
Forgetting literals with varying propositional symbols

Yves Moinard
IRISA, Campus de Beaulieu, 35042 RENNES-Cedex FRANCE

moinard@irisa.fr

Abstract

Recently, the old logical notion of forgetting propo-
sitional symbols (or reducing the logical vocabu-
lary) has been generalized to a new notion: for-
getting literals. The aim was to help the auto-
matic computation of various formalisms which are
currently used in knowledge representation. We
extend here this notion, by allowing propositional
symbols to vary while forgetting literals. The def-
initions are not really more complex than for lit-
eral forgetting without variation. We describe the
new notion, on the syntactical and the semantical
side. Then, we show how to apply it to the com-
putation of circumscription. This computation has
been done before with standard literal forgetting,
but here we show how introducing varying propo-
sitional symbols simplifies significantly the compu-
tation. We revisit a fifteen years old result about
computing circumscription, showing that it can be
improved in the same way. We provide hints in
order to apply this forgetting method also to other
logical formalisms.

1 Introduction
The well-known notion of forgetting propositional symbols
has been used for a long time in mathematical logic and in its
applications for knowledge representation. Recently, [Lang
et al., 2003] has extended this notion in a significant manner,
by allowing the forgetting of literals. The main purpose of
the authors was the introduction of a new way for helping the
automatic computation of various formalisms.

The example that they provided concerns circumscription.

We extend the notion by allowing some propositional sym-
bols to vary when forgetting literals. The new definitions are
a simple and natural extension of the original ones, and they
have the same kind of behavior.

We show that with this simple extension, the result given
in [Lang et al., 2003] for circumscription, which involves a
two stages operation, can be reduced into a single stage. We
extend the correlation (given in [Lang et al., 2003]) of the
method with an earlier proposal for computing circumscrip-
tion [Przymusinski, 1989]. Precisely, we show that Przymun-

sinski’s method, which is a two stages method also, can sim-
ilarly be reduced into a single stage method.

Meanwhile, we show that this way of using the notion of
literal forgetting is a particular case of a powerful formalism,
introduced in [Siegel and Forget, 1996] in order to facilitate
the computation for nonmonotonic reasoning.

2 Technical preliminaries
We work in a propositional language PL. As usual, PL also
denotes the set of all the formulas, and the vocabulary of
PL is a set of propositional symbols denoted by V(PL). We
restrict our attention to finite sets V(PL) in this text.

Letters ϕ, ψ denote formulas in PL. Two logical constants
> and ⊥ denote respectively the true and the false formulas.

Letters ω, µ, ν denote interpretations for PL, identified
with subsets of V(PL). The notations ω |= ϕ and ω |= X for
a set X of formulas are defined classically.

For a set E, P(E) denotes the set of the subsets of E. The
set P(V(PL)) of the interpretations for PL is denoted by
Mod. A model of X is an interpretation ω such that ω |= X ,
Mod(ϕ) and Mod(X) denote respectively the sets of the
models of {ϕ} and X .

A literal l is either a symbol p in V(PL) (positive literal)
or its negation ¬p (negative literal). A clause (respectively a
term) is a disjunction (respectively a conjunction) of literals.
Subsets of V(PL) are denoted by P,Q, V .
P+ (respectively P−) denotes the set of the positive

(respectively negative) literals built on P , and P± denotes
the set P+ ∪ P− of all the literals built on P (P and P+ can
often be assimilated).

For any (finite) setX of formulas,
∧

X (respectively
∨

X)
denotes the conjunction (respectively disjunction) of all the
formulas in X . We get:

∧

X ≡ X ,
∧

∅ ≡ > and
∨

∅ ≡ ⊥.
V(X) denotes the set of the propositional symbols appear-

ing in X .

A disjunctive normal form or DNF (respectively conjunc-
tive normal form or CNF) of ϕ is a disjunction of consis-
tent terms (respectively a conjunction of non trivial clauses)
which is equivalent to ϕ.

A prime CNF is a CNF which involves only prime
implicates: for any clauses c, ci, if ϕ |= c, and c |= ci for
some ci in the CNF, then ci |= c.

A set L of literals in V ± (and the term
∧

L) is consistent
and complete in V if each propositional symbol of V appears
once and only once in L; the clause

∨

L is then non trivial
and complete in V . For any set L of literals, ¬L denotes the
set of the literals complementary to those in L.

We need the following notions and notations, many of
them coming from [Lang et al., 2003]:

Ifϕ is some formula and p is a propositional symbol in PL,
then ϕp←1 (respectively ϕp←0) is the formula obtained from
ϕ by replacing each occurrence of p by > (respectively ⊥). If
l is the positive literal p (respectively the negative literal ¬p),
thenϕl←i denotes the formulaϕp←i (respectivelyϕp←(1−i)),
for i ∈ {0, 1}.

Notations 2.1 1. If v1, · · · , vn are propositional symbols,
ϕ(v1←i1,···,vn←in) with each ij ∈ {0, 1} denotes

the formula (· · · ((ϕv1←i1)v2←i2)· · ·)vn←in
.

If the vj ’s in the list are all distinct, then the order of the
vj’s is without consequence for the final result. Thus, if
V1 and V2 are disjoint subsets of V , we may define
ϕ[V1←1,V2←0] as

ϕ[v1←1,···,vn←1,vn+1←0,···,vn+m←0], where (v1, · · · , vn)
and (vn+1, · · · , vn+m) are two orderings of all the
elements of V1 and V2 respectively.

