A,S1,S2))∧S2< S3∧time(S3) =
T1⇒∃S4 occurs(S3,S4,E)

We now defineA being surprised atS1by a factQ being
true or an eventE occurring starting atS2. It might seem
reasonable to say thatA is surprised if previous toS2he did
not expectQ or E at S2. However, we wish to accommodate
scenarios in which an agent expectsQ or E, but then for some
reason (such as obtaining information), changes his mind and
no longer expectsQ or E. Should it then happen thatQ is true
or E occurs atS2, A would in fact be surprised. Therefore, we
say thatA is surprised if the following conditions hold:
• S1does not precedeS2. • Any situationS3prior to S2 in
whichA does not expectQ or E is followed by a later situation
S4, still prior to S2, in whichA does expectQ or E. • In S1, A



knows thatQ has held orE has occurred starting atS2. • S1
is the first situation for which this is true.

Since we overload surprise for both facts and events, two
definitions follow.

Definition 4 holds(S1, Surprise(A,Q, S2))⇔
S1≥ S2∧
holds(S2,Q)∧
∀S3<S2 holds(Expect(A,Q,time(S2))⇒
∃S4 (S3< S4< S2∧¬ holds(S4, Expect(A,Q,time(S2))))

∧
∀S5 K(A,S1,S5)⇒∃S6 S6 ≤ S5 ∧time(S6) = time(S2)
∧holds(S6,Q)∧
¬∃S7 (S7< S1∧∀S5 K(A,S7,S8)⇒∃S9 S9≤ S7∧time(S9)

= time(S2)∧holds(S9,Q))

By convention, we say thatA is surprised by an eventE at
thebeginningof E’s occurrence.

Definition 5 holds(S1, Surprise(A,E, S2))⇔
S1≥ S2∧
∃S2∗ occurs(S2,S2*,E))∧
∀S3<S2 holds(Expect(A,E,time(S2))⇒
∃S4 (S3< S4< S2∧¬ holds(S4, Expect(A,E,time(S2))))

∧
∀S5 K(A,S1,S5)⇒∃S6,S6∗ S6≤ S5∧time(S6) = time(S2)
∧occurs(S6,S6*,E)∧
¬∃S7 (S7 < S1 ∧∀S5 K(A,S7,S8)⇒∃S9,S9∗ S9 ≤ S7
∧time(S9) = time(S2)∧occurs(S9,S9*,E))

These definitions characterize the concept of weak sur-
prise, as discussed above. To account for strong surprise, we
must explicitly mentionA’s expectation that¬Q hold at T.
The definition for strong surprise is given in the full paper.

3 Joint plans
Our theory of joint plans extends the theory developed in[5].
That theory supports showing that certain multi-agent plans
will succeed: in particular, plans in which one agentrequests
another agent, or requests a group of agents, by issuing a
broadcast requestto perform some plan. The theory is egal-
itarian in the sense that an agent cannot simply order other
agents to drop their activities and immediately do what he
asks. On the other hand, it is cooperative: every agentre-
servesblocks of time for every other agent and will work on
a requesting agent’s plan during a reserved time block if it
does not interfere with another agent’s plan. A fairly restric-
tive protocol specifies exactly when an agentA mayabandon
a requesting agentA1’s plan P1 — specifically, whenA has
no way of continuingP1or when he is also committed toA2’s
plan P2, andP2 specifically forbidsA from doing an action
of P1. A2can specifically forbidA from doing an action ifA2
governsthat action. This ensures thatA will not remain per-
manently committed to a plan that he cannot execute and that
he will not do actions that interfere with other agents’ plans.

A plan is specified in terms of two predicates,succeedand
next step. succeed(Pl, S1, S2)is true if planP1, started in
situationS1, ends successfully inS2. next step(E, P1, S1, S2)
is true if in S2actionE is a possible next step of an instance
of plan P1 begun inS1. next-stepis, essentially, the set of
instructions for an agent to carry out a plan, specifying both

the actions he needs to accomplishP1 and the set of actions
that he is permitted to do when, during the execution ofP1,
he momentarily turns his attention to work on another plan.

