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Abstract which, in turn, is not a body part. Although not logically
o ) ) inconsistentbrain is nevertheless concept unsatisfiable.
Description logic reasoners are able to detect in- DL reasoners like RACERHaarslev and Nller, 2001
coherences (such as logical inconsistency and con-  and FaCT[Horrocks, 1998 will detect such problems, but
cept unsatisfiability) in knowledge bases, but pro-  there is comparatively limited support feesolvingincoher-
vide little support forresolving them. We pro- ence. In this paper we propose an approach akin to non-
pose to recast techniques faropositionalincon- monotonic reasoning to determine the consequences of a DL

sistency management into the description logic set-  knowledge base. But in the style of classical belief revision
ting. We show that the additional structure afforded  the original knowledge base is als@akenedo that its clas-

by description logic statements can be used to re-  sjcal consequences correspond exactly to the nonmonotonic
fine these techniques. Our focus in this paperis on  consequences of the original knowledge base.

the formal semantics for such techniques, although Much of the work in the belief revision community over the
we do provide high-level decision procedures for  past twenty years has focused on dealing with inconsistency,
the knowledge integration strategies discussed. and significant advances have been medansson, 1999

However, a serious drawback is that work in this area, by

. and large, is based on the propositional aspects of the logic.
1 Introduction These techniques are directly applicable to DLs but do not
It is becoming clear that high quality ontologies are crucialexploit the additional expressivity available. We recast the
for reasoning tasks in a variety of areas. A particularly inter-work of [Benferhatet al, 2004 on knowledge integration to
esting case is the Semantic Web, a second-generation wée DL setup. We demonstrate that our account generalises
in which resources are amenable to automated processiftge Propositional approach in appropriate ways. In this paper
[Berners-Leeet al, 2001. Description logics (or DLs for ~We provide basic strategies for managingonsistency We
Short) are proving to be a h|gh|y successful class of know|_fOCU_S on the fqrmal Sema_n“cs for such Strategles, but we also
edge representation languages with which to represent ofrovide associated decision procedures. _
tologies. Examples are the biomedical ontologies SnoMed The rest of the paper is organised as follows. In Section 2
and Galehand OWL, adopted by the World Wide Web Con- We provide a brief |_ntr0duct|0n to desc_rlptlon Iog|cs._ _Th|s
sortium as the Onto|ogy |anguage for the Semantic%b IS fO”OWGd,. n SeCFlon 3, by a discussion of prO.p.OSIt_IonaI
of which are based on an underlying DL framework. An im- knowledge integration, and some suggested modifications to
portant issue in ontology management concerns ways of hafbe propositional approach. Section 4 is the heart of the paper.
dling notions ofincoherenceranging from logical inconsis- In it we present the knowledge integration strategies and al-
tency to concept unsatisfiability. For exampl&chlobach gorithms for DLs. Section 5 is devoted to related work, while
and Cornet, 2003show the following incoherent ontology Section 6 concludes with a discussion on future work.
specification for the DICE medical terminology: L )
2 Description Logics

brainC CentralNervousSystem o . .
Description Logics are a well-known family of knowledge

brain = BodyPart representation formalisniBaader and Nutt, 2003They are

CentralNervousSystem NervousSystem based on the_ notions o_f concepts (unary predicates, cla_sses)

N S BodvP and roles (binary relations), and are mainly characterised
ervoussysten. ~BodyPart by constructors that allow complex concepts and roles to

According to this, a brain is a body part as well as a centrabe built from atomic ones. The expressive power of a DL
nervous system, while the latter is a type of nervous systengystem is determined by the constructs available for build-
ing concept descriptions, and by the way these descriptions

hitp://iwww.snomed.org and http://www.opengalen.org can be used in the terminological (Tbox) and assertional
2http:/ivww.w3.org and http://iwww.w3.0rg/2004/OWL (Abox) components of the system. The logics of interest to



us are all based on an extension of the well-knownJbL.C loss of information that occurs when a stratified knowledge
[Schmidt-SchauR and Smolka, 199 Concept descriptions base is inconsistent are shown to yield identical results to the
are built from concept names using the constructors disjundexicographic systerfor knowledge integratiofBenferhatet