2. If L = (l1, · · · , ln) is a list of literals, then
ϕ(l1←i1···ln←in) denotes the formula

(· · · ((ϕl1←i1)l2←i2)· · ·)ln←in
.

3. Let V(PL)± be ordered in some arbitrary way. If
L1, · · · , Ln are disjoint sets of literals,
ϕ〈L1←i1,···,Ln←in〉 denotes the formula

ϕ(l1←k1,···,ln←kn) where (l1, · · · , ln) is the enumeration
of the set L1 ∪ · · · ∪Ln which respects the order chosen
for the set of all the literals, and where, for each lj , kj is
equal to ir where r ∈ {1, · · · , n} is such that lj ∈ Lr.

Let us remind a well known notion, variable forgetting:

Definition 2.2 If V ⊆V(PL) and ϕ∈PL, ForgetV (ϕ, V)
denotes a formula, in the propositional language PL

V
built

on the vocabulary V = V(PL)−V , which is equivalent to ϕ
in this restricted language: ForgetV (ϕ, V) ≡ Th(ϕ)∩PL

V
where Th(ϕ) = {ϕ′ ∈ PL/ϕ |= ϕ′}.

For any ψ ∈ PL
V

, ϕ |= ψ iff ForgetV (ϕ, V) |= ψ.

Various ways are known in order to get ForgetV (ϕ, V),
the two easiest (to describe) ways being the following ones:

1. In a DNF form of ϕ, suppress all the literals in V ±.

2. In a prime CNF form of ϕ, suppress any clause contain-
ing a symbol in V .

Remark 2.3 When considering a formula equivalent to a set
Th(ϕ) ∩ X , the set of formulas X can be replaced by any
set Y having the same ∧-closure: {

∧

X ′/X ′ ⊆ X} =
{
∧

X ′/X ′ ⊆ Y }. Indeed, we have:

• IfX and Y have the same ∧-closure, then Th(ϕ)∩X ≡
Th(ϕ) ∩ Y .

• The converse is true, provided that we assimilate equiv-
alent formulas: if Th(ϕ) ∩ X ≡ Th(ϕ) ∩ Y for any
ϕ ∈ PL, then X and Y have the same ∧-closure.

Since we work in finite propositional languages, there ex-
ists a unique smallest (for set inclusion, and up to logical
equivalence) possible set, the ∧-reduct of X , equal to the set
X − {ϕ ∈ X/ϕ is in the ∧-closure of X − {ϕ}}.

Thus, X can be replaced by any set which contains the
∧-reduct of X and is included in the ∧-closure of X .

Thus, instead of considering the whole set PL
V

in
ForgetV (ϕ, V) ≡ Th(ϕ) ∩ PL

V
(Definition 2.2), we can

consider the set of all the clauses built on V , the smallest
(for ⊆) set that can be considered here being the set of these
clauses which are non trivial and complete in V .

From a semantical side, the set of the models of
ForgetV (ϕ, V) is the set of all the interpretations for PL

which coincide with a model of ϕ for all the propositional
symbols not in V .

3 Literal forgetting
Variable forgetting as been generalized as detailed now, be-
ginning by the semantical side.

Definition 3.1 [Lang et al., 2003, pp. 396–397] Let ω be an
interpretation for PL, p be a propositional symbol in PL and
L be a consistent set of literals in PL.

We define the interpretations
Force(ω, p) = ω ∪ {p} and Force(ω,¬p) = ω − {p}
and more generally,
Force(ω,L) =
ω ∪ {p/p ∈ V(PL), p ∈ L} − {p/p ∈ V(PL),¬p ∈ L}.

Thus, Force(ω,L) is the interpretation for PL which is
equal to ω for all the propositional symbols in V(PL)−V(L)
and which satisfies all the literals of L.

Definition 3.2 (Literal forgetting) [Lang et al., 2003,
Prop. 15] If ϕ is a formula and L a set of literals in PL,
ForgetLit(ϕ,L) is a formula having for models the set of
all the interpretations for PL which can be turned into a
model of ϕ when forced by a consistent subset of L:

Mod(ForgetLit(ϕ,L)) = {ω /
Force(ω,L1) |= ϕ and L1 is a consistent subset of L}.

This amounts to say that the models of ForgetLit(ϕ,L)
are built from the models of ϕ by allowing to negate an
arbitrary number of values of literals in L:

Mod(ForgetLit(ϕ,L)) = {Force(ω′, L′1) /
ω′ |= ϕ and L′1 is a consistent subset of ¬L}.

Let us consider the syntactical side now. One way is to
start from a DNF formulation of ϕ:

Proposition 3.3 [Lang et al., 2003] If ϕ = t1 ∨ · · · ∨ tn is
a DNF, then ForgetLit(ϕ,L) is equivalent to the formula
t′1 ∨ · · · ∨ t′n where t′i is the term ti without the literals in L.

The similar method for obtaining ForgetV (ϕ, V) when ϕ
is a DNF has been reminded in point 1 following Definition
2.2. Remind also that, for any ϕ, ForgetV (ϕ, V) can be
defined as follows (cf Notations 2.1-1):

ForgetV (ϕ, V) =
∨

V ′⊆V

ϕ[V ′←1, (V−V ′)←0].