A proof in this theory of plan executability proceeds as
follows: One shows that a planP is executable by showing
that in every unbounded-from-abovesocially-possibleinter-
val in which an agentcommitsto a plan, hecompletesthat
plan. Socially-possible intervals are those intervals in which
all agents do what is requested of them to the extent possible.

An agentcompletesa plan over some interval if hebegins
the plan andknows that the plan succeedsover that interval.
Hebegins the planover some interval if he has begun it during
that interval, and is still in the process of carrying it out: that
is, as long as the plan has notterminated, whenever he is at a
choice pointof deciding which action to perform, he knows
of some action that is anext-stepof the plan.

A plan is onlyterminatedif it succeedsor if the abandon-
ment conditionsdiscussed above are satisfied.

The predicates corresponding to the italicized words above
are discussed in detail in[5], where the complete set of
axioms is given. The paper and a sample proof can be found,
respectively, at
www.cs.nyu.edu/cs/faculty/davise/elevator/axioms.ps and
www.cs.nyu.edu/cs/faculty/davise/commplan-appb.pdf.

3.1 Agents acting together
In the theory of[5], agents, even in multiple-agent plans, do
not collaborate. For the SBP, we must reason about joint plans
in which agents collaborate and act together. We must extend
this theory in several ways:
(1) Plan formation. In the original theory, a single requesting
agent makes a request of one or more agents. For joint plans,
a group of agents jointly decide on a particular plan.
(2) Reserving time blocks. In the original theory, all agents
reserve time blocks for all other agents. It is unclear how time
blocks will be reserved for joint plans.
(3) Joint actions. The original theory forces asynchronous
action: only one agent may act at any particular time. In the
SBP, Alice and Bob jointly give Carol her birthday present.

We discuss our approaches to these problems below:

Joint plan formation
We introduce the concet of a joint plan and a joint plan en-
tity (JPE). The JPE represents all the agents in the plan. A
JPE is considered an agent; it is best thought of as similar to
a corporate entity. The sortJ ranges over joint plan entities.
members(J) denotes the agents involved in the joint planJ. A
particular joint plan associated with planPi is denotedJPi.
J ⊂ A; this means that all axioms on agents apply to JPEs.
An agents is either a joint plan entity (JPE(A)) or an individ-
ual (Individual(A)).

A JPE cannot accept plans from any agent including him-
self. In fact, no agent is allowed to issue a request to a JPE.

Axiom 3 ¬∃S1,S2,A,J,P occurs(S1,S2,request(A,J,P))
∨acceptsrequest(P,A,J,S1)

All joint plans have a similar structure. The JPE starts the
plan—and becomes active—with a broadcast request to all
agents associated with the JPE, specifying the plan that the
agents are to carry out; then the JPE waits. The actions in



the JPE may consist of single-agent actions or joint actions,
performed by multiple agents. When the JPE’s plan succeeds
or is abandoned, the JPE ceases to be active.

Axiom 4 holds(S, active(J))⇔
occurs(S1, S2, broadcastreq(J,members(J),R))∧

[S∈ [S1,S2]∨
[∃A A ∈ members(J) ∧assignment(R,A) = P

∧working on(P,A,J,S2,S)]]

A JPE knows something if all agents in the entity know it:

Axiom 5 holds(S, Know(J,Q))⇔[ ∀A (A ∈ members(J)
⇒holds(S, Know(A,Q)))]

We modify the predicategovernswhich in the original the-
ory ranges over an agent and an action. A JPE’s governance
should not continue beyond the time that the joint plan is ac-
tive. We add an extra situational argument togoverns, and
specify that the JPE governs actions only when it is active.

Reserving time blocks: summary
The original theory posited that all agents reserve blocks of
time for all agents, including himself. However, one cannot
assume that all agents reserve blocks of time for all possible
JPEs. Instead, we allow joint plan entities to cannibalize the
reserved blocks of the plan members. That is, ifA1 andA2
are members of some JPEJ, some reserved blocks of time
thatA1has reserved forA2will become reserved forJ .