tion (C'U D), conjunction ¢'M D), negation ¢C), existential ~ al., 1993. We present here the semantic characterisation of
restriction @R.C) and value restrictionv?.C)), whereC, D the lexicographic system found [Benferhatet al, 2004.
stand for concepts anit for a role name. To define the se- For a stratified knowledge badé = (S5i,...,S,), let AY
mantics of concept descriptions, concepts are interpreted a®ntain all formulas of; satisfied byv € V' (whereV is the
subsets of a domain of interest, and roles as binary relatiorset of valuations of the propositional logic under considera-
over this domain. An interpretatiahconsists of a non-empty tion). Forv, w € V, v is (strictly) lexicographically preferred
setA! (the domain off) and a function? (theinterpretation  to w, written asv <je, x w, iff 3k s.t. |A}| > |A}| and
functionof I) which maps every concept nameto a subset  v1 < j < k, \A}’| = |A;,v| (we have modified the definition
A”of A’, and every role nam& to a subsefz’ of AT x A”. i [Benferhatet al, 2004 so that preference is modelled as
The interpretation function is extended to arbitrary concepheinglower down in the ordering).

descriptions as follows. L&t, D be concept descriptions and

R a role name, and assume ti@at and D! are already de- Definition 1 [Benferhatet al, 2004 ¢ is lexicographically

fined. Then(~C)! = AT\ ¢! entailed by a stratified knowledge base denoted by .,
(C’I_'ID)I —clyp! (C’I‘Ib)l —clnp! &, iff the (<jes,x )-minimal valuations all satisfy.
I_ ’ I L It is well-known that lexicographic entailment is a versatile
(EIR'C)I =zl st (z.y) GI R gndy < CI}' system with desirable theoretical properties . For example, it
(VR.C)" ={z | Vy,(x,y) € R impliesy € C*}. has been shown ifBenferhatet al, 1998; Nebel, 1998that

A DL knowledge base consists of two finite and mutually dis-it can be used to model all classical AGM belief revision op-
joint sets. ATboxwhich introduces théerminology and an  erators. And when the number of strata is restricted to 1, it
Aboxwhich contains facts about particular objects in the apcorresponds to a class ofajority merging operators as de-
plication domain. Tbox statements have the fafmZ= D fined in[Konieczny and Pino-&rez, 2002 We provide here
(inclusiong andC=D (equalitie3 whereC andD are (pos- an alternative semantic characterisation of lexicographic en-
sibly complex) concept descriptions. The semantics of Tboxailment based on the notion ekceptions The advantage
statements is as follows: an interpretatibratisfiesC’ C D of this characterisation is that it makes a clear distinction be-
iff I C DI, I satisfiesC=D iff C! = D!. Objects in the tween the following two distinct principles at work in lexico-
Abox are referred to by a finite number ioidividual names  graphic entailment:

and thfase names may _be used in two types of assertional StaE?ﬁdependence)Sentences in a stratum are assumed to have
ments: concept assertionsf the typeC'(a) androle asser- been obtained independentl

tionsof the typeR(a, b), whereC'is a concept descriptio® ) P _ y )
is a role name, andandb are individual names. To provide a (Precedence)More reliable information should take com-
semantics for Abox statements it is necessary to add to every  plete precedence over less reliable information

interpretation an injectivelenotation functionl which satis-  |ndependence is applied to sentences in each stratuto

fies theunique names assumptioit maps every individual  obtain the preference ordering associated \itland is for-
namea to a different element” of the domainA’ (we de-  malised in terms of exceptions. The numbeSpexceptions
fine d separately from the interpretation function to facilitate relative tov is exactly the number of sentencesdpfalse in

the definition of a pre-interpretation in section 4). An inter- : the fewersS;-exceptions, the more preferredvill be.
pretation/ satisfieghe assertiod’(a) iff o' € ¢/, and itsat- Definition 2 The number of-exceptions®(v) for a valua-
isfiesR(a, b) iff (a!,b) € R. Iisamodelofa DL (Thoxor o MHON £ u xceptions:? (v) for a valu
Abox) statemend iff it satisfies the statement, and is a mode| iOn v iS 0 if v € M(¢) and 1 otherwise. For a finite set of
of a DL knowledge bas@ iff it satisfies every statement in SStences(, the r;umber oK -exceptions for a valuationis