Similarly, the following syntactical definition can be given:

Definition 3.4 If L is a set of literals in PL, then

ForgetLit(ϕ,L) =
∨

L′⊆L

((

∧

¬L′
)

∧ ϕ〈(L−L′)←1〉

)

.

This is a paraphrase of [Lang et al., 2003, Definition 7]. We
refer the reader to this text which shows

1. the adequacy with Definition 3.2 and Proposition 3.3,

2. that choosing any order of the literals does not modify
the meaning of the final formula (cf Notations 2.1-3),
and

3. that we get also

ForgetLit(ϕ,L) ≡
∨

L′⊆L

((

∧

¬L′
)

∧ ϕ〈(L−L′)←1,L′←0〉

)

.

The presence of
(
∧

l′∈L′ ¬l′
)

, which is what differentiates
ForgetLit(ϕ, ...) from ForgetV (ϕ, ...), comes from the
fact that here we want to forget l ∈ L, but not l′ ∈ ¬L.

A proof in [Lang et al., 2003], using Proposition 3.3, shows
that we get ForgetLit(ϕ, V ±) ≡ ForgetV (ϕ, V).

This proof is easily extended to get:

Remark 3.5 Since any set of literals can be written as a dis-
joint union between a consistent set L′ and a set V ± of com-
plementary literals, here is a useful formulation:

ForgetLit(ϕ,L′∪V ±) ≡ ForgetLit(ForgetV (ϕ, V), L′).

(Notice that L′ can even be inconsistent in this equivalence.)

This remark has the advantage of separating clearly the
literals which are forgotten and the propositional symbols
which are forgotten. Let V ′ denote the set V(L′) of the propo-
sitional symbols in L′, and V ′′ = V(PL)−V −V ′ be the set
of the remaining symbols. Then we get:

1. The propositional symbols in V are forgotten;

2. the literals in L′ are forgotten, but their symbols (in V ′)
may remain, since the literals in ¬L′ are not forgotten;

3. the literals in V ′′± are not forgotten, thus the proposi-
tional symbols in V ′′ are fixed.

Thus, ForgetLit(ϕ,L1) can be defined as: forgetting lit-
erals with some propositional symbols fixed. It is tempting to
generalize the notion, by allowing some propositional sym-
bols to vary in the forgetting process.

4 Literal forgetting with varying symbols
As done with the original notion, it is convenient to introduce
the semantical definitions first.

Definition 4.1 Let ϕ be a formula, V a set of propositional
symbols, and L a consistent set of literals, in PL, with V
and V(L) disjoint in V(PL). ForgetLitV ar(ϕ,L, V) is a
formula having the following set of models:

Mod(ForgetLitV ar(ϕ,L, V)) = {ω /

Force(ω,L1 ∪ L2) |= ϕ where L1 ⊆ L,L2 ⊆ V ±,

L2 consistent, and (ω 6|= L1 or L2 = ∅)}.

This is equivalent to:

Mod(ForgetLitV ar(ϕ,L, V)) =

{Force(ω,L1 ∪ L2) / ω |= ϕ where
L1 ⊆ ¬L, L2 ⊆ V ±, L2 consistent and
(ω 6|= L1 or L2 = ∅)}.

Since ω |= L2 iff Force(ω,L2) = ω, in these two
formulations the condition “(ω 6|= L1 or L2 = ∅)” can be
replaced by “(ω 6|= L1 or ω |= L2)”, and then we can replace
“L2 consistent” by “L2 consistent and complete in V ”.

We could be more general, by allowing to forget some
propositional symbols, which amounts to allow non consis-
tent sets L. This generalization does not present difficulties,
however, since we have not found any application for it till
now, we leave it for future work.

With respect to Definition 3.2, what happens here is that
the non consistent part of the set of literals, which allowed to
forget some set V of propositional symbols altogether, has
been replaced by a set of varying propositional symbols.

Remark 4.2 Since ForgetLit(L1, ϕ) |= ForgetLit(L1 ∪
L2, ϕ) holds from [Lang et al., 2003], we get:

ϕ |= ForgetV (ϕ, V) |= ForgetLit(ϕ,L ∪ V ±).

It is immediate to show that we get also:

ϕ |= ForgetLitV ar(ϕ,L, V) |= ForgetLit(ϕ,L ∪ V ±).

Here are the motivations for introducing ForgetLitV ar:
we want to “forget” the literals in L, even at the price of
modifying the literals in V ±. This is what explains that, if
we effectively forget at least one literal in L, then, we allow

any modification for the literals in V ±. However, we do not
want to modify the literals in V ± “for nothing”: our aim is
to forget as many literals in L as possible. This justifies the
condition “(ω 6|= L1 or L2 = ∅)” in the definition.

The syntactical aspect is slightly more tricky, but it
remains rather simple and it allows to revisit and im-
prove already known results. As with the original notion
(see Proposition 3.3), the simplest way is to start from a DNF.

Without loss of generality we can consider that L is a set
of negative literals (otherwise, replace any p ∈ V(L) such
that p ∈ L by ¬p′, p′ being a new propositional symbol, then
after the computations, replace p′ by ¬p). Thus, till now, we
will consider two disjoint subsets P and V of V(PL), and
L = ¬P with Q = V(PL) − V − P denoting the set of the
remaining propositional symbols.

