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Abstract

Description logic reasoners are able to detect in-
coherences (such as logical inconsistency and con-
cept unsatisfiability) in knowledge bases, but pro-
vide little support forresolving them. We pro-
pose to recast techniques forpropositional incon-
sistency management into the description logic set-
ting. We show that the additional structure afforded
by description logic statements can be used to re-
fine these techniques. Our focus in this paper is on
the formal semantics for such techniques, although
we do provide high-level decision procedures for
the knowledge integration strategies discussed.

1 Introduction
It is becoming clear that high quality ontologies are crucial
for reasoning tasks in a variety of areas. A particularly inter-
esting case is the Semantic Web, a second-generation web
in which resources are amenable to automated processing
[Berners-Leeet al., 2001]. Description logics (or DLs for
short) are proving to be a highly successful class of knowl-
edge representation languages with which to represent on-
tologies. Examples are the biomedical ontologies SnoMed
and Galen1 and OWL, adopted by the World Wide Web Con-
sortium as the ontology language for the Semantic Web2, all
of which are based on an underlying DL framework. An im-
portant issue in ontology management concerns ways of han-
dling notions ofincoherence, ranging from logical inconsis-
tency to concept unsatisfiability. For example,[Schlobach
and Cornet, 2003] show the following incoherent ontology
specification for the DICE medical terminology:

brainv CentralNervousSystem

brainv BodyPart

CentralNervousSystemv NervousSystem

NervousSystemv ¬BodyPart

According to this, a brain is a body part as well as a central
nervous system, while the latter is a type of nervous system,

1http://www.snomed.org and http://www.opengalen.org
2http://www.w3.org and http://www.w3.org/2004/OWL

which, in turn, is not a body part. Although not logically
inconsistent,brain is nevertheless concept unsatisfiable.

DL reasoners like RACER[Haarslev and M̈oller, 2001]
and FaCT[Horrocks, 1998] will detect such problems, but
there is comparatively limited support forresolvingincoher-
ence. In this paper we propose an approach akin to non-
monotonic reasoning to determine the consequences of a DL
knowledge base. But in the style of classical belief revision
the original knowledge base is alsoweakenedso that its clas-
sical consequences correspond exactly to the nonmonotonic
consequences of the original knowledge base.

Much of the work in the belief revision community over the
past twenty years has focused on dealing with inconsistency,
and significant advances have been made[Hansson, 1999].
However, a serious drawback is that work in this area, by
and large, is based on the propositional aspects of the logic.
These techniques are directly applicable to DLs but do not
exploit the additional expressivity available. We recast the
work of [Benferhatet al., 2004] on knowledge integration to
the DL setup. We demonstrate that our account generalises
the propositional approach in appropriate ways. In this paper
we provide basic strategies for managinginconsistency. We
focus on the formal semantics for such strategies, but we also
provide associated decision procedures.

The rest of the paper is organised as follows. In Section 2
we provide a brief introduction to description logics. This
is followed, in Section 3, by a discussion of propositional
knowledge integration, and some suggested modifications to
the propositional approach. Section 4 is the heart of the paper.
In it we present the knowledge integration strategies and al-
gorithms for DLs. Section 5 is devoted to related work, while
Section 6 concludes with a discussion on future work.

2 Description Logics
Description Logics are a well-known family of knowledge
representation formalisms[Baader and Nutt, 2003]. They are
based on the notions of concepts (unary predicates, classes)
and roles (binary relations), and are mainly characterised
by constructors that allow complex concepts and roles to
be built from atomic ones. The expressive power of a DL
system is determined by the constructs available for build-
ing concept descriptions, and by the way these descriptions
can be used in the terminological (Tbox) and assertional
(Abox) components of the system. The logics of interest to



us are all based on an extension of the well-known DLALC
[Schmidt-Schauß and Smolka, 1991]. Concept descriptions
are built from concept names using the constructors disjunc-
tion (CtD), conjunction (CuD), negation (¬C), existential
restriction (∃R.C) and value restriction (∀R.C), whereC,D
stand for concepts andR for a role name. To define the se-
mantics of concept descriptions, concepts are interpreted as
subsets of a domain of interest, and roles as binary relations
over this domain. An interpretationI consists of a non-empty
set∆I (the domain ofI) and a function·I (the interpretation
functionof I) which maps every concept nameA to a subset
AI of ∆I , and every role nameR to a subsetRI of ∆I ×∆I .
The interpretation function is extended to arbitrary concept
descriptions as follows. LetC,D be concept descriptions and
R a role name, and assume thatCI andDI are already de-
fined. Then(¬C)I = ∆I \ CI ,

(C tD)I = CI ∪DI , (C uD)I = CI ∩DI ,

(∃R.C)I = {x | ∃y s.t. (x, y) ∈ RI andy ∈ CI},
(∀R.C)I = {x | ∀y, (x, y) ∈ RI impliesy ∈ CI}.