There are several technical points of interest relating to re-
serving blocks of time for JPEs. These are discussed in detail
in the full paper. We summarize the main points below.
(i)We define anallotment function that takes as arguments
a situation, 2 agents, all joint plans that are active in that
situation and have those agents as members, and the allot-
ment history.allotment-history(A1,A2,S)gives the sequence
of blocks, starting at s0 and up toS, initially reserved by indi-
vidual agentA1 for individual agentA2, along with a record
of who received the blocks:A2 or some JPE with members
A1andA2. The functionallotmentlooks at the allotment his-
tory with respect toA1 andA2 as well as the set of currently
active JPEs and determines to whom the block reserved by
A1 for A2should go.
(ii) The original theory assumed a maximum delay between
successive blocks of time reserved for the same agent. The
allotment scheme disturbs this notion, particularly if we allow
multiple JPEs created by an identical group of agents: one
might never be able to guarantee reserving a block of time or
getting anything done (the committee curse). Therefore, we
insist that there be no more than one active JPE associated
with each group of agents.
(iii) There can still be many JPEs active at any time:2n −
(n + 1) non-trivial JPEs for n agents. Agents could become
so overcommitted that they cannot successfully execute plans
within time constraints. This does not affect our solution to
the SBP because n is small. We defer the general problem to
futher research.

Joint actions: summary
The main points of this section are summarized below: see
the full paper for details.
(i)The extended theory still does not allow concurrency; we
merely allow multiple agents to perform a single action.

(ii) It is an axiom of the original theory that agents do not
start or end actions at this same time. (This avoids reason-
ing about the interaction of concurrent actions.) An excep-
tion is made at the beginning of time when all agents wait for
varying lengths of time. We employ a similar trick for joint
actions: agents wait varying amounts of time until they be-
gin the actual performance of the joint action, and then wait
varying amounts of time until they begin other actions.
(iii) It is difficult to ensure that the multiple agents involved
in a joint action of a JPE will have identical or even over-
lapping blocks of time reserved for the JPE. We make some
assumptions to handle this issue for the SBP, but do not solve
the general problem in this paper.

4 Proving that Alice and Bob’s plan will work
In this section, we state Alice’s and Bob’s plan to give Carol
a gift on her birthday, show that Alice and Bob will be able to
execute the plan, and show that Carol will be surprised when
she receives the gift. We first give the plan specification; then
discuss the frame problem in this context; and then sketch
the proof. This is followed by a paraphrase of the problem
premises and domain axioms. The formal statement of the
premises and axioms can be found in the full paper.

4.1 Plan Specification
There are two plans: the JPE’s plan to broadcast the request
to Alice and Bob, and the joint plan that Alice and Bob carry
out.

A few remarks about these axioms. The predicate
first opportunity(S2, AC, AR, S1, Q)is true whenS2 is the
first situation sinceS1whenAC has reserved a block of time
for AR andQ is true. This predicate is used when specify-
ing plans: a plan specifies that an agent do some action at his
first opportunity. The fluents that are used in statements of
this sort are often quite complicated; therefore, they are usu-
ally abbreviated in thenext stepspecification and defined in
subsequent axioms.
Specification of p1:

Plan p1 is specified as follows: At the first opportunity
when Carol is not in earshot, the JPE broadcasts a request
r2 to Alice and Bob. At all other times, the JPE waits.

Plan Spec Axiom 1 next step(E, p1, S1, S2)⇔
action(E,Jp1) ∧
first opportunity(S2,Jp1, Jp1, S1, p1f) ⇒
instance(E, broadcastreq(Jp1, {alice,bob}, r, S2)∧
¬first opportunity(S2,Jp1,Jp1), S1, p1f) ⇒action(E,Jp1) =
wait

p1 f is true when Carol is not in earshot of Alice or Bob.

Plan Spec Axiom 2 holds(S, p1f) ⇔¬holds(S,
in earshot(carol, bob))∧¬holds(S, inearshot(carol, al-
ice))

The request that the JPE broadcasts to Alice and Bob is to
perform the planp2.

Plan Spec Axiom 3 A = alice ∨A = bob⇒assignment(r,A)
= p2

p1succeeds if Carol receives the gift on her birthday.