Proposition 4.3 Let ϕ = t1 ∨ · · · ∨ tn be a DNF, with

ti = (
∧

Pi,1) ∧ (
∧

¬(Pi,2)) ∧ (
∧

Vi,l) ∧ (
∧

Qi,l),

where Pi,1 ⊆ P , Pi,2 ⊆ P−Pi,1, and where Vi,l andQi,l are
consistent sets of literals in V ± and Q± respectively. Then
ForgetLitV ar(ϕ, P−, V) ≡ t′1 ∨ · · · ∨ t′n where

t′i = (
∧

Pi,1)∧ (
∧

Qi,l)∧ ((
∨

(P −Pi,1))∨ (
∧

Vi,l)), i.e.

t′i = (
∧

Pi,1) ∧ (
∧

Qi,l) ∧
∧

l∈Vi,l

(l ∨ (
∨

(P − Pi,1))).

Thus, t′i is ti except that the literals in ¬P are suppressed
while each literal in V ± must be disjuncted with the clause
∨

(P − P1), this clause denoting the disjunction of all the
literals in P+ which do not appear (positively) in ti.

Proof: Let us consider complete terms first, such as

ti = t = (
∧

P1) ∧ (
∧

¬(P − P1)) ∧ (
∧

Vl) ∧ (
∧

Ql),

where P1 ⊆ P , Vl and Ql being consistent and complete
sets of literals in V and Q respectively. t corresponds to an
interpretation ω. The set F (ω) =
{Force(ω,L1 ∪ L2) / L1 ⊆ P, L2⊆ V ±,
L2 consistent and complete in V, and ω 6|= L1 or ω |= L2}
is the set of the models of the formula t1 ∧ t2 where
t1 = (

∧

P1) ∧ (
∧

Ql) and t2 = (
∨

(P − P1)) ∨ (
∧

Vl)).
Indeed, for each ω′ ∈ F (ω), t1 holds since it holds in

ω, and the symbols in P − P1 and V can take any value
satisfying the condition ω 6|= L1 or ω |= L2. Since ω |= t,
this means L1 ∩ (P − P1) 6= ∅ or L2 ⊆ Vl, which is
equivalent to ω′ |= t2. Conversely, any model ω′′ of t1 ∧ t2
is easily seen to be in F (ω).

The same result holds for any (consistent) term t = ti =
(
∧

P1) ∧ (
∧

¬(P2)) ∧ (
∧

Vl) ∧ (
∧

Ql), where P1 ⊆ P ,
P2 ⊆ P − P1, Vl and Ql being consistent subsets of V ± and
Q± respectively: Let us first consider separately the cases
where some symbols in P are missing, then symbols in V ,
then symbols in Q.

(1) If p ∈ P is missing in t (p and ¬p are missing), for any
model ω′ of t, ω′′ = Force(ω′, {¬p}) and Force(ω′′, {p})
are two models of t (one of these is ω′). By considering all
the missing p’s, we get that the set
{Force(ω′, L1 ∪ L2) / ω′|=t, L1 ⊆¬P,L2 consistent ⊆
V ±, ω′6|=L1 or L2 =∅} is included in the set
{Force(ω′′, L1 ∪ L2) / ω′′ |= t ∧

∧

¬(P −P1), L1 ⊆
¬P,L2 consistent ⊆V ±, ω′′ 6|=L1 or L2 =∅}.
Thus any missing p in t behaves as if the negative literal
¬p was present: we get a term “completed in P ” satisfying
ForgetLitV ar(t, P−, V) ≡
ForgetLitV ar(t ∧ ¬(P − P1), P

−, V).
(2) The reasoning for a missing q in t (q ∈ Q) is simpler

yet: if some q ∈ Q does not appear in t, it can be interpreted
as false or true for any model of ForgetLitV ar(t, L,Q),
which means that we keep the part

∧

Ql unmodified, exactly
as in the case where Ql is complete in Q.

(3) The case for V is similar (the disjunction of all the
formulas with all the possibilities for the missing symbols
gives the formula where these symbols are missing): If some
v ∈ V is missing in t, then any model ω′ of t has its counter-
part where the value for v is modified. Let us call Vm the set
of the symbols in V which are absent in t. By considering
the disjunctions of all the possibilities, we get the formula
∨

V ′

l
∈Lm

((
∧

P1)∧(
∧

Ql)∧((
∨

(P−P1))∨(
∧

Vl∧
∧

V ′l))),
where Lm is the set of all the sets of literals consistent
and complete in Vm. This is equivalent to the formula
(
∧

P1) ∧ (
∧

Ql) ∧ ((
∨

(P − P1)) ∨ (
∧

Vl)).

Combining “the three incompleteness” (1)–(3) gives:
ForgetLitV ar(ti, P

−, V) ≡
(
∧

P1) ∧ (
∧

Ql) ∧ ((
∨

(P − P1)) ∨ (
∧

Vl)).
The disjunction for all the ti’s gives the result. 2

We have provided the semantical definition (in the lines of
Definition 3.2) and a characterization from a DNF formula-
tion (in the lines of Proposition 3.3). Let us provide now other
characterizations, and a comparison with ForgetLit.