A DL knowledge base consists of two finite and mutually dis-
joint sets. ATboxwhich introduces theterminology, and an
Aboxwhich contains facts about particular objects in the ap-
plication domain. Tbox statements have the formC v D
(inclusions) andC=̇D (equalities) whereC andD are (pos-
sibly complex) concept descriptions. The semantics of Tbox
statements is as follows: an interpretationI satisfiesC v D
iff CI ⊆ DI , I satisfiesC=̇D iff CI = DI . Objects in the
Abox are referred to by a finite number ofindividual names
and these names may be used in two types of assertional state-
ments: concept assertionsof the typeC(a) and role asser-
tionsof the typeR(a, b), whereC is a concept description,R
is a role name, anda andb are individual names. To provide a
semantics for Abox statements it is necessary to add to every
interpretation an injectivedenotation functiond which satis-
fies theunique names assumption: it maps every individual
namea to a different elementaI of the domain∆I (we de-
fine d separately from the interpretation function to facilitate
the definition of a pre-interpretation in section 4). An inter-
pretationI satisfiesthe assertionC(a) iff aI ∈ CI , and itsat-
isfiesR(a, b) iff (aI , bI) ∈ RI . I is amodelof a DL (Tbox or
Abox) statementφ iff it satisfies the statement, and is a model
of a DL knowledge baseB iff it satisfies every statement in
B. The models of a statementφ (or knowledge baseB) are
denoted byM(φ) (or M(B)). Because any equalityC=̇D is
equivalent to the set of inclusions{C v D,D v C} we take
a Tbox to contain only inclusions. A DL knowledge baseB
entailsa DL statementφ, written asB � φ, iff every model
of B is a model ofφ.

3 Propositional knowledge integration
Propositional knowledge integration, as described in[Ben-
ferhatet al., 2004], takes as input astratified knowledge base
K = (S1, . . . , Sn) where, fori ∈ {1, . . . , n}, Si is a finite
set of propositional sentences (of a finitely generated proposi-
tional logic). Sentences in a stratumSi are all judged to be of
equal reliability, while sentences contained in a higher stra-
tum, i.e. in anSj for j > i, are seen as less reliable. In[Ben-
ferhat et al., 2004] the strategies proposed to minimise the

loss of information that occurs when a stratified knowledge
base is inconsistent are shown to yield identical results to the
lexicographic systemfor knowledge integration[Benferhatet
al., 1993]. We present here the semantic characterisation of
the lexicographic system found in[Benferhatet al., 2004].
For a stratified knowledge baseK = (S1, . . . , Sn), let Av

i
contain all formulas ofSi satisfied byv ∈ V (whereV is the
set of valuations of the propositional logic under considera-
tion). Forv, w ∈ V , v is (strictly) lexicographically preferred
to w, written asv <lex,K w, iff ∃k s.t. |Av

k| > |Aw
k | and

∀1 ≤ j < k,
∣∣Av

j

∣∣ =
∣∣Aw

j

∣∣ (we have modified the definition
in [Benferhatet al., 2004] so that preference is modelled as
beinglower down in the ordering).

Definition 1 [Benferhatet al., 2004] φ is lexicographically
entailed by a stratified knowledge baseK, denoted byK �lex

φ, iff the(<lex,K)-minimal valuations all satisfyφ.

It is well-known that lexicographic entailment is a versatile
system with desirable theoretical properties . For example, it
has been shown in[Benferhatet al., 1998; Nebel, 1998] that
it can be used to model all classical AGM belief revision op-
erators. And when the number of strata is restricted to 1, it
corresponds to a class ofmajority merging operators as de-
fined in[Konieczny and Pino-Ṕerez, 2002]. We provide here
an alternative semantic characterisation of lexicographic en-
tailment based on the notion ofexceptions. The advantage
of this characterisation is that it makes a clear distinction be-
tween the following two distinct principles at work in lexico-
graphic entailment:

(Independence)Sentences in a stratum are assumed to have
been obtained independently

(Precedence)More reliable information should take com-
plete precedence over less reliable information

Independence is applied to sentences in each stratumSi to
obtain the preference ordering associated withSi and is for-
malised in terms of exceptions. The number ofSi-exceptions
relative tov is exactly the number of sentences inSi false in
v; the fewerSi-exceptions, the more preferredv will be.