B. The models of a statemedat(or knowledge bas®) are  © (v) :_Z¢€X ¢”(v). The ordering=x onV'is defined as:
denoted byM (¢) (or M (B)). Because any equality=Dis v <x wiff e*(v) < e (w).

equivalent to the set of inclusiof€’ C D, D C C'} we take |t js only after the Independence principle has been applied
a Thox to contain only inclusions. A DL knowledge baSe 1o all strata that the Precedence principle is applied to the
entailsa DL statemeng, written asB F ¢, iff every model  orderings associated with the different strata to obtain a lexi-
of B is a model ofp. cographically combined preference ordering.

3 Propositional knowledge integration Definition 3 v Sueq wiff ¥j € {1,...,n},

s . : , [v =g, worv <g, wfor somei < j]
Propositional knowledge integration, as describedBan-

ferhatet al., 2004, takes as input atratified knowledge base Definit_io_n 3 CONStruCts<ye; by s_tarting with=g, and keeps
K = (S1,...,S,) where, fori € {1,...,n}, S; is a finite on refining it with strata orderings of lower preference. It

set of propositional sentences (of a finitely generated proposfUns out that the strict version ef;., is exactly the ordering

tional logic). Sentences in a stratuipare all judged to be of ©f I€xicographic preference defined above.

equal reliability, while sentences contained in a higher straProposition 1 For a stratified knowledge bask, the strict
tum, i.e. inanS; for j > 4, are seen as less reliable.[Ben-  version of=,,., is identical to<,., k. As a consequence,
ferhatet al, 2004 the strategies proposed to minimise the K k., ¢ iff the (X;.,)-minimal valuations all satisfy.



The view of lexicographic entailment as an application of In-knowledge base so that each stratum is@ti-setof sen-
dependence and Precedence is also present in a new strignces, denoted by square brackets (so a stratum has the form
egy for knowledge integratiorconjunctive maxi-adjustment [¢4,...,¢,]). The move to multi-sets allows us to prove a

or CMA, that we propose in algorithm 1. The idea is to work result which does not hold if strata are represented as sets.
through K stratum by stratum in order of decreasing prece- . , , ,

dence, and to construct a consistent (classical) knowledggroposition 3 For K = (S5y,...,5,), K’ = (51,..., 5;)
baseB, adding as many sentences as possible while mairBnd every: € {1,...,n}, let there be a bijectiorf; between
taining consistency, and weakening those strata responsibfe @nd.S; s.t. fi(¢) = ¢. ThenCnie,(K) = Cnyeq (K').

for inconsistencies. In this sense it is similantbole disjunc-

tive maxi-adjustmerlBenferhatet al., 2004, but the way in

which strata are weakened is (syntactically) different. With

CMA, if S, is inconsistent with the part oB constructed 4 Knowledge integration for description logics

so far, it is replaced by the disjunction of the cardinality-

maximal conjunctions af;-formulas consistent witt. In this section we recast the techniques of propositional

knowledge integration to DLs, with the input being a strat-
ified DL knowledge base = (54,...,S5,) where, for

Algorithm 1 Conjunctive maxi-adjustment (CMA)

i € {1,...,n}, S; is a finite multi-set of DL sentences. We
Input: K = (51,...,5,) present versions of lexicographic entailment and the CMA
Output: A consistent classical knowledge base strategy for DL knowledge integration obtained from a direct
B:=10 conversion of the techniques used in the propositional case.
fori:=1ton do We argue that these versions do not exploit the expressivity
J =S4 of DLs adequately, and refine both lexicographic entailment
repeat ] and CMA. We show that the refined versions of lexicographic
¢ :=\/ of all As of sizej of formulas ofsS; entailment and CMA produce identical results.
j=j—-1 ) _ But before doing so we need to deal with a number of tech-
until B U {¢} is consistent of = 0 nical issues. The first one concerns the CMA strategy and
if B'U {¢} is consistenthen the level of expressivity in DL languages. Recall that propo-
B:=DbU {¢} sitional CMA makes use of disjunctions of conjunctions of
end if sentences. But DL languages do not allow disjunctions of
end for Tbox sentences with Abox sentences, and an expression such
return B as(C C D) U D(a) is thus ill-formed. To deal with this

issue we introduce the notion ofdisjunctive DL knowledge
The following example is a simple demonstration of CMA. base or DKB, as a set of classical DL knowledge bases. The

Example 1 Let K = (S1,S5), S1 = {~(p A q), ~(q A7), semantics of DKBs is defined as follows.