Proposition 4.4 Let ϕ be a formula in PL, and P,Q and V
be three pairwise disjoint sets of propositional symbols such
that P ∪Q ∪ V = V(PL).

1. ForgetLit(ϕ, P− ∪ V ±) is equivalent to the set
Th(ϕ) ∩ X where X is the set of all the formulas in
PL which are disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) with P1 ⊆ P and Ql ⊆ Q±

(we can clearly consider consistent sets Ql only).

2. ForgetLitV ar(ϕ, P−, V) is equivalent to the set
Th(ϕ) ∩ X where X is the set of all the formulas in
PL which are disjunctions of terms of the kind
(
∧

P1) ∧ (
∧

Ql) ∧
∧

l∈Vl
(l ∨ (

∨

(P − P1))),
where P1 ⊆ P , Vl andQl being consistent sets of literals
in V ± and Q± respectively.

These two results are immediate consequences of Propo-
sitions 3.3 and 4.3 respectively. We get the following
alternative possibilities for the sets X’s, firstly by duality
from the preceding results, then by considering some set

having the same ∧-closure as X (Remark 2.3):

Proposition 4.4 (following)

1. (a) For ForgetLit(ϕ, P− ∪ V ±), X is the set of all
the conjunctions of the clauses of the kind
(
∨

P1) ∨ (
∨

Ql) with P1 ⊆ P and Ql ⊆ Q±

(we can clearly consider consistent sets Ql only).
(b) We can also consider the set X of all the clauses

(
∨

P1) ∨ (
∨

Ql) with P1 ⊆ P and Ql ⊆ Q±.
(c) The smallest set X possible is the set of all the

clauses (
∨

P1) ∨ (
∨

Ql) with P1 ⊆ P ,
Ql ⊆ Q±, Ql consistent and complete in Q.

2. (a) For ForgetLitV ar(ϕ, P−, V), X is the set of all
the conjunctions of the formulas flv(P1, Ql, Vl) =
(
∨

P1) ∨ (
∨

Ql) ∨
∨

l∈Vl
(l ∧ (

∧

(P − P1))),
where P1 ⊆ P , Vl and Ql being consistent sets of
literals in V ± and Q± respectively.

(b) We can also consider the set X of all the formulas
flv(P1, Ql, Vl) of this kind.

(c) The smallest set X possible is the set of all the for-
mulas flv(P1, Ql, Vl) with P1 ⊆ P , Ql and Vl be-
ing sets of literals consistent and complete inQ and
V respectively.

These results provide the analogous, for ForgetLit and
ForgetLitV ar, of the results for ForgetV reminded in Def-
inition 2.2, and in Remark 2.3.

The next definition, analogous to Definition 3.4, will be our
last general result about ForgetLitV ar:

Definition 4.5 If ϕ is a formula and P and V are two
disjoint subsets of V(PL), then ForgetLitV ar(ϕ, P−, V)
is the formula

∨

P1⊆P

(

∧

P1 ∧ (ϕ[P1←1,(P−P1)←0] ∨

(ForgetV (ϕ[P1←1,(P−P1)←0], V) ∧ (
∨

(P − P1))))
)

.

Proof of the adequacy with Definition 4.1: Each
model ω of ϕ gives rise to the following models of
ForgetLitV ar(ϕ, P−, V):

• ω itself, model of ψ1 =
∧

P1 ∧
∧

¬(P − P1) ∧
ϕ[P1←1, (P−P1)←0] where P1 = ω ∩ P , together with

• all the interpretations differing from ω in that they have
at least one more p ∈ P , and no constraint holds for the
symbols in V ; this set of interpretations being the set of
models of the formula ψ2 =
∧

P1 ∧ForgetV (ϕ[P1←1, (P−P1)←0], V)∧
∨

(P −P1).

Since ϕ[P1←1,(P−P1)←0] |=ForgetV (ϕ[P1←1,(P−P1)←0], V)
and

∧

¬(P − P1) ≡ ¬(
∨

(P − P1)), when considering the
disjunction ψ1 ∨ ψ2, we can suppress ∧

∧

¬(P − P1) in ψ1.
The disjunction of all these formulas ψ1 ∨ ψ2 for each model
ω of ϕ, gives the formula as written in this definition. 2

Example 1 Here P = {a, b}, V = {c}, Q = {d}, with
ϕ = (¬a ∧ b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d).

Since ϕ is a DNF, the rules from a DNF in Section 2, Propo-
sitions 3.3 and 4.3 respectively for ForgetV , ForgetLit and
ForgetLitV ar, give the three results:

• ForgetV (ϕ, V) ≡ (¬a ∧ b) ∨ (a ∧ ¬b ∧ ¬d).

• ForgetLit(ϕ, P− ∪ V ±) ≡ b ∨ (a ∧ ¬d).