Plan Spec Axiom 4 succeeds(p1,S1,SN)⇔
∃SM,SN SM,SN ∈ birthday(carol) ∧occurs(SM, SN,

do(carol, receive-gift))

Specification of p2:
Planp2 is specified as follows: First Alice gives Bob $10,

earmarking it for the giftxgift. Then Bob gives himself $10,
earmarking it forxgift. (This step facilitates proving that this
is indeed a joint gift.) Then Bob purchasesxgift. Then Alice
and Bob together give Carol the gift. The plan is formalized
with the help of flagsp2 q1 . . . p2 q4which trigger the events
in the plan. These flags are specified in the premises below.

p2 must also specify the actions that are taken when Alice
and Bob are not working for the JPE. This plan allows Al-
ice and Bob to do almost any action, but places limitations
on their abilities to spend money, give things, and talk. In
particular, they cannot give money to anyone except for Bob
unless they always have at least $20 left or the money is go-
ing toward the purchase of the gift; they cannot give the gift
to anyone but Carol, and not even to Carol until her birthday;
and they are not allowed to tell anyone that there is a plan
afoot which includes giving Carol the gift. The techniques
used to represent informing an agent of relatively complex
fluents are taken from[4].

Plan Spec Axiom 5 next step(E,p2,S1,S2)⇔
action(E, alice)∨action(E, bob)∧
p2 q1(S2,S1)⇒E = do(alice, give-earmark-cash(bob, 10,
xgift))∧
p2 q2(S2,S1)⇒E = do(bob, give-earmark-cash(bob, 10,
xgift))∧
p2 q3(S2,S1)⇒E = do(bob, purchase(xgift))∧
p2 q4(S2,S1)⇒E = do(alice,bob, give(carol,xgift))∧
(* Now the plan specifies the forbidden actions *)

(A1 = alice∨A1 = bob∨A1 = {alice,bob}) ∧(E = do(A1,
give-cash(A2, N))∨E = do(A1,purchase(X)))
⇒cash(A1, S2)≥ N + 20∨A = bob∨X = xgift
∧[ ¬time(S2)∈ birthday(Carol) ⇒E 6= do(A1, give(A3,
xgift)) ] ∧

time(S2)∈ birthday(Carol)∧E = do(A1, give(A3, xgift))
⇒A3 = carol
∧[ ¬∃E1,P,A3,A4,X E = do(A1,Inform(A2,Q))∧

[Holds(S,Q) ⇔∃Si,Sj Si < Sj ≤ S ∧occurs(Si,Sj, re-
quest(A3,A4,P))∧

one-step(E1,P)∧E1 = do(A3,give(carol,X)) ]

Below is the specification for the plan flags forp2. p2 q1
is set at the first opportunity that Alice has a reserved block
of time for the JPE and also has at least $10. (Planp2 above
specifies that when that flag is set, Alice gives $10 to Bob.)
p2 q2 is set at the first opportunity that Bob has a reserved
block of time for the JPE and also has at least $10.p2 q3 is
set at the first opportunity after both Alice and Bob have ear-
marked money forxgift that Bob has a reserved block of time
and also has at least $20.p2 q4 is set at the first opportunity
on Carol’s birthday that Alice and Bob both have reserved
blocks of time for the JPE and one of them hasxgift.

Plan Spec Axiom 6 Fluents and flags:
first flag:
p2 q1(S,so)⇔first opportunity(S, alice,Jp1, ss, p2q1 f)
first flag fluent:

holds(S, p2q1 f) ⇔cash(alice,S) ≥ $10
∧reservedblock(time(S),alice,Jp1, maxaction time)
second flag:
p2 q2(S,so)⇔first opportunity(S, bob,Jp1, ss, p2q2 f)
second flag fluent:
holds(S, p2q2 f) ⇔cash(bob,S) ≥ $10
∧reservedblock(time(S),bob,Jp1, maxaction time)
third flag:
p2 q3(S,so)⇔first opportunity(S, bob,Jp1, ss, p2q3 f)
third flag fluent:
holds(S, p2q3 f) ⇔∃S1,S2,S3,S4 S1< S2< S∧S3< S4< S
∧occurs(S1,S2, do(alice, give-earmark-cash(bob, 20, xgift)))
∧
occurs(S3,S4, do(bob, give-earmark-cash(bob, 20, xgift)))
∧cash(bob,S) ≥ 20 ∧reservedblock(time(S),bob, Jp1,
maxaction time)
fourth flag:
p2 q4(S,so) ⇔first opportunity(S, {alice,bob}, Jp1, ss,
p2 q4 f)
fourth flag fluent:
holds(S, p2q4 f) ⇔
time(S)∈ birthday(carol)∧
holds(S, phys-possess(bob,xgift))∨holds(S, phys-
possess(alice,xgift))∧
reservedblock(time(S),{alice,bob}, Jp1, 2 · maxaction time
+ ε)