~(pAr)}andSh = {p,q, 7.'};]'951 Is consistent, S& is Set  pefinition 4 A DKB B is satisfiedby an interpretation/ (I
t0 51. 53 is inconsistent withB, so¢ is set to(p A ¢)V(p A 5 3 model of) iff I is a model of at least one of the elements

7)V(gAr). ¢ is inconsistent withB, so the latter is weakened ¢ s ;3 antailsa DKB & (B £ ®) iff every model of3 is a
further by setting it t v g V . Now¢ is consistent withB mod.el of.

soBissetto{—(pAq), " (gAr),(pAT),pVagVr}
Informally B can be read as the disjunction of its elements,

It is easily verified that algorithm 1 always terminates. Fur-"" h a single el OB Vi d h . X f1h
thermore, it produces results that are equivalent to lexicolV!th @ single element ob viewed as the conjunction of the
sentences contained in it. E.4{C C D, C(a)], [C C D,

graptic entalment, and therefore also 0 the strategies AT S Ca ot - > and(a) hold,or tht o

» - C C D andD(a) hold. There are more fundamental reasons
Proposition 2 Let K be a stratified knowledge base afitl  for the use of DKBs as well, which will briefly be touched on
the classical knowledge base obtained fréfrby algorithm iy Section 6, but will be dealt with in detail in future work.

1. Thenk Fie, ¢iff B = ¢. The next issue to consider is the comparability of DL in-

Before concluding this section it is necessary to rectifyterpretations. The semantics of propositional lexicographic
a small but important oversight in the definition of lexico- entailment makes use of the fact that all propositional val-
graphic entailmen{Benferhatet al, 1993 and strategies uations are “possible worlds” that can all be compared with
equivalent to it, illustrated by the following simple example. respect to preference. But the additional structure of DL inter-
Let K’ = (S7) be such thab; = {p,p, —p} andK” = (Sy)  pretations makes it impossible to maintain this comparability
be such thats! = {p,(p A q) V (p A —q),—p}. Itis easily inthe semantics. In particular, whenever two interpretations
verified thatCn., (K') = Cn(T), but thatCn,..(K") = have different domains or do not map the same individual
Cn(p) (WhereCnje.(K) = {¢ | K Fie ¢}), €even though names to the same elements in the domain, it is counterintu-
there is a bijection betwee$f and.S} mapping sentences to itive to insist that they be comparable in terms of preference.
logically equivalent ones. The reason for this discrepancy i his issue is solved by requiring that only interpretations ob-
that it does not allow for duplicate sentences in a stratum. Fotained from the samere-interpretationbe comparable. A
the rest of the paper we modify our definition of a stratified pre-interpretation is an ordered pair= (A7, d™), whereA™



is a domain and™ is a denotation function (cf. Section ). 0 in therepeatloop, X will be set to{()}, and thenB U X
Let IT be the class of all pre-interpretations. For every pre-hasto be consistent, sincB € C. The following example
interpretationt = (A™,d™), letZ™ be the class of interpreta- demonstrates how algorithm 2 works.