• ForgetLitV ar(ϕ, P−, V) ≡
(a ∧ b) ∨ (a ∧ ¬c ∧ ¬d) ∨ (b ∧ c). FLV 1

Definitions 3.4 and 4.5 can be used also, as shown now for
Definition 4.5 where, in each case, ψ = ϕ[P1←1,(P−P1)←0]:

P1 = ∅ : ψ ∨ (ForgetV (ψ, c) ∧ (a ∨ b)) ≡
⊥ ∨ (⊥ ∧ (a ∨ b)) ≡ ⊥. (ϕ1)

P1 = {a} : a ∧ (ψ ∨ (ForgetV (ψ, c) ∧ b)) ≡
a ∧ ((¬c ∧ ¬d) ∨ (¬d ∧ b)). (ϕ2)

P1 = {b} : b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ a)) ≡
b ∧ (c ∨ (> ∧ a)). (ϕ3)

P1 = {a, b} : a ∧ b ∧ (ψ ∨ (ForgetV (ψ, c) ∧ ⊥)) ≡
a ∧ b ∧ (⊥ ∨ ⊥) ≡ ⊥. (ϕ4)

The disjunction
∨4

i=1 ϕi is equivalent to FLV 1.

Let us examine the semantical side now, starting with
Mod(ϕ) = {µ1, µ2, µ3} with
µ1 = {a}, µ2 = {b, c}, µ3 = {b, c, d}.

• The six models of ForgetV (ϕ, V) are obtained by
adding the three interpretations differing from the three
models of ϕ by the value attributed to c:
µ′1 = {a, c}, µ′2 = {b}, µ′3 = {b, d}.

• The ten models of ForgetLit(ϕ, P− ∪ V ±) are ob-
tained by adding to the models of ϕ the seven interpreta-
tions differing from these models by adding any subset of
{a, b} and by either do nothing else or modify the value
of c (adding c if it is not present and removing c if it is
present). This gives the models of ForgetV (ϕ, V) plus
the four interpretations including {a, b}.

• The seven models of ForgetLitV ar(ϕ, P−, V) are ob-
tained by adding to the models of ϕ the four interpreta-
tions differing from these models by adding a non empty
subset of {a, b} and by either do nothing else or modify
the value of c, which gives here the four interpretations
including {a, b}.

Notice that on this example we get (cf Remark 4.2):

• ForgetV (ϕ, V) ∨ ForgetLitV ar(ϕ, P−, V) ≡
ForgetLit(ϕ, P− ∪ V ±)

• ForgetV (ϕ, V) ∧ ForgetLitV ar(ϕ, P−, V) ≡ ϕ.

It is immediate (from the semantical characterizations) to
show that these two equivalences are general.

Notice also that, once we have all the models of
ϕ, the complexity of the construction of all the mod-
els of ForgetLitV ar(ϕ, P−, V) is not greater than
the complexity of the construction of all the models of
ForgetLit(ϕ, P− ∪ V ±).

Let us (re-)examine an application of literal forgetting.

5 Circumscription and literal forgetting
Literal forgetting has connexions with circumscription, a well
known formalism in knowledge representation [McCarthy,
1986]. Circumscription minimizes “exceptions”, and it is
used in action languages and other formalizations of common
sense reasoning. A key issue is the efficient computation, so
that any step towards an amelioration can be helpful.

Definition 5.1 V(PL) = P ∪ V ∪ Q (disjoint sets). The
propositional symbols in P, V,Q are respectively circum-
scribed, varying, and fixed.

We define the relation ≺(P,Q,V) in Mod by
µ ≺(P,Q,V) ν if P ∩ µ ⊂ P ∩ ν and Q ∩ µ = Q ∩ ν
(strict ⊂, no condition for V).
A model µ of ϕ is minimal for ≺(P,Q,V) if for no model ν

of ϕ we have ν ≺ µ.
The circumscription CIRC(P,Q, V) is the mapping

PL ↪→ P(PL) defined as follows:
for anyϕ, ψ in PL, ψ ∈ CIRC(P,Q, V)(ϕ) iff any model

of ϕ minimal for ≺(P,Q,V) is a model of ψ.

This is the semantical definition of circumscription [Lifs-
chitz, 1994], in the propositional case as given in [Moinard
and Rolland, 1998b]. The set CIRC(P,Q, V)(ϕ) is
equivalent to the formula having for models the models
of ϕ minimal for ≺(P,Q,V), and CIRC(P,Q, V)(ϕ) will
sometimes be identified with this formula.

We get the following result:

Theorem 5.2 Circ(P,Q, V)(ϕ) |= ψ iff
ϕ |= ForgetLitV ar(ϕ ∧ ψ, P−, V).

This is in fact a rewriting of an already known result. Some
technical indications are useful. in order to relate this result
with the literature. First, this result improves the following
result:

Proposition 5.3 [Lang et al., 2003, Proposition 22]

1. If ϕ does not contain the propositional symbols in V ,
then Circ(P,Q, V)(ϕ) |= ψ iff

ϕ |= ForgetLit(ϕ ∧ ψ, P− ∪ V ±).

2. In the general case, Circ(P,Q, V)(ϕ) |= ψ iff

ϕ |= ForgetLit(ϕ∧¬ForgetLit(ϕ∧¬ψ, P−∪V ±), P−∪V ±).

Point 1 concerns circumscription without varying proposition
since, if ψ has no symbol in V , Circ(P,Q, V)(ϕ) |= ψ iff
Circ(P,Q, ∅)(ForgetV (ϕ, V)) |= ψ.