The success condition is simply that the steps in the plan
have been completed in the appropriate order.
Plan Spec Axiom 7 succeeds(p2,S1,SN)⇔
∃S2,S3,S4,S5,S6,S7,S8,S9 S1< S2,S4,S6,S8∧S2< S3∧S4<

S5∧S3,S5< S6< S7< S8< S9≤ SN∧
occurs(S2,S3, do(alice, give-earmark-cash(bob, 10, xgift)))
∧
occurs(S4,S5, do(bob, give-earmark-cash(bob, 10, xgift)))
∧
occurs(S6,S7, do(bob, purchase(xgift)))∧
occurs(S8,S9, do({alice,bob}, give(carol, xgift)))

4.2 The Frame Problem in this Context
A common monotonic solution to the frame problem[11]
works by specifyingexplanation closureaxioms[15], which
state the complete set of actions that can modify a fluent,
and by positingnon-occurrenceaxioms stating that certain
actions do not in fact happen.

We proceed with this approach, rather than using a non-
monotonic solution (e.g.[16]) for two reasons: first, the SPB
problem description specifically states that a theory ought not
entail that no actions happen other than the actions in the plan.
But this is precisely what nonmonotonic solutions entail. Sec-
ond, the way the planning theory is set up, one anyway has to
specify that certain actions are forbidden, namely, the actions
that would interfere with the rest of the plan. These actions
turn out to be remarkably similar to the sorts of actions one
would have to explictly exclude from occurrence in a mono-
tonic theory. This form of plan specification, therefore, has
the potential to reduce the number of non-occurrence assump-
tions one must make. The connection between plan specifi-
cation and non-occurrence axioms is a subject for future re-
search.



4.3 Proof Sketch
We first show that plansp1 andp2 can be successfully exe-
cuted, resulting in Carol receiving the gift, and then show that
she will be surprised. In what follows, we frequently indicate
whether a fact follows from the original theory (O), a lemma
in the proof sketch (PS), or the extended theory (ET).2

The proof proceeds as follows: We begin by considering
the second planp2. Assume that betweenssandS1Jp1 issues
a broadcast request to Alice and Bob to performp2. Then, in
any socially possible interval that includesss and S1, both
Alice and Bob accept the request to performp2. Thus, both
are committed top2 in S1(O).

Now consider the plan flagsp2 q1, p2 q2, p2 q3, and
p2 q4. We can show that Bob and Alice always know when
these are true, and moreover, know when it is the first oppor-
tunity that a fluent holds (PS). For agents always know when
they have reserved blocks of time (PS). Further, they know
how much money they have, whether they own things, and
know about the previous earmark-cash, purchase, and giving
actions that they have performed (ET). We must show in addi-
tion that there will be such blocks of time available for Alice
and Bob to perform their actions before Carol’s birthday; and
a block of time available on Carol’s birthday for Alice and
Bob to perform their joint action. This is a consequence of
the problem premises specifying Alice and Bob’s free time,
the maximum action time for doing actions, the maximum de-
lay time during which agents can turn their attention to other
plans, the length of time remaining until Carol’s birthday, and
(for the block of time available on Carol’s birthday) the axiom
(ET) on reserved blocks of time for joint plans.

We must show that
p2 qi(S2,S1)⇒knownextstep(E, p2, alice,Jp1, S1)⇒E =
do(alice, give-earmark-cash(bob, 10, xgift))
(and similarly for the other plan steps).

For the first plan step, we must show that the actionE is
feasible inS2and that Alice knows thatE is a next-step in
the plan. We can show it is feasible inS2using the premises
in the problem statement (i.e., Alice has $10), explanation
closure axioms, the non-occurrence of events betweenssand
S1, and the conditions in the plan specification not allowing
Alice to spend down below a certain amount of money.