tionsI with A" = AT andd’ = d”. We provide a semantics gxample 2 Let K = (S,,55), §; = [C C -D, C C —E
similar to that of propositional lexicographic entailment. But p — ~£] and 5, = [C(a), D(a), E(a)]. S; is consistent, S0
each ordering<s; on valuations associated with a stratSim 3 (and () is set to{S; }. Now B is set to the only element
will, in the case of DLs, be replaced by a class of orderingsf ¢: [¢'C -D, ¢ C ~E, D T ~E]. S, is inconsistent
=3, one for each pre-interpretationin 1I. For a fixedr,  with B so, during the second iteration of thepeatloop, X
the orderings<% fori € {1,...,n} are then lexicographi- s set to{[C(a), D(a)], [C(a), E(a)], [D(a), E(a)]}. Every
cally combined using Definition 3to obtain the orderinfj,.  element ofY is inconsistent withB, and the next iteration of
Lexicographic entailment is then defined in terms of the minthe repeat loop setsY to {[C(a)], [D(a)], E(a)]}. Now all
imal models of all these orderings. l.e. given a preferencelements oft’ are consistent wittB, so B is removed fron8

ordering=7,, for eachr € II, lexicographic entailment for and replaced with three multi-sets, yielding:
stratified DL knowledge bases is defined as follows: B={[CC~D,CC~E,DC ~E,C(a),

(Fiea) K Fiea @ iff Urepmingg, © M(P). [C C~D,CC~E,DC~E,D(a)]
The one remaining question is how the preference orderings % - D7 oC E’ DL E7 E(a)]i

=%, used in the construction of]_, should be obtained. A

first attempt is to employ the same technique as that used farhusB3 states that the three statemedtsC_ —D, C C —F,
propositional lexicographic entailment. That is, foredch  and D C —E hold, and that, in addition, at least one©fa),

Z™ and each straturfi;, let the number ob;-exceptions w.r.t.  D(a) or E(a) holds. A consequence of all these statements is
I be the number of sentences $ falsified by I, and use thatexactlyone ofC(a), D(a) or E(a) holds.

these exceptions to generate the orderig. Lexicographic entailment for DLs and the CMA-DL strat-
Definition5 Letw € II, I € I7, ¢ a DL statement, and egy are both faithful translations of their propositional coun-
X a multi-set of DL statements. The numbepedxceptions terparts. It is precisely because of this that they do not take
e?(I) for Iis 0 if I satisfiesp and1 otherwise. The number of the structure of DL statements into account. The following
X-exceptions fof is: eX (1) = D osex e®(I). The ordering  example illustrates this deficiency.

=<7 onZ~ is defined as7 <% J iff eX (1) < eX(J). Example 3 Let K = (S, S2), whereS; = [bird(tweety),
The DL version of CMA is presented in algorithm 2. Itis a ~.flies(tweety), bird(chirpy)], and Sy = [bird T flies].
compilation of DL lexicographic entailment. Sy is consistent, and s# is set to{S:}. S is inconsis-
tent with 57, the only element of, and soB is returned as
Algorithm 2 CMA for DLs (CMA-DL) {[bird(tweety), = flies(tweety), bird(chirpy)]}.
Input: K = (S1,...,5,) In the example algorithm 2 concludes, correctly, that Tweety
Output: A consistent DKB is a non-flying bird and that Chirpy is a bird. But it dosst
B:= {0} conclude that Chirpy flies since it has discarded the statement
for i :— 1ton do bird T flies completely. It therefore does not exploit the
C-—B structure obird C flies appropriately. Ideally we should be
forall B €C do able to conclude that Tweety is anceptiorand that all birds
j= S| other than Tweety (including Chirpy) can fly. For this to be
repeat possible we need to weaken Thox statements subhrds_
X = {X|XCS;andX|=j} [lies, something thatis not possible in the propositional case.
ji=j—1 - Semantically we effect such a weakening by modifying the
until B U X is consistent for som& ¢ X definition of exceptions in Definition 5. For Abox statements
B:=(B\{B})U the definition stays unchanged, but for Thox statements the
{BUX [ (X € X) &(B U X) is consisterit number of exceptions will bthe number of elements in the
end for domain violating the statemenAn element in the domain of
end for an interpretatior violates a statement of the for@i C D if
return B itisin C* butnotinD’, i.e. ifitisin C' N (~D').

Definition 6 Letw € II, I € Z™, ¢ a DL statement, an&

a multi-set of DL statements. ¢fis an Abox statement, the
number ofp-exceptions:?(I) for an interpretation! is 0 if

I satisfiesp and 1 otherwise. Ifp is a Thox statement of the
formC C D, the number of-exceptions for is:

|CTn (=D)!| if ' n(=D)! is finite,
00 otherwise.