As shown in [Lang et al., 2003], the two points of this
result are respectively consequences of the two points of an
older result:

Proposition 5.4 [Przymusinski, 1989, Theorems 2.5 – 2.6]

1. [Theorem 2.5] If ψ is without symbol in V , then
Circ(P,Q, V)(ϕ) |= ψ iff for any clause c made of lit-
erals not in P− ∪ V ±, ϕ ∧ ψ |= c implies ϕ |= c.

2. [Theorem 2.6] Circ(P,Q, V)(ϕ) |= ψ iff there exists
γ = ForgetLit(γ′, P−∪V ±) for some formula γ ′, such
that CIRC(P,Q, V)(ϕ) |= ¬γ and ϕ |= γ ∨ ψ.

The second point is also a two stages method, which
greatly increases its complexity: we must examine all the
formulas γ in a rather large set and check, by using the
first point, whether ¬γ is entailed by the circumscription
or not. The first point is again in fact restricted to the
circumscriptions without varying proposition.

Let us introduce here another nonmonotonic formalism,
which encompasses the formalisms implicitly used in the first
points of Propositions 5.3 and 5.4.

Definition 5.5 [Siegel and Forget, 1996] An X-mapping is
a mapping fX : PL ↪→ P(PL) defined from a set X of
formulas in PL as follows:

ϕ ∈ fX(ψ) iff Th(ψ ∧ ϕ) ∩X ⊆ Th(ψ).

This notion has been introduced in order to facilitate
the computation of a nonmonotonic formalism. In fact,
this notion appeared before the referenced paper, e.g. in
[Suchenek, 1993] and even in earlier papers about the
computation of minimization formalisms. The novelty in
[Siegel and Forget, 1996] was a clear identification of the
kind of formalism at hand, in particular it is shown there that,
contrarily to circumscription and other formalisms, we do
not get a theory: the set fX(ϕ) is generally not closed for
∧, thus fX(ϕ) in the general case cannot be assimilated to a
formula.

We can choose for X any set having the same ∧-closure
(cf Remark 2.3).

Let f be a mapping: PL ↪→ P(PL). The set of the
formulas inaccessible for f is the set of all the formulas
ψ for which there exist no formula ϕ such that ψ ∈ f(ϕ)
and ϕ 6|= ψ. It is known (and easy to check) that for any
X-mapping fX , the set of all the inaccessible formulas is (up
to logical equivalence) the ∧-closure of X .

Points 1 in Propositions 5.3 and 5.4 can be written respec-
tively as follows, where ≡

V
means equivalent on the set of

the formulas without symbol in V :

• Circ(P,Q, V)(ϕ) ≡
V
fX(ϕ) where X is the set given

in Proposition 4.4-1 [or alternatively any of the sets in-
dicated in Proposition 4.4 (following)-1].

• Circ(P,Q, V)(ϕ) ≡
V
fX(ϕ) where X is the set of all

the clauses with literals in P+ ∪Q±.

It is clear from Remark 2.3 and Proposition 4.4 that these
two “Points 1” are equivalent, as shown in [Lang et al., 2003].

We will show now that, in Proposition 5.4 (the same
considerations hold in Proposition 5.3) Point 2 is (almost) a
direct consequence of Point 1, when using an old result about
the elimination of varying propositions in circumscription
thanks to variable forgetting [Lifschitz, 1994, Proposition

3.2.1] (first published in 1985):

Circ(P,Q, V)(ϕ) |= ψ iff
Circ(P,Q, ∅)(ForgetV (ϕ, V)) ∪ {ϕ} |= ψ

(EqL)

Indeed, from (EqL), we get Circ(P,Q, V)(ϕ) |= ψ iff
there exists a formula ¬γ without symbol in V such that
Circ(P,Q, ∅)(ForgetV (ϕ, V)) |= ¬γ and ϕ ∧ ¬γ |= ψ.
Since ¬γ is without symbol in V , this is equivalent to:
Circ(P,Q, V)(ϕ) |= ¬γ and ϕ |= γ ∨ ψ. The only
difference is that Przymusinski has improved this result a bit
by restricting the set of the available formulas for γ, since
P− can be suppressed (“forgotten”) also, and not only V .

The connexions between X-logic and circumscription are
now well known [Suchenek, 1993; Siegel and Forget, 1996;
Moinard and Rolland, 1998a]. It is convenient here to
introduce a few technical notions.

Definition 5.6 Let us call positive in ≺(P,Q,V) any formula
ϕ whose set of models is finishing for ≺(P,Q,V): if µ |= ϕ
and µ ≺(P,Q,V) ν, then ν |= ϕ.

Directly from Definition 4.1 we get that
ForgetLitV ar(ϕ, P, V) is positive in ≺(P,Q,V).

Notice that the “converse” also holds since each ϕ positive
in ≺(P,Q,V) is equal to ForgetLitV ar(ϕ, P, V).

Example 2 (Example 1 following) With ϕ, P, V,Q as in Ex-
ample 1, we get clearly Mod(ForgetLitV ar(ϕ, P−, V)) =
{ν ∈ Mod / µ ≺(P,Q,V) ν or µ = ν for some µ ∈
Mod(ϕ)}. This set is clearly finishing for ≺(P,Q,V).

With these technical indications, it would be easy to com-
plete a direct proof of Theorem 5.2. However, a new proof
is not necessary since Theorem 5.2 is an immediate conse-
quence of Proposition 4.4 together with the following already
known result:

Proposition 5.7 [Moinard and Rolland, 1998b, Theorem
6.40] Circ(P,Q, V) = fX for any set X which has (up to
logical equivalence) for its ∧-closure the set of the formulas
positive in ≺(P,Q,V).