Definition 2 The number ofφ-exceptionseφ(v) for a valua-
tion v is 0 if v ∈ M(φ) and 1 otherwise. For a finite set of
sentencesX, the number ofX-exceptions for a valuationv is
eX(v) =

∑
φ∈X eφ(v). The ordering�X onV is defined as:

v �X w iff eX(v) ≤ eX(w).
It is only after the Independence principle has been applied
to all strata that the Precedence principle is applied to the
orderings associated with the different strata to obtain a lexi-
cographically combined preference ordering.

Definition 3 v �lex w iff ∀j ∈ {1, . . . , n},
[v �Sj w or v ≺Si w for somei < j]

Definition 3 constructs�lex by starting with�S1 and keeps
on refining it with strata orderings of lower preference. It
turns out that the strict version of�lex is exactly the ordering
of lexicographic preference defined above.

Proposition 1 For a stratified knowledge baseK, the strict
version of�lex is identical to<lex,K . As a consequence,
K �lex φ iff the (�lex)-minimal valuations all satisfyφ.



The view of lexicographic entailment as an application of In-
dependence and Precedence is also present in a new strat-
egy for knowledge integration,conjunctive maxi-adjustment
or CMA, that we propose in algorithm 1. The idea is to work
throughK stratum by stratum in order of decreasing prece-
dence, and to construct a consistent (classical) knowledge
baseB, adding as many sentences as possible while main-
taining consistency, and weakening those strata responsible
for inconsistencies. In this sense it is similar towhole disjunc-
tive maxi-adjustment[Benferhatet al., 2004], but the way in
which strata are weakened is (syntactically) different. With
CMA, if Si is inconsistent with the part ofB constructed
so far, it is replaced by the disjunction of the cardinality-
maximal conjunctions ofSi-formulas consistent withB.

Algorithm 1 Conjunctive maxi-adjustment (CMA)

Input : K = (S1, . . . , Sn)
Output : A consistent classical knowledge base
B := ∅
for i := 1 to n do

j := |Si|
repeat

φ :=
∨

of all
∧

s of sizej of formulas ofSi

j := j − 1
until B ∪ {φ} is consistent orj = 0
if B ∪ {φ} is consistentthen

B := B ∪ {φ}
end if

end for
return B

The following example is a simple demonstration of CMA.

Example 1 Let K = (S1, S2), S1 = {¬(p ∧ q), ¬(q ∧ r),
¬(p ∧ r)} andS2 = {p, q, r}. S1 is consistent, soB is set
to S1. S2 is inconsistent withB, soφ is set to(p ∧ q)∨(p ∧
r)∨(q∧r). φ is inconsistent withB, so the latter is weakened
further by setting it top ∨ q ∨ r. Nowφ is consistent withB
soB is set to{¬(p ∧ q), ¬(q ∧ r), ¬(p ∧ r), p ∨ q ∨ r}.
It is easily verified that algorithm 1 always terminates. Fur-
thermore, it produces results that are equivalent to lexico-
graphic entailment, and therefore also to the strategies dis-
cussed in[Benferhatet al., 2004].

Proposition 2 Let K be a stratified knowledge base andB
the classical knowledge base obtained fromK by algorithm
1. ThenK �lex φ iff B � φ.

Before concluding this section it is necessary to rectify
a small but important oversight in the definition of lexico-
graphic entailment[Benferhatet al., 1993] and strategies
equivalent to it, illustrated by the following simple example.
Let K ′ = (S′

1) be such thatS′
1 = {p, p,¬p} andK ′′ = (S′′

1 )
be such thatS′′

1 = {p, (p ∧ q) ∨ (p ∧ ¬q),¬p}. It is easily
verified thatCnlex(K ′) = Cn(>), but thatCnlex(K ′′) =
Cn(p) (whereCnlex(K) = {φ | K �lex φ}), even though
there is a bijection betweenS′

1 andS′′
1 mapping sentences to

logically equivalent ones. The reason for this discrepancy is
that it does not allow for duplicate sentences in a stratum. For
the rest of the paper we modify our definition of a stratified

knowledge base so that each stratum is amulti-setof sen-
tences, denoted by square brackets (so a stratum has the form
[φ1, . . . , φn]). The move to multi-sets allows us to prove a
result which does not hold if strata are represented as sets.