Proposition 4 Let K be a stratified DL knowledge basB,
the DKB obtained fromK by CMA-DL in algorithm 2, let
lexicographic entailment for DLs be defined in terms of Defi-
nition 5, and let® be a DKB. TherK k., ® iff B E ®.

To see that algorithm 2 always terminates, note that eIement%¢([) = {
of C are always consistent by construction i ever set to

; ic o X _
3As far as we know the term pre-interpretation was first used inThe number o -exceptions for is e” (1) = Zasex e¢(I)-
[Lloyd, 1987 in the context of logic programming. The ordering=<% onZ™ is: I <% J iff eX(I) < eX(J).



So=7% is a version of cardinality-based circumscriptdib-

eratore and Schaerf, 199%he more exceptions, the less pre-

ple, for BT = [(£ 0C), (<0 D)}, W*(BT) = {[(<00C),
(<2D)], [(<1C), (£ 1 D)), [(< 2C), (< 0 D)} And

ferred an interpretation, while interpretations with an infinitefor j > 0, the j- weakening/V’ (B) of a DL knowledge base

number of exceptions are all equally bad.
Using Definition 6 in our construction of lexicographic en-

tailment will ensure that we will be able to conclude, in the i
example above, that Chirpy can fly. However, we are still WY(B)

not able to express the conclusion tladlt birds, except for

B contains all combinations afweakenings o34 and k-
weakenings of37 for whichi andk add up toj. That is,

- {aur|

Tweety, can fly. The problem is that the notion of an excep0r example, ifB = [(< 0 C), C(a), C(b)], then

tion is not expressible in a DL. We cannot state that all birds,
with the exception of one, can fly. It is necessary to extend WH(
the level of expressivity of the DL languages we are interested

in. An appropriate extension, addiegrdinality restrictions
on concepts, was proposed Baaderet al., 1994. There, its

A e W{BA), T ¢ Wk(BT),
i < |BA|, andj =i+ k} :

[(£10C),C(a)],[(<1C),C0)], }

[(€00)],[(£2C),C(a),C(b)]

SoW?(B) contains those weakenings Bfin which exactly

two exceptions occur. Thgweakenings of DL knowledge

). C
,C

23)2{

introduction was motivated by the use of DL systems for solv-bases are used in thepeatloop of algorithm 3 wheret is

ing configuration tasks. These restrictions are statements

iget to thej-weakening ofS;. As required, RCMA-DL is a

the Thox, allowing one to express restrictions on the numbegompilation of lexicographic entailment using Definition 6.

of elements a concept may have: m C) and(< n C) re-
spectively express that the concéphas at leastn elements

and at most elements. For our purposes it is sufficient to

consider cardinality restrictions of the forfw. n C).

An interpretationy is said tosatisfya restriction of the form
(< n Q) iff |C'] < n. The statemen€ C D is equiva-
lent to stating that the concept M —D is empty, i.e. that

(< 0C N ~=D). This demonstrates that the Thox statements
we have considered thus far can all be expressed as cardi-

nality restrictions. Therefore, a Thox will from now on be
a finite multi-set of cardinality restrictions. An interpreta-
tion I is a modelof such a Thox iff it satisfies each of its

restrictions. Other semantic notions such as entailment are
extended in the obvious way. With the inclusion of cardi-

nality restrictions we can now rephraSe in Example 3 as
{(< 0 bird 1 —flies)}. And, using Definition 6,K now

lexicographically entails that Tweety is a non-flying bird, that
Chirpy is a flying bird, and that there is at most one non-flying

bird, (1 < bird 1 = flies), which is aweakeningf Ss. So it
follows that, barring Tweety, all birds can fly.