We reason similarly to show thatp2 q2(S2,S1)implies that
Bob knows that the next step ofp2 is earmarking money for
himself; feasibility is again shown using a combination of
problem premises, non-occurrence of events, and explanation
closure axioms. Similarly to show thatp2 q3(S2,S1)implies
that Bob knows that the next step ofp3 is purchasing the gift;
and similarly to show thatp2 q4(S2,S1)implies that both Al-
ice and Bob know that the next step ofp2 is jointly giving
the gift. For this last step, demonstrating feasibility appeals
to requirements that the domain theory places upon joint giv-
ing: joint giving is possible only if all agents involved have
earmarked money for the gift.

This will suffice to show that the predicatebeginplan is

2The original theory and the proof sketch are avail-
able at www.cs.nyu.edu/faculty/davise/elevator/axioms.ps and
www.cs.nyu.edu/faculty/davise/commplan-appb.pdf ; the extended
theory refers to the development in this paper.

true over any socially acceptable interval[S1,Sz]. Further-
more, we can show that the plan does not terminate before the
final step of the plan has been performed. Termination can oc-
cur only if the plan succeeds or the plan has been abandoned;
but neither of the abandonment conditions will be satisfied.
For we have shown that it is always feasible for Alice and
Bob to perform their steps inp2; and when, during[S1,Sz],
Alice and/or Bob are working on some other planp3 for some
other agent, if they are requested to perform one of the for-
bidden actions, they will abandonp3, not p2, due to the fact
thatJp1 governs the forbidden actions. (O, ET)

We can also demonstrate certain properties of the situa-
tions in which the plan fluents first hold, using our premises
on maxactionandmaxdelay, and our axioms on allotment.
In particular, we can show that the gift is purchased before
Carol’s birthday, and that there will be a first opportunity, on
Carol’s birthday, in which Alice and Bob both have allocated
time for giving Carol her gift. (ET)

Finally, all agents know the actions that they have per-
formed. Therefore, when the final step of the plan has been
performed, Alice and Bob know it; therefore, they know
the plan has succeeded. Thefore the plan completes, which
means that the plan is executable. (O, ET)

Now let us turn our attention top1. Since Alice and Bob
are not in earshot of Carol inss, they know that this is the
case; therefore,Jp1 knows it; therefore it knows thatp1 f
holds; further, it knows thatss is the first opportunity (since
ss) when this is true. Furthermore it is always feasible to is-
sue a broadcast request (O). Thus, inss, Jp1 knows the next
step in planp1 and can perform it. Since it is always feasible
to wait and no one governs the action of waiting (O), and this
is known by all agents, we can show that once the request has
been made,Jp1 can continue to execute the planp1.

In the proof sketch thatp2was executable, we showed that
Alice and Bob can reason thatp2 will successfully execute,
and that Alice and Bob will jointly givexgift to Carol on her
birthday. When this occurs, Alice and Bob will know that
they have given the gift, and will therefore know that Carol
has received the gift. Therefore,Jp1 will know it. Thus the
plan will complete andJp1 can successfully execute the plan.

Finally, we must show that Carol is surprised. Assume that
p1 executes over the interval[ss,Sz]. (Note thatp1 andp2
complete at the same time.) Then there exists some situation
Sysuch that Alice and Bob give Carol the gift over[Sy,Sz],
where[Sy,Sz]is a subinterval of Carol’s birthday.

Now we know from the problem premises that inss, Carol
does not expect to receive a gift on her birthday. We have as
one of our explanation closure axioms that a person who does
not expectE will come to expect thatE will happen (prior to
its occurrence) in one of only two ways: either by being in-
formed that some plan that includesE is afoot, or by hearing
a broadcast request to some agents of some plan that includes
E. By hypothesis, Carol is not in earshot of Alice and Bob,
and thus cannot hear the broadcast request. Moreover, no in-
form occurrences happen during the broadcast request. Fur-
thermore,p2, which covers any time between the broadcast
request and the giving of the gift, specifically forbids Alice
and Bob telling anyone that anyone is working on a plan that
includes giving Carol a gift on her birthday. Therefore, Carol



will not be informed of the gift giving prior to her birthday.
Moreover, Carol will know when she has received her gift.