Proposition 3 For K = (S1, . . . , Sn), K ′ = (S′
1, . . . , S′

n)
and everyi ∈ {1, . . . , n}, let there be a bijectionfi between
Si andS′

i s.t.fi(φ) ≡ φ. ThenCnlex(K) = Cnlex(K ′).

.

4 Knowledge integration for description logics

In this section we recast the techniques of propositional
knowledge integration to DLs, with the input being a strat-
ified DL knowledge baseK = (S1, . . . , Sn) where, for
i ∈ {1, . . . , n}, Si is a finite multi-set of DL sentences. We
present versions of lexicographic entailment and the CMA
strategy for DL knowledge integration obtained from a direct
conversion of the techniques used in the propositional case.
We argue that these versions do not exploit the expressivity
of DLs adequately, and refine both lexicographic entailment
and CMA. We show that the refined versions of lexicographic
entailment and CMA produce identical results.

But before doing so we need to deal with a number of tech-
nical issues. The first one concerns the CMA strategy and
the level of expressivity in DL languages. Recall that propo-
sitional CMA makes use of disjunctions of conjunctions of
sentences. But DL languages do not allow disjunctions of
Tbox sentences with Abox sentences, and an expression such
as (C v D) t D(a) is thus ill-formed. To deal with this
issue we introduce the notion of adisjunctive DL knowledge
base, or DKB, as a set of classical DL knowledge bases. The
semantics of DKBs is defined as follows.

Definition 4 A DKB B is satisfiedby an interpretationI (I
is a model ofB) iff I is a model of at least one of the elements
of B. B entailsa DKB Φ (B � Φ) iff every model ofB is a
model ofΦ.

Informally B can be read as the disjunction of its elements,
with a single element ofB viewed as the conjunction of the
sentences contained in it. E.g.,{[C v D, C(a)], [C v D,
D(a)]} states that bothC v D andC(a) hold, or that both
C v D andD(a) hold. There are more fundamental reasons
for the use of DKBs as well, which will briefly be touched on
in Section 6, but will be dealt with in detail in future work.

The next issue to consider is the comparability of DL in-
terpretations. The semantics of propositional lexicographic
entailment makes use of the fact that all propositional val-
uations are “possible worlds” that can all be compared with
respect to preference. But the additional structure of DL inter-
pretations makes it impossible to maintain this comparability
in the semantics. In particular, whenever two interpretations
have different domains or do not map the same individual
names to the same elements in the domain, it is counterintu-
itive to insist that they be comparable in terms of preference.
This issue is solved by requiring that only interpretations ob-
tained from the samepre-interpretationbe comparable. A
pre-interpretation is an ordered pairπ = (∆π, dπ), where∆π



is a domain anddπ is a denotation function (cf. Section 2).3

Let Π be the class of all pre-interpretations. For every pre-
interpretationπ = (∆π, dπ), letIπ be the class of interpreta-
tionsI with ∆I = ∆π anddI = dπ. We provide a semantics
similar to that of propositional lexicographic entailment. But
each ordering�Si

on valuations associated with a stratumSi

will, in the case of DLs, be replaced by a class of orderings
�π

Si
: one for each pre-interpretationπ in Π. For a fixedπ,

the orderings�π
Si

for i ∈ {1, . . . , n} are then lexicographi-
cally combined using Definition 3 to obtain the ordering�π

lex.
Lexicographic entailment is then defined in terms of the min-
imal models of all these orderings. I.e. given a preference
ordering�π

lex for eachπ ∈ Π, lexicographic entailment for
stratified DL knowledge bases is defined as follows:

(�lex) K �lex Φ iff
⋃

π∈Π min�π
lex

⊆ M(Φ).
The one remaining question is how the preference orderings
�π

Si
used in the construction of�π

lex should be obtained. A
first attempt is to employ the same technique as that used for
propositional lexicographic entailment. That is, for eachI ∈
Iπ and each stratumSi, let the number ofSi-exceptions w.r.t.
I be the number of sentences inSi falsified by I, and use
these exceptions to generate the ordering�π

Si
.

Definition 5 Let π ∈ Π, I ∈ Iπ, φ a DL statement, and
X a multi-set of DL statements. The number ofφ-exceptions
eφ(I) for I is0 if I satisfiesφ and1 otherwise. The number of
X-exceptions forI is: eX(I) =

∑
φ∈X eφ(I). The ordering

�π
X onIπ is defined as:I �π

X J iff eX(I) ≤ eX(J).
The DL version of CMA is presented in algorithm 2. It is a
compilation of DL lexicographic entailment.