Algorithm 3 Refined CMA-DL (RCMA-DL)

Input: K = (S1,...,5n)
Output: A consistent DKB
B:= {0}
for ¢ := 1ton do
C:=B
forall B € Cdo
j=0
repeat
X = Wj(Sl)
j=7+1
until B U X is consistent for som& ¢ X
B:=(B\{B})U _ _
{BUX | (X € X) &(BU X) is consisterit
end for
end for
return B

Proposition 5 Let K be a stratified DL knowledge basB,

The next step is to refine the CMA-DL strategy to coin-
cide with the modified version of lexicographic entailment
for DLs. This strategy, referred to aefined CMA-DI,
is described in algorithm 3. The main difference betwee
the two algorithms is in the construction &f. Abox sen-
tences are treated exactly as in algorithm 2: jtlveeakening
W7 (B4) of the Abox B4 of a DL knowledge bas& (where
j < |B%|), contains all those sub multi-sets Bf* where;j

elements have beeemoved That is,W7(B4) = {BA\Y |
Y € BAand|Y| = j}. So, forBA = [C(a), D(a), E(a)],
W(B4) = {[C(a),D(a)], [C(a), E(a)], [D(a), E(a)]}.
For a Thox sentence of the form (< n C), let W(r) =
{{(£(n+37)C)| j >0} ThatisW(r) is the set of all
weakened versions of. Furthermore, for a Thox sentence
of the form(< n C) andr’ € W (r) of the form(< m C),
we letw™(7') = m — n. Sow”(7’) measures the extent
to which7’ is a weakening of. Forj > 0, the j-weakening
Wi (BT) of the TboxB” of a DL knowledge bas® contains
all those weakened versions Bf' for which the sum of the
extent of the weakening is Thatis, forBT = [r1,..., 7],
WI(BT) = {[r{,...,7}] | i, w™(r}) = j}. For exam-

r'n

the DKB obtained fron" by RCMA-DL in algorithm 3, let
lexicographic entailment for DLs be defined in terms of Defi-
nnition 6, and letd be a DKB. TherkX k., @ iff BE ®.

The proof that algorithm 3 terminates hinges on the fact that
weakenings of Thox sentences allow fimoreexceptions, and
the fact that the maximum number of exceptions to cater for
is bounded by the number of individual names occurring in
K. The example below demonstrates algorithm 3 (wliere
f,t andc abbreviatéird, flies, tweety andchirpy).

Example 4 Let K = (51, S2), S1 = [b(t), b(c)], and Sy =

[—f(t), =f(c), (K 0bM—f)]. Sy is consistent so RCMA-
DL setsB (andC) to {S1}. Now B is set to the only ele-
ment ofC: [b(t), b(c)]. Sz is inconsistent withB, so X is

set toW!(Sy) = {[~f(1), =f(c), (< 1 b=/, [f(2),

(< o0bvm=f)], [=f(e), (< 0bM1=f)]}. Every element
of X is inconsistent withB, and soX is set toV?(Sy)
([0, ~f(€), (< 20 £)], [ £(), (< 1M-f)), [~£(e),
(<10m=1)], [(<0bM~=f)]}. Now all the elements of are
consistent withB, resulting in a3 containingB U X for ev-
ery X in X. Combined, the four elements of the DBBhow



that exactly one of the following four cases hold: a) Tweetyd Conclusion
and Chirpy are the only two non-flying birds; b) Tweety is the . . .
only nong‘)I/ying bird; c)yChirpy is tﬁ/e gnly non—%lying bi¥d; c) We have proposed knowledge integration strategies for DLs
All birds fly, including Tweety and Chirpy. base_d on technlques_developed in the_propo_3|t|0r_1al case, and
provided corresponding algorithms with disjunctive knowl-
edge bases (DKBs) as output. It can be shown that the ele-
ments of a DKB produced as the output of Algorithm 2 or
5 Related work 3 are always pairwise inconsistent (modulo logical equiv-
alence), a property which is useful (i) when inconsistency
management is an iterative process and (ii) as part of sup-
port provision for ontology engineers. This forms the basis
of an argument that the structure of DBKs are important and
ought to be retained as outputs of our algorithms.
We have shown how the structure of DL languages can
£ exploited to define basic knowledge integration strategies.
ur focus was on the formal semantics of knowledge integra-