By the definition of surprise, she will therefore be surprised
when she receives her gift.

4.4 Domain Axioms

What follows below are English paraphrases; the formal
statement is in the full paper on the web.
Premises of the starting situation:

The only individual actors are Alice, Bob, and Carol. In
the starting situation Carol does not expect to receive a gift
on her birthday. Alice and Bob each have at least $10. The
cost of the gift is $20. At the start, neither Alice, Bob, nor
Carol owns the gift. Carol is not in earshot of Alice or Bob.

Some housekeeping axioms concerning time: Both Alice
and Bob have reserved the entire day of Carol’s birthday for
themselves. There are two weeks until Carol’s birthday. Ac-
tions take at most 1/2 hour;maxdelayis 20 hours.

The joint plan entityJp1, while active, governs the follow-
ing actions of Alice and Bob: their spending down to below
$20; their giving anyonexgift, and their telling anyone about
a plan to give Carol a gift. The governance axioms are very
similar to the specification of the forbidden actions inp2.
Preconditions on actions:

You can give cash to someone if you own at least that
amount of cash. Similarly for earmarking cash for a particu-
lar purpose. You can give an object if you physically possess
it. You can buy something as long as you have sufficient cash.

Two agents can jointly give an object to a third if:
— one of them physically possesses the object
— both of them have contributed money earmarked toward
the object (before the giving of the object). The amount of
each agent’s contribution must be less than the object’s cost;
otherwise, the others’ earmarking doesn’t count.
— both of them have reserved appropriate blocks of time.
Causal axioms:

If one agent gives an object to a second, the first agent no
longer has it, and the second does. The transfer of money
works similarly. Purchasing an object results in an agent pos-
sessing the object but having less money. If someone tells
you something, you will believe it.

If A1 overhearsA3 requestingA2 to do some plan, he will
subsequently know thatA2 has accepted the request to per-
form that plan.

This axiom will be used together with the following. If
A1knows or even just believes thatA2has accepted a request
from A3 to performP, and one of the steps ofP is some action
E, then he will expectE to be performed at some time in the
future. This is an expectation rather than knowledge of some
future event, becauseA1may not know that all circumstances
crucial for the success ofP actually hold.
Relations beween actions:

If one has given cash to someone earmarked for some pur-
pose, one has certainly given them cash. Giving entails re-
ceiving. One has received a present from someone if there is
some person who has given him something.
Knowledge axioms:

In the starting situation, Alice and Bob know all the
premises. This means, e.g., that Alice and Bob know at the
start that Carol is not in earshot and that the gift costs $20.

Agents always know when it’s someone’s birthday. Agents
always know when they have been involved in a giving, ear-
marking money, or purchasing action.
Explanation closure axioms:

The only way to have less money is to give it to someone or
purchase an item. The only way to lose possession of an item
is to give it to someone. The only way to gain possession of
an item is to get it from someone or to purchase it.

If one does not expect an action to happen, he will revise
his expectations only if he find outs that there is a plan afoot
that includes the action. There are only two ways for this to
happen: one can overhear such a plan request being issued,
or be told that such a plan request has been issued.
Non-occurence axiom:Alice and Bob whileJp1 is broad-
casting the request to dop2.

5 Problem Variants

Below, we discuss the variants that the theory can handle, and
how we might extend the theory to handle other variants.

Since we have no theory of locations, spaces, or rooms, we
clearly cannot handle certain variants: those where Carol is
in the room where Alice and Bob are doing the planning, or
where Carol is in the next room and the door is open. We like-
wise cannot handle the cases where Alice and Bob formulate
their plan during a walk outside or pass a hidden message.

We can, however, handle an important subset of the vari-
ants. First, we can handle the variant when Carol is in earshot
of Alice and Bob. We have an axiom stating that if an agent
overhears someone requesting a plan, he knows that it will be
accepted. Moreover, this agent will expect that any event that
is a step of the plan will occur. Thus, if Carol hears the JPE
broadcasting its request to Alice and Bob, she will expect to
get a present. Similarly, the theory can handle the variant in
which someone tells her that some agents are working on a
plan that includes giving her a gift.