Algorithm 2 CMA for DLs (CMA-DL)
Input : K = (S1, . . . , Sn)
Output : A consistent DKB
B := {∅}
for i := 1 to n do
C := B
for all B ∈ C do

j := |Si|
repeat
X := {X | X ⊆ Si and|X| = j}
j := j − 1

until B ∪ X is consistent for someX ∈ X
B := (B \ {B}) ∪

{B ∪X | (X ∈ X ) &(B ∪X) is consistent}
end for

end for
return B

Proposition 4 Let K be a stratified DL knowledge base,B
the DKB obtained fromK by CMA-DL in algorithm 2, let
lexicographic entailment for DLs be defined in terms of Defi-
nition 5, and letΦ be a DKB. ThenK �lex Φ iff B � Φ.

To see that algorithm 2 always terminates, note that elements
of C are always consistent by construction. Ifj is ever set to

3As far as we know the term pre-interpretation was first used in
[Lloyd, 1987] in the context of logic programming.

0 in the repeat loop,X will be set to{∅}, and thenB ∪ X
has to be consistent, sinceB ∈ C. The following example
demonstrates how algorithm 2 works.

Example 2 Let K = (S1, S2), S1 = [C v ¬D, C v ¬E,
D v ¬E] andS2 = [C(a), D(a), E(a)]. S1 is consistent, so
B (and C) is set to{S1}. NowB is set to the only element
of C: [C v ¬D, C v ¬E, D v ¬E]. S2 is inconsistent
with B so, during the second iteration of therepeat loop,X
is set to{[C(a), D(a)], [C(a), E(a)], [D(a), E(a)]}. Every
element ofX is inconsistent withB, and the next iteration of
the repeat loop setsX to {[C(a)], [D(a)], E(a)]}. Now all
elements ofX are consistent withB, soB is removed fromB
and replaced with three multi-sets, yielding:

B = {[C v ¬D,C v ¬E,D v ¬E,C(a)],
[C v ¬D,C v ¬E,D v ¬E,D(a)],
[C v ¬D,C v ¬E,D v ¬E,E(a)]}.

ThusB states that the three statementsC v ¬D, C v ¬E,
andD v ¬E hold, and that, in addition, at least one ofC(a),
D(a) or E(a) holds. A consequence of all these statements is
that exactlyone ofC(a), D(a) or E(a) holds.

Lexicographic entailment for DLs and the CMA-DL strat-
egy are both faithful translations of their propositional coun-
terparts. It is precisely because of this that they do not take
the structure of DL statements into account. The following
example illustrates this deficiency.

Example 3 Let K = (S1, S2), whereS1 = [bird(tweety),
¬flies(tweety), bird(chirpy)], andS2 = [bird v flies].
S1 is consistent, and soB is set to{S1}. S2 is inconsis-
tent withS1, the only element ofB, and soB is returned as
{[bird(tweety), ¬flies(tweety), bird(chirpy)]}.
In the example algorithm 2 concludes, correctly, that Tweety
is a non-flying bird and that Chirpy is a bird. But it doesnot
conclude that Chirpy flies since it has discarded the statement
bird v flies completely. It therefore does not exploit the
structure ofbird v flies appropriately. Ideally we should be
able to conclude that Tweety is anexceptionand that all birds
other than Tweety (including Chirpy) can fly. For this to be
possible we need to weaken Tbox statements such asbird v
flies, something that is not possible in the propositional case.
Semantically we effect such a weakening by modifying the
definition of exceptions in Definition 5. For Abox statements
the definition stays unchanged, but for Tbox statements the
number of exceptions will bethe number of elements in the
domain violating the statement. An element in the domain of
an interpretationI violates a statement of the formC v D if
it is in CI but not inDI , i.e. if it is in CI ∩ (¬DI).
Definition 6 Let π ∈ Π, I ∈ Iπ, φ a DL statement, andX
a multi-set of DL statements. Ifφ is an Abox statement, the
number ofφ-exceptionseφ(I) for an interpretationI is 0 if
I satisfiesφ and1 otherwise. Ifφ is a Tbox statement of the
formC v D, the number ofφ-exceptions forI is:

eφ(I) =
{∣∣CI ∩ (¬D)I

∣∣ if CI ∩ (¬D)I is finite,
∞ otherwise.

The number ofX-exceptions forI is eX(I) =
∑

φ∈X eφ(I).
The ordering�π

X onIπ is: I �π
X J iff eX(I) ≤ eX(J).



So�π
X is a version of cardinality-based circumscription[Lib-

eratore and Schaerf, 1995]: the more exceptions, the less pre-
ferred an interpretation, while interpretations with an infinite
number of exceptions are all equally bad.