One of the first attempts to deal with inconsistency in logic-
based terminological systems can be founfNebel, 1990,
where it is phrased as a belief revision problem. More re
cently the solution ofSchlobach and Cornet, 2003 to pro-
vide support for inconsistency by correcting it. They propos
a non-standard reasoning system for debugging inconsiste

terminologies. The idea is to provide an explanation by pin-

pointing the source of the inconsistency, while correction istion Strategies, although we also provided high-level decision
left to human experts. In contrast, the approach taken iprocedures. The next step is the development of tableaux-

[Huanget al, 2009 assumes that ontology reparation will be based algorithms for implementing the strategies outlined in

too difficult. They propose to tolerate inconsistency and apihe Paper. Some initial results suggest that the complexity of

ply a non-classical form of inference to obtain meaningful re-tN€ intégration strategies may be no worse than consistency
sults. Our approach is a hybrid of these. We employ a versiofil€cking in the DL under consideration. y

of lexicographic entailment to determine the consequences of An obvious question to consider is whether any additional
an inconsistent DL knowledge base, but the original knowl-Structure, such as the specification of role hierarchies and
edge base is alsweakenedo that its classical consequencestransitivity of roles, can be exploited further to modify the

correspond exactly to the nonmonotonic consequences of tHglowledge integration strategies in appropriate ways. Such
original knowledge base. additional structure might also be used to ameliorate other

. . . N problems. For example, DKBs can be exponential in size,
[Flouriset al, 2004 investigate the applicability of AGM \ynich will severely affect their use in practice. But it might

belief change to a wide variety of logics. They define a nog possible to limit the size of strata in stratified KBs using

tion of AGM-compliancend show that most description 109- {he structure of sentences contained in it. A simple example
ics are not AGM-compliant. Since AGM belief revision can i5 the use of principles such apecificity if the sentences

be seen as a special case of knowledge integration, these gs. ; C flies (all birds fly) andpenguin = —flies (all pen-
sults appear to have a direct effect on our work. Howeverg ing don't fly) occur in the same stratum, an application of
their definition of AGM-compliance is in terms of AGM be- - gpeificity will ensure thagenguin C —flies is given prece-

lief contraction not revision. Moreover, their results show yaonce ovemird C flies, provided thatpenguin C bird

that AGM non-compliance is directly related to a failure 10 (51 e5 precedence over both. Finally, the management of other

satisfy the controversial Recovery postulate for belief cony,ytions of incoherence, such as concept unsatisfiability, is
traction. So their results are not relevant to the knowledg%urrenﬂy the topic of further investigation.

integration strategies we have discussed.

In [Quantz and Royer, 1992 technique is described for
assigning a preference semantics for defaults in terminologf‘Ckl’]OV\llEdQments

cal logics which uses exceptions, and therefore has some simtational ICT Australia is funded by the Australia Gov-
ilarities to our work. They draw a distinction between strict ernment’s Department of Communications, Information and
inclusions (Thox statements of the forh C B) andde-  Technology and the Arts and the Australian Research Coun-
faultswhich is interpreted as “soft” inclusions. In our frame- cjl through Backing Australia’s Ability and the ICT Centre of
work this distinction can be modelled with two strata in which Excellence program. It is Supported by its members the Aus-
all strict inclusions occur irt; and all soft inclusions irb,. tralian National University, University of NSW, ACT Gov-

In this sense our framework is more expressive than theirsernment, NSW Government and affiliate partner University

More importantly, their formal semantics is not cardinality- of Sydney. The third author thanks Aditya Ghose for his gen-
based, and therefore yields quite different results from ourseral support.

And finally, unlike us, they do not provide a weakening of the
original knowledge base.

An altogether different approach is the explicit introduc-
tion of nonmonotonicity into DLs, usually some variant of de- [Baader and Nutt, 2003F. Baader and W. Nutt. Basic de-
fault logic. SedBaaderet al,, 2009 for an overview. While scription logics. In F. Baader, D. Calvanese, D. McGuin-
it is difficult to draw direct comparisons with our work, it is ness, D. Nardi, and P. Patel-Schneider, editdts® De-
conceivable that similar intuitions might be identified and ex-  scription Logic Handbook: Theory, Implementation, and
ploited. Applications Cambridge University Press, 2003.
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