Let us provide an example in order to show how Theorem
5.2 works in practice.

Example 3 P,Q, V are as in Example 1.
ϕ′ = (b ∧ c) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d) and
ψ′ = (¬a ∧ b) ∨ (a ∧ ¬b ∧ ¬c ∧ ¬d) ∨ (¬a ∧ c ∧ d).
We get that ϕ′ ∧ ψ′ is equivalent to ϕ of Example 1.
Since we have ϕ′ |= (ForgetLitV ar(ϕ, P−, V)), we

conclude that we have Circ(P,Q, V)(ϕ′) |= ψ′.

The ForgetLitV ar approach provides new insights into
the effective methods for computing circumscriptions: In
particular, it provides single stage process, instead of the
two stages process of Propositions 5.3 and 5.4. It provides
also a concrete way for computing circumscription thanks

to Proposition 5.7, giving some flesh to the method for
computing circumscription from their inaccessible formulas
which has been described in [Moinard and Rolland, 1998a;
1998b].

6 Conclusion and perspectives
We have provided the semantical and several syntactical
characterizations for a new notion, extending the notion of
literal forgetting introduced in [Lang et al., 2003] to the
cases where some propositional symbols are allowed to vary.
These results show that the new notion is not significantly
harder than literal forgetting without varying symbols. The
various characterizations provide various effective ways for
computing the results, depending on the form in which the
formulas appear.

Then, we have developed an application for computing
circumscriptions. Doing this, we have reinforced the con-
nexions (already found in [Lang et al., 2003]) between the
literal forgetting method and an older method from [Przy-
musinski, 1989]. Our work has allowed to transform the two
stages methods which were known, either by explicit literal
forgetting or by Przymunsinski’s way, into simpler one stage
methods. Doing so, we have shown that the literal forgetting
method (thus also Przymunsinski’s method) is strongly
related to the method of X-mappings. These connexions
provide a simpler presentation of various results, including
the simplification (evoked above) of Przymunsinski’s method
for computing circumscription.

Notice that the “inaccessible formulas” of some non
classical inference mechanism (built upon classical logic)
have a clear meaning from the knowledge representation
point of view. These formulas are the formulas which cannot
be obtained as a new result (meaning not already obtained by
classical inference) by using the inference mechanism. Thus,
the description, provided here, of the way of computing
circumscription from its inaccessible formulas, in terms of
literal forgetting, provides new insights from the common
sense reasoning point of view.
Also, the method described here could pave the way for more
applications of the “forget literal method” towards already
known formalisms. As written in [Lang et al., 2003], results
similar to the ones given here could be given for other closed
world formalisms. Also, some of the various formalisms
evoked in [Lang et al., 2003, p. 413] could take profit
from the introduction of varying propositional symbols.
Moreover, since X-mappings can falsify the stability for ∧
(in the default terminology, several extensions are possible),
further generalizations of the notion of literal forgetting
could possibly deal with some nonmonotonic formalisms
falsifying the stability for ∧.

An interest of the method of literal forgetting, since it con-
sists in small and easy manipulations of propositional formu-
las, is that it can help the effective computation. As shown in
[Lang et al., 2003], we cannot hope that this will solve all the
problems, but it should help in providing significant practical

improvements.

References
[Lang et al., 2003] Jerome Lang, Paolo Liberatore, and

Pierre Marquis. Propositional Independence - Formula-
Variable Independence and Forgetting. (Electronic) Jour-
nal of Artificial Intelligence Research, 18:391–443, 2003.
http://WWW.JAIR.ORG/.

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In
Dov M. Gabbay, C.J. Hogger, and J.A. Robinson, ed-
itors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Volume 3: Non-Monotonic and Un-
certainty Reasoning, pages 297–352. Oxford University
Press, 1994.

[McCarthy, 1986] John McCarthy. Application of circum-
scription to formalizing common sense knowledge. Artifi-
cial Intelligence, 28(1):89–116, February 1986.

[Moinard and Rolland, 1998a] Yves Moinard and Raymond
Rolland. Circumscriptions from what they cannot do
(Preliminary report). In Working papers of Common
Sense’98, pages 20–41, London, January 1998.

http://www.ida.liu.se/ext/etai/nj/fcs-98/.

[Moinard and Rolland, 1998b] Yves Moinard and Raymond
Rolland. Propositional circumscriptions. Technical report,
INRIA, Research Report RR-3538, Rennes, France, Octo-
ber 1998.

[Przymusinski, 1989] Teodor C. Przymusinski. An Algo-
rithm to Compute Circumscription. Artificial Intelligence,
38(1):49–73, February 1989.

[Siegel and Forget, 1996] Pierre Siegel and Lionel Forget.
A representation theorem for preferential logics. In
Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, edi-
tors, KR’96, pages 453–460, Cambridge, November 1996.
Morgan Kaufmann.

[Suchenek, 1993] Marek A. Suchenek. First-Order Syn-
tactic Characterizations of Minimal Entailment, Domain-
Minimal Entailment, and Herbrand Entailment. Journal of
Automated reasoning, 10:237–263, 1993.