Using Definition 6 in our construction of lexicographic en-
tailment will ensure that we will be able to conclude, in the
example above, that Chirpy can fly. However, we are still
not able to express the conclusion thatall birds, except for
Tweety, can fly. The problem is that the notion of an excep-
tion is not expressible in a DL. We cannot state that all birds,
with the exception of one, can fly. It is necessary to extend
the level of expressivity of the DL languages we are interested
in. An appropriate extension, addingcardinality restrictions
on concepts, was proposed in[Baaderet al., 1996]. There, its
introduction was motivated by the use of DL systems for solv-
ing configuration tasks. These restrictions are statements in
the Tbox, allowing one to express restrictions on the number
of elements a concept may have:(≥ m C) and(≤ n C) re-
spectively express that the conceptC has at leastm elements
and at mostn elements. For our purposes it is sufficient to
consider cardinality restrictions of the form(≤ n C).

An interpretationI is said tosatisfya restriction of the form
(≤ n C) iff

∣∣CI
∣∣ ≤ n. The statementC v D is equiva-

lent to stating that the conceptC u ¬D is empty, i.e. that
(≤ 0 C u ¬D). This demonstrates that the Tbox statements
we have considered thus far can all be expressed as cardi-
nality restrictions. Therefore, a Tbox will from now on be
a finite multi-set of cardinality restrictions. An interpreta-
tion I is a modelof such a Tbox iff it satisfies each of its
restrictions. Other semantic notions such as entailment are
extended in the obvious way. With the inclusion of cardi-
nality restrictions we can now rephraseS2 in Example 3 as
{(≤ 0 bird u ¬flies)}. And, using Definition 6,K now
lexicographically entails that Tweety is a non-flying bird, that
Chirpy is a flying bird, and that there is at most one non-flying
bird, (1 ≤ bird u ¬flies), which is aweakeningof S2. So it
follows that, barring Tweety, all birds can fly.

The next step is to refine the CMA-DL strategy to coin-
cide with the modified version of lexicographic entailment
for DLs. This strategy, referred to asrefined CMA-DL,
is described in algorithm 3. The main difference between
the two algorithms is in the construction ofX . Abox sen-
tences are treated exactly as in algorithm 2: thej-weakening
W j(BA) of the AboxBA of a DL knowledge baseB (where
j ≤

∣∣BA
∣∣), contains all those sub multi-sets ofBA wherej

elements have beenremoved. That is,W j(BA) = {BA \Y |
Y ⊆ BA and|Y | = j}. So, forBA = [C(a), D(a), E(a)],
W 1(BA) = {[C(a), D(a)], [C(a), E(a)], [D(a), E(a)]}.
For a Tbox sentenceτ of the form (≤ n C), let W (τ) =
{(≤ (n + j) C) | j ≥ 0}. That isW (τ) is the set of all
weakened versions ofτ . Furthermore, for a Tbox sentenceτ
of the form(≤ n C) andτ ′ ∈ W (τ) of the form(≤ m C),
we let wτ (τ ′) = m − n. So wτ (τ ′) measures the extent
to whichτ ′ is a weakening ofτ . Forj ≥ 0, thej-weakening
W j(BT ) of the TboxBT of a DL knowledge baseB contains
all those weakened versions ofBT for which the sum of the
extent of the weakening isj. That is, forBT = [τ1, . . . , τn],
W j(BT ) = {[τ ′1, . . . , τ ′n] |

∑n
i=1 wτi(τ ′i) = j}. For exam-

ple, forBT = [(≤ 0 C), (≤ 0 D)], W 2(BT ) = {[(≤ 0 C),
(≤ 2 D)], [(≤ 1 C), (≤ 1 D)], [(≤ 2 C), (≤ 0 D)]}. And
for j ≥ 0, thej- weakeningWj(B) of a DL knowledge base
B contains all combinations ofi-weakenings ofBA andk-
weakenings ofBT for which i andk add up toj. That is,

Wj(B) =
{

A ∪ T

∣∣∣∣ A ∈ W i(BA), T ∈ W k(BT ),
i ≤

∣∣BA
∣∣ , andj = i + k}

}
.

For example, ifB = [(≤ 0 C), C(a), C(b)], then

W2(B) =
{

[(≤ 1 C), C(a)] , [(≤ 1 C), C(b)] ,
[(≤ 0 C)] , [(≤ 2 C), C(a), C(b)]

}
.