We can handle, in part, the variant in which Alice and Bob
cannot agree on a present. In such a case, there will be no
JPE, so there is no earmarking of cash, no purchase, no joint
gift. As yet, we have not sufficiently formalized the concept
of JPE to express or entail what it means when Alice and Bob
cannot agree on a joint plan. For similar reasons, we can-
not entirely handle the variants where Alice and Bob do not
consult together. We can, however, show that if Alice or Bob
purchases the gift alone, without the other having earmarked
money toward that purpose, that it does not count as a joint
gift.

It is also possible to reason about a variant in which Alice
and Bob do not give Carol her gift until after Carol’s birth-
day. One can formulate a plain which Alice and Bob give
the gift at the first possible opportunity after 12:01 AM on
Carol’s birthday, and one could alter the axioms on allotment
and reserved blocks so that it is not necessarily the case that
Alice and Bob can give the gift on Carol’s birthday. Then
although one could show that once Carol gets the gift, she is



surprised, it is possible that it is not on her birthday that Carol
is surprised.

The theory can handle situations in which Alice and Bob
jointly buy the gift. One can either specify the plan to include
a joint purchasing action, or specify that the purchasing action
may be done either jointly or singly, by either Alice or Bob.

6 Conclusion
This paper presents the results of the first phase of our work
in constructing a first-order axiomatization for a simplified
version of the Surprise Birthday Present Problem. Our re-
sults include the development of a possible-worlds semantics
for the concepts of surprise, and the extension of a first-order
theory for communication and planning to handle joint plan-
ning and action.

We have demonstrated that this theory, together with some
rudimentary axioms on giving, transferring money, and pur-
chasing, suffices to demonstrate the goal of the SBP — show-
ing that Carol is surprised when she receives her gift — and
that we can handle many of the listed variants. In addition, the
axiomatization satisfies the constraints set forth in the prob-
lem: the theory does not entail that Carol knows nothing of
consequence, and does not entail that nothing happens except
for the actions in the plan.

There are two major gaps in the current axiomatization: the
lack of an integrated theory of perception and knowledge, and
the lack of an account of how agents come to decide on a col-
laborative plan. The work of[2] is particularly relevant to the
first issue. Existing work on negotiation[9] and intentionality
[1] may be relevant to the second.

Mid-sized axiomatizations of this sort are not common in
the AI logicist community. This has hampered the develop-
ment of a set of criteria for evaluation[13]. Nevertheless, we
can tentatively suggest some criteria, as in[12]. One can eval-
uate how well an axiomatization solves a challenge problem
by how well it handles the problem itself and its variants. On
this scale, this preliminary axiomatization seems solid: it can
handle all variants within the intended scope of the axiomati-
zation. One can evaluate how useful an axiomatization is by
the generality and reusability of the core theories that it em-
bodies. In this case, the theory of expectation and surprise is
entirely general, and ought to be easily reusable. The theory
of joint plans extends an existing theory of communication
and multi-agent planning. The existing theory itself is much
broader than most theories of multi-agent planning, and the
extensions developed in this paper make it still more general.

There are some intangible benefits of doing this sort of
mid-sized axiomatization that can transcend the criteria dis-
cussed above. Deep, narrow research into toy-sized problems
rarely leads one to consider the many aspects of reasoning
that simultaneously permeate even everyday commonsense
reasoning problems: as we have seen, even a simplified ver-
sion of the SBP involves the need to coordinate joint actions,
to make sure that one will have time available, to earmark
money to ensure that one has really contributed to a joint gift,
and to reason about how all of these interact. There is ample
opportunity, when working on large-scale formalizations, for
such considerations to enter into one’s consciousness, but vir-

tually no time to spend thinking about any of the subtleties;
there is too much to be done and never enough time to do it.

This is the level of formalization that presents the oppor-
tunity to reason about the multitude of ways in which vari-
ous pieces of commonsense knowledge interact, and permits
the time to develop one’s theories as fully and as deeply as
one can or would wish. The ultimate goal of such exercises
may be the development of a sizable body of commonsense
reasoning that can be used to solve larger, more serious prob-
lems, but even before that goal is met, the process itself cap-
tures some of the spirit of the original AI logicist enterprise.
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