SoW2(B) contains those weakenings ofB in which exactly
two exceptions occur. Thej-weakenings of DL knowledge
bases are used in therepeat loop of algorithm 3 whereX is
set to thej-weakening ofSi. As required, RCMA-DL is a
compilation of lexicographic entailment using Definition 6.

Algorithm 3 Refined CMA-DL (RCMA-DL)
Input : K = (S1, . . . , Sn)
Output : A consistent DKB
B := {∅}
for i := 1 to n do
C := B
for all B ∈ C do

j := 0
repeat
X := Wj(Si)
j := j + 1

until B ∪ X is consistent for someX ∈ X
B := (B \ {B}) ∪

{B ∪X | (X ∈ X ) &(B ∪X) is consistent}
end for

end for
return B

Proposition 5 Let K be a stratified DL knowledge base,B
the DKB obtained fromK by RCMA-DL in algorithm 3, let
lexicographic entailment for DLs be defined in terms of Defi-
nition 6, and letΦ be a DKB. ThenK �lex Φ iff B � Φ.

The proof that algorithm 3 terminates hinges on the fact that
weakenings of Tbox sentences allow formoreexceptions, and
the fact that the maximum number of exceptions to cater for
is bounded by the number of individual names occurring in
K. The example below demonstrates algorithm 3 (whereb,
f , t andc abbreviatebird, flies, tweety andchirpy).

Example 4 Let K = (S1, S2), S1 = [b(t), b(c)], andS2 =
[¬f(t), ¬f(c), (≤ 0 b u ¬f)]. S1 is consistent so RCMA-
DL setsB (and C) to {S1}. Now B is set to the only ele-
ment ofC: [b(t), b(c)]. S2 is inconsistent withB, soX is
set toW1(S2) = {[¬f(t), ¬f(c), (≤ 1 b u ¬f)], [¬f(t),
(≤ 0 b u ¬f)], [¬f(c), (≤ 0 b u ¬f)]}. Every element
of X is inconsistent withB, and soX is set toW2(S2) =
{[¬f(t),¬f(c), (≤ 2 bu¬f)], [¬f(t), (≤ 1 bu¬f)], [¬f(c),
(≤ 1 bu¬f)], [(≤ 0 bu¬f)]}. Now all the elements ofX are
consistent withB, resulting in aB containingB ∪X for ev-
eryX in X . Combined, the four elements of the DKBB show



that exactly one of the following four cases hold: a) Tweety
and Chirpy are the only two non-flying birds; b) Tweety is the
only non-flying bird; c) Chirpy is the only non-flying bird; c)
All birds fly, including Tweety and Chirpy.

5 Related work

One of the first attempts to deal with inconsistency in logic-
based terminological systems can be found in[Nebel, 1990],
where it is phrased as a belief revision problem. More re-
cently the solution of[Schlobach and Cornet, 2003] is to pro-
vide support for inconsistency by correcting it. They propose
a non-standard reasoning system for debugging inconsistent
terminologies. The idea is to provide an explanation by pin-
pointing the source of the inconsistency, while correction is
left to human experts. In contrast, the approach taken in
[Huanget al., 2005] assumes that ontology reparation will be
too difficult. They propose to tolerate inconsistency and ap-
ply a non-classical form of inference to obtain meaningful re-
sults. Our approach is a hybrid of these. We employ a version
of lexicographic entailment to determine the consequences of
an inconsistent DL knowledge base, but the original knowl-
edge base is alsoweakenedso that its classical consequences
correspond exactly to the nonmonotonic consequences of the
original knowledge base.

[Flouriset al., 2004] investigate the applicability of AGM
belief change to a wide variety of logics. They define a no-
tion of AGM-complianceand show that most description log-
ics are not AGM-compliant. Since AGM belief revision can
be seen as a special case of knowledge integration, these re-
sults appear to have a direct effect on our work. However,
their definition of AGM-compliance is in terms of AGM be-
lief contraction, not revision. Moreover, their results show
that AGM non-compliance is directly related to a failure to
satisfy the controversial Recovery postulate for belief con-
traction. So their results are not relevant to the knowledge
integration strategies we have discussed.

In [Quantz and Royer, 1992] a technique is described for
assigning a preference semantics for defaults in terminologi-
cal logics which uses exceptions, and therefore has some sim-
ilarities to our work. They draw a distinction between strict
inclusions (Tbox statements of the formA v B) and de-
faultswhich is interpreted as “soft” inclusions. In our frame-
work this distinction can be modelled with two strata in which
all strict inclusions occur inS1 and all soft inclusions inS2.
In this sense our framework is more expressive than theirs.
More importantly, their formal semantics is not cardinality-
based, and therefore yields quite different results from ours.
And finally, unlike us, they do not provide a weakening of the
original knowledge base.

An altogether different approach is the explicit introduc-
tion of nonmonotonicity into DLs, usually some variant of de-
fault logic. See[Baaderet al., 2003] for an overview. While
it is difficult to draw direct comparisons with our work, it is
conceivable that similar intuitions might be identified and ex-
ploited.

6 Conclusion

We have proposed knowledge integration strategies for DLs
based on techniques developed in the propositional case, and
provided corresponding algorithms with disjunctive knowl-
edge bases (DKBs) as output. It can be shown that the ele-
ments of a DKB produced as the output of Algorithm 2 or
3 are always pairwise inconsistent (modulo logical equiv-
alence), a property which is useful (i) when inconsistency
management is an iterative process and (ii) as part of sup-
port provision for ontology engineers. This forms the basis
of an argument that the structure of DBKs are important and
ought to be retained as outputs of our algorithms.

We have shown how the structure of DL languages can
be exploited to define basic knowledge integration strategies.
Our focus was on the formal semantics of knowledge integra-
tion strategies, although we also provided high-level decision
procedures. The next step is the development of tableaux-
based algorithms for implementing the strategies outlined in
the paper. Some initial results suggest that the complexity of
the integration strategies may be no worse than consistency
checking in the DL under consideration.

An obvious question to consider is whether any additional
structure, such as the specification of role hierarchies and
transitivity of roles, can be exploited further to modify the
knowledge integration strategies in appropriate ways. Such
additional structure might also be used to ameliorate other
problems. For example, DKBs can be exponential in size,
which will severely affect their use in practice. But it might
be possible to limit the size of strata in stratified KBs using
the structure of sentences contained in it. A simple example
is the use of principles such asspecificity: if the sentences
bird v flies (all birds fly) andpenguin v ¬flies (all pen-
guins don’t fly) occur in the same stratum, an application of
specificity will ensure thatpenguin v ¬flies is given prece-
dence overbird v flies, provided thatpenguin v bird
takes precedence over both. Finally, the management of other
notions of incoherence, such as concept unsatisfiability, is
currently the topic of further investigation.

Acknowledgments

National ICT Australia is funded by the Australia Gov-
ernment’s Department of Communications, Information and
Technology and the Arts and the Australian Research Coun-
cil through Backing Australia’s Ability and the ICT Centre of
Excellence program. It is supported by its members the Aus-
tralian National University, University of NSW, ACT Gov-
ernment, NSW Government and affiliate partner University
of Sydney. The third author thanks Aditya Ghose for his gen-
eral support.

References
[Baader and Nutt, 2003] F. Baader and W. Nutt. Basic de-

scription logics. In F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. Patel-Schneider, editors,The De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.



[Baaderet al., 1996] F. Baader, M. Buchheit, and B. Hollan-
der. Cardinality restrictions on concepts.Artificial Intelli-
gence, 88:195–213, 1996.

[Baaderet al., 2003] F. Baader, R. K̈usters, and F. Wolter.
Extensions to description logics. In F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors,The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press,
2003.

[Benferhatet al., 1993] S. Benferhat, C. Cayrol, D. Dubois,
J. Lang, and H. Prade. Inconsistency management and pri-
oritized syntax-based entailment. In R. Bajcsy, editor,Pro-
ceedings of IJCAI-93, pages 640–645, 1993.

[Benferhatet al., 1998] S. Benferhat, D. Dubois, J. Lang,
H. Prade, A. Saffioti, and P. Smets. A general approach for
inconsistency handling and merging information in prior-
itized knowledge bases. InProceedings of KR’98, pages
466–477, 1998.

[Benferhatet al., 2004] S. Benferhat, S. Kaci, D. Le Berre,
and M. Williams. Weakening conflicting information for
iterated revision and knowledge integration.Artificial In-
telligence, 153:339–371, 2004.

[Berners-Leeet al., 2001] T. Berners-Lee, J. Hendler, and
O. Lassila. The semantic web.Scientific American,
284(5):3443, 2001.

[Flouriset al., 2004] Giorgos Flouris, Dimitris Plexousakis,
and Grigoris Antoniou. Generalizing the AGM postulates:
preliminary results and applications. InProceedings of the
10th International Workshop on Non-Monotonic Reason-
ing: NMR2004, 2004.

[Haarslev and M̈oller, 2001] V. Haarslev and R. M̈oller.
Racer system description. In R. Goré, A. Leitsch, and